Structural analysis of non-stoichiometric lithium cuprates, Li2+2xCu1-2xO2-x. Effects of lithium content and thermal treatments

Main Article Content

Luis Palacios
https://orcid.org/0000-0003-0072-1281
Gonzalo González
Oscar Ovalle-Encinia
Enrique Lima
Esther Ramírez-Meneses
Heriberto Pfeiffer

Abstract

Lithium cuprate (Li2CuO2) is being used for a wide range of applications due to its high lithium diffusion through the layer structure. Moreover, Li2+2xCu1-xO2-x non-stoichiometric material shows enhanced physicochemical properties. Therefore, lithium location understanding is highly important for lithium cuprate applications. This paper reports the structural coherence analysis, local and long atomic arrangement of Li2+2xCu1-xO2-x using X-ray diffraction (XRD), pair distribution function (PDF) and solid-state nuclear magnetic resonance (NMR) techniques. Li2CuO2, containing different excess quantities of lithium (from 0 to 60 at%), were synthesized by solid-state reaction. The synthesized ceramics presented nonstoichiometric structures, with Li2CuO2 type-structure. Two structural models were proposed to explain the high enhancement physicochemical properties of these ceramics; (i) the extra lithium atoms substitute copper sites, and (ii) lithium species occupy interstitial sites in the crystalline structure. Additionally, further thermal treatments rearrange the non-stoichiometric crystalline structures into the stable Li2CuO2 phase.

Article Details

How to Cite
Palacios, L., González, G., Ovalle-Encinia, O., Lima, E., Ramírez-Meneses, E., & Pfeiffer, H. (2023). Structural analysis of non-stoichiometric lithium cuprates, Li2+2xCu1-2xO2-x. Effects of lithium content and thermal treatments. Journal of Applied Research and Technology, 21(3), 352–366. https://doi.org/10.22201/icat.24486736e.2023.21.3.1700
Section
Articles
Author Biographies

Luis Palacios, Universidad Iberoamericana

Departamento de Ingeniería química, Industrial y de Alimentos, Universidad Iberoamericana, Prolongación
Paseo de la Reforma 880, Lomas de Santa Fe. C.P. 01219, Ciudad de México, MEXICO

Gonzalo González, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Avenida Universidad
3000, Circuito exterior s/n, Delegación Coyoacán, CP 04510, Ciudad de México, MEXICO

Oscar Ovalle-Encinia, Arizona State University

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85260, USA.

Enrique Lima, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Avenida Universidad
3000, Circuito exterior s/n, Delegación Coyoacán, CP 04510, Ciudad de México, MEXICO

Esther Ramírez-Meneses, Universidad Iberoamericana

Departamento de Ingeniería química, Industrial y de Alimentos, Universidad Iberoamericana, Prolongación
Paseo de la Reforma 880, Lomas de Santa Fe. C.P. 01219, Ciudad de México, MEXICO

Heriberto Pfeiffer, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Avenida Universidad
3000, Circuito exterior s/n, Delegación Coyoacán, CP 04510, Ciudad de México, MEXICO.

Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), IIM-UNAM.

Most read articles by the same author(s)