Effect of Linearly Varying Heating Inside a Square Cavity under Natural Convection
Main Article Content
Abstract
Telecommunication devices such as ADSL Modems or Wi-Fi routers are being widely used around the globe. Thermal management of such equipments are of critical importance as the increased power consumptions caused by technological upgrades results in increased heat generation within these systems. The heat transfer process inside such sealed and passively cooled equipments can be simplified as natural convection inside enclosures. Studying actual conditions inside electronic enclosure are necessary for their effective thermal management. This study aims at investigating the effect of non-isothermal heating inside such enclosures with linearly varying temperature distribution on free convection inside square enclosure. The issue of free convection of air interior of a square chamber with linearly varying temperature distributions on the left partition is studied numerically. The effect of change of Rayleigh number, temperature distributions, on flow and temperature field and rate of transfer of heat are analysed. Rayleigh number is chosen to vary in between 103 and 106. Four different cases of linearly varying temperature distributions are considered. The outcomes are presented as stream line plot, isotherm contour and average Nusselt number. The outcomes depicted that case of linearly increasing temperature along the height gives higher Nusselt number than other cases.