
  

 

 

Journal of Applied Research and Technology 
 

www.jart.icat.unam.mx 

Journal of Applied Research and Technology 19 (2021) 644-652 

Original 

Dense monocular simultaneous localization and 

mapping by direct surfel optimization 
 

E. Trabesa,b,c*    L. Avilab,c    J. D. Gazzanoa    C. F. Sosa Paeza  

 
aUniversidad Nacional de San Luis, Facultad de Ciencias Físico Matemáticas y Naturales,  

Departamento de Electrónica, San Luis, Argentina 
 b Universidad Nacional de San Luis, Facultad de Ingeniería y Ciencias Agropecuarias,  

Departamento de Ingeniería, Laboratorio de Mecatrónica, San Luis, Argentina  
cLaboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC),  

CONICET-UNSL, San Luis, Argentina 

 

 

Received 04 27 2020; accepted 08 03 2021 

Available 12 31 2021 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

  Keywords: Depth estimation, visual odometry, SLAM 

 

Abstract: This work presents a novel approach for monocular dense simultaneous localization and 

mapping. The surface to be estimated is represented as a piecewise planar surface, defined as a group 

of surfels each having as parameters the position and normal. These parameters are directly estimated 

from the raw camera pixels measurements using a Gauss-Newton iterative process. The representation 

of the surface as a group of surfels has many advantages. First, it allows recovering robust and accurate 

pixel depths, without the need to use a computationally demanding depth regularization schema. This 

has the further advantage of avoiding the use of a physically unlikely surface smoothness prior. What 

is more, new surfels can be correctly initialized from the information present in nearby surfels, avoiding 

also the need to use an expensive initialization routine commonly needed in Gauss-Newton methods. 

The method was written in the GLSL shading language, allowing the use of GPU devices and achieving 

real-time processing. The method was tested on benchmark datasets, showing both its depth and 

normal estimation capacity, and its quality to recover the original scene. Results presented in this work 

showcase the usefulness of the more physically grounded piecewise planar scene depth prior, instead 

of the more commonly pixel depth independence and smoothness prior. 
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1. Introduction 
 

One of the main abilities that unmanned vehicles should have 

is the capacity to estimate their relative position within an 

exploration environment. What is more, complex missions like 

resources detection and obstacle avoidance, require also that 

the vehicle be able to build a detailed map of its surroundings. 

A manner to acquire such knowledge is through the use of 

mapping methods, where a model of the nearby terrain is 

recovered from the measurements provided by onboard 

sensors. It’s well known in the literature that the problem of 

positioning and mapping are interconnected, and both have 

to be solved simultaneously (Grisetti et al., 2010). Systems that 

are capable of position estimation and mapping are known in 

the literature as Simultaneous localization and mapping 

(SLAM) (Cadena et al., 2016). There exist different kinds of 

sensors that can be utilized to accomplish the SLAM task 

(Lemus et al., 2014). A very interesting choice is the 

monocular camera. These kinds of sensors have, with the 

current state of technology, very large resolutions and also 

very high refresh rates. 

There are many SLAM systems currently present in the 

literature that successfully use a monocular camera as the 

only sensor for resolving the SLAM problem. One example is 

LSD-SLAM (Engel et al., 2014), which uses an epipolar search 

approach together with a Kalman filter for estimating the 

depth of some of the pixels of a frame taken from a position of 

reference. The pixels that, due to lack of texture in the frame, 

cannot be estimated accurately are detected and discarded, 

and their depths are not estimated. With the depth of the 

pixels and the position of the reference frame, a local map is 

constructed. For the frames taken in nearby positions, the 

information obtained from their relative position within the 

local map is used to improve the reference frame pixels depth 

estimation. Another example is DSO (Engel et al., 2018), which 

takes an even more restrictive approach with the selection of 

pixels to be used for depth estimation. Only a very small 

percentage of the pixels in the frame are used for depth 

estimation. The resulting map is a very sparse one, but the 

results in localizations are outstanding. Other works like ORB-

SLAM (Mur-Artal et al, 2015) use a pre-processing step on the 

captured frames, to identify the areas where robust depth 

estimation is more plausible. This pre-processing utilizes a 

salience detector to filter the zones of the frame that are not 

well posed for depth and pose estimation. All of these 

methods do not try to recover a detailed map of the 

surrounding terrain, focusing their attention on correct 

position estimation. Therefore, the usefulness of these 

methods in missions that require detailed knowledge of the 

surrounding terrain is questionable. 

 

DTAM (Newcombe et al., 2011) tries to estimate depth in 

every pixel. A brute force plane sweeping approach (Hosni et 

al., 2013) in conjunction with a regularizer is used to 

accomplish this task. The system is still based on a pixel-wise 

epipolar search. And so, the estimation in areas in the frame 

where there is no texture is heavily regularized with the depth 

of nearby pixels, in order to recover somewhat correct depth 

estimations. REMODE (Pizzoli et al., 2014) uses an epipolar 

depth search together with a probabilistic measurement 

merging, again with a regularization at the end of the process. 

Zones in the frame where there is no texture must be, again, 

heavily regularized. The work of (Zienkiewicz et al., 2016) tries 

to estimate a mesh from the frames taken from a monocular 

camera. The system utilizes first a plane sweeping method 

similar to (Newcombe et al., 2011) to estimate the depth, and 

then this information is used to optimize every vertex of the 

mesh. The use of a pixel-wise estimation method makes again 

the zones without texture difficult to estimate and it requires 

the use of a depth regularizer. 

It has been lately recognized in the literature that the depth 

smoothness hypothesis introduces a prior knowledge of the 

scene that many times is not accurate (Engel et al., 2018; 

Goodfellow et al., 2016). A better prior hypothesis on the depth 

of the scene is desirable. A surfel representation for the depth 

estimation could potentially resolve these issues. This would 

replace the depth smoothness prior with a more plausible 

piecewise planar depth prior, preserving strong 

discontinuities commonly found in man-made structures. 

Also, the representation of a part of the scene with the same 

parameters could avoid the need for a regularizer. Many works 

found in the literature have utilized surfels to represent the 

surface of the scene, but always using depth camera sensor 

like (Wang et al., 2019; Whelan et al., 2016; Yan et al., 2017). 

This work presents a dense monocular SLAM system that 

does not utilize the depth smoothness prior. This method 

accomplishes the map estimation task by modeling the map, 

not as a group of independent points, but as a group of surfels. 

This takes advantage of the knowledge that the depth of most 

scenes can be modeled as a piecewise planar surface, instead 

of just a group of independent pixels. Every piecewise portion 

of the scene can be estimated with a surfel. This approach 

allows to directly restore robust and accurate pixel depths, 

even in zones where there is no good texture observation. 

Furthermore, this approach avoids the need for a 

regularization step. This way we can save on computational 

resources and, more importantly, it does not add a physically 

unlikely smoothness prior. New surfels can be initialized with 

the information of neighbor surfels. The entire system was 

written in the GLSL shading language, thus using the onboard 

GPU to achieve real-time. As far as the authors know, this is the  
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first time this approach is used for monocular depth 

estimation. The method was tested on various data sets and 

the results show that both the depth and the surfels can be 

recovered correctly, demonstrating the potential of the 

method to reconstruct the scene with high quality. 

 

2. Direct surfel optimization 

 

In this section, we fully detail our depth estimation approach 

by direct surfel optimization. This section is structured as 

follows. First, in section 2.1, we explain which parameters are 

needed to describe the surfels. Then, in section 2.2, we explain 

how we obtain the inverse depth of the entire scene from the 

surfels set. Afterward, in section 2.3, we explain how we 

initialize the surfles’s parameters, before the optimization 

starts. In section 2.4 we present our surfel parameter 

optimization approach, using only the camera’s raw 

measurements (thus making this a direct method). Finally, in 

section 2.5, we explain how this surfel set is used to estimate 

the scene depth from another camera pose. 

 

2.1. Surfel parameterization 

Each surfel position ps and normal ns are defined relative to the 

pose Pkf ∈ SE(3) of a reference frame Fkf. The surfels have 3 free 

parameters, 2 belonging to the degrees of freedom of its 

normal ns, and the other given by the inverse depth ids of the 

ray rs going from the origin of the reference frame to ps, whose 

coordinates are given by 
 

𝑝𝑠 =  𝑟𝑠 / 𝑖𝑑𝑠                                                                                            (1) 
 

The radius of the surfel r is selected so that all surfels have 

the same frame-space area in the reference frame Fkf, 

regardless of its normal or depth. This is done to guarantee the 

same quantity of pixel observation for every surfel, this way 

allowing to gather enough information for the Gauss-Newton 

estimation process. 

Along with the aforementioned parameters, the last 

residual of each surfel and the time that the surfel was last 

seen and updated are stored for later use. 
 

2.2. Inverse depth calculation 

With the information provided by the estimated surfel 

parameters, the inverse depth idu of every pixel u belonging to 

the reference frame Fkf can be obtained. Every u has a 

corresponding ray ru with coordinates 
 

𝑟𝑠 = 𝐾−1𝜋−1(𝑢)                                                                                     (2) 
 

where K is the camera matrix, π() is the homogenizing 

function π([x,y,z]) = [x/z,y/z,1] and u ∈ R3 is a homogeneous 

pixel coordinate relative to Fkf. To be in the same plane, the 

point ps and pu = ru/idu must satisfy ns(ps −pu) = 0, so idu is 

computed as 

 

𝑖𝑑𝑢 =
(𝐾−1 𝜋−1(𝑢)) ⋅𝑛𝑠

(𝑟𝑠/𝑖𝑑𝑠) ⋅𝑛𝑠
                                                                             (3) 

 

The inverse depth idu will be calculated relative to a surfel s 

when the distance between u and the coordinates of the surfel 

ps projected into the frame Fkf, us = π(Kps), is less than the radius 

r of the surfel s in screen space, that is 

 

||𝜋(𝐾𝑝𝑠)  −  𝑢  ||  <  𝑟                                                                        (4) 

 

The GLSL shading language is utilized for the 

implementation of the system, so it allows the introduction of 

a depth buffer for occlusion removal. This means that, if 

several surfel project the same pixel screen location, only the 

pixels with the closest depth to the camera are selected. 

During inverse depth computation, along with the depth 

information the index of the generating surfel sind is saved, for 

subsequent utilization as described below. 

 

2.3. Surfel parameterization 

To initialize the surfels, the reference frame Fkf’s inverse depth is 

computed. Clearly, in areas in the image where no surfel satisfies 

the equation 4, there will be no inverse depth measurement. These 

areas are identified as potential location to initialize a new surfel. 

First, a search is carried out for an empty pixel uns where a 

new surfel can be placed. This area must satisfy that there is 

no other inverse depth measurement nearby such that ∀unn, 

‖uns −unn‖> αr, where unn is a non-empty pixel. 

Then, all neighboring surfels are searched for. A neighbor 

surfel have to satisfy that a corresponding inverse depth 

measurement pixel us is nearby, with a distance of less than 

‖uns −us‖< βr. The inverse depth for the new surfel is calculated 

as the mean of the estimated inverse depth, following 

equation 3 with respect to all nearby surfels s. The normal of 

the new surfel is initialized as the mean of all neighboring 

surfel’s normal. 

Insofar as the real surface is globally plane, this type of 

initialization will give good results. This allows to initialize 

the surfel with the approximate correct surfel normal and 

depth, which allows to initialize the Gauss-Newton 

optimization, without the need to search for surfel 

initializing parameters. 

 

2.4. Surfel optimization 

The parameters of the surfels are estimated so that they 

minimize the cost function: 

 
𝐶(𝑛𝑠, 𝑖𝑑𝑠)  =  𝛴𝑛 ∈𝜔𝛴𝑢 ∈ 𝑠|| 𝐼𝑓𝑛

(𝑢𝑝(𝑛𝑠, 𝑖𝑑𝑠)  − 𝐼𝑘𝑓(𝑢)) ||ℎ  (5) 
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which is the commonly used sum of the Huber normed 

photometric error (Engel et al., 2018; Newcombe et al., 2011; 

Pizzoli et al., 2014) between the reference frame intensity Ikf 

and every frame Ifn in a group Ω of frames taken before Ifn. 

The coordinates up of the pixel u as seen from the frame Ifn 

can be calculated with 

 

𝑢𝑝 (𝑛𝑠, 𝑖𝑑𝑠)  = 𝜋(𝐾𝑃𝑘𝑓
𝑓𝑛𝐾−1𝜋(𝑢) / 𝑖𝑑𝑢(𝑛𝑠, 𝑖𝑑𝑠))  

                                                                                                                      (6) 
 

where 𝑃𝑘𝑓
𝑓𝑛∈SE(3) changes a point p in the keyframe 

reference frame to the frame fn reference frame. 

To recover the parameters of each surfel [ns,ids] that 

minimizes C([ns,ids]), a Levenber-Marquat (Engel et al., 2018) 

Gauss-Newton optimization approach is implemented. The 

Jacobian 
𝜕𝐶([𝑛𝑠,𝑖𝑑𝑠])

𝜕[𝑛𝑠,𝑑𝑠]
is obtained by using the chain rule for 

derivatives: 

 

𝐽 =  𝛴𝑛 ∈ 𝛺
𝜕𝐶([𝑛𝑠,𝑑𝑠])

𝜕𝑖𝑑𝑢

𝜕𝑖𝑑𝑢

𝜕[𝑛𝑠,𝑑𝑠]
                                                               (7) 

 
𝜕𝐶([𝑛𝑠,𝑑𝑠])

𝜕𝑖𝑑𝑢
 can be further expressed as 

 
𝜕𝐶([𝑛𝑠,𝑑𝑠])

𝜕𝑖𝑑𝑢
 =  𝛴𝑛 ∈ 𝛺

𝜕𝐶([𝑛𝑠,𝑑𝑠])

𝜕𝐼𝑓
 𝛻𝐼𝑓𝑛

(𝑢𝑝)
𝜕𝜋(𝑢)

𝜕𝑢𝑝

𝜕𝑢𝑝

𝜕𝑖𝑑𝑢
                     (8) 

 

where 
𝜕𝐶([𝑛𝑠,𝑑𝑠])

𝜕𝐼𝑓
= 𝑤(𝐼𝑓𝑛

(𝑢𝑝) − 𝐼𝑘𝑓(𝑢)), 𝑤 being the Huber 

norm coefficient correction to the squared norm, 𝛻𝐼𝑓𝑛
is the 

gradient of the frame fn, 
𝜕𝜋(𝑢)

𝜕𝑢𝑝
= [1  0 − 𝑢𝑥; 0 1 − 𝑢𝑦; 0 0 0] 

and 
𝜕𝑢𝑝

𝜕𝑖𝑑𝑢
= 𝐾𝑅𝑘𝑓

𝑓𝑛𝐾−1𝜋−1(𝑢), where𝑅𝑘𝑓
𝑓𝑛  is the relative 

rotation between the coordinate frames Pkf and Pfn. 
 

Furthermore,
𝜕𝑖𝑑𝑢

𝜕[𝑛𝑠,𝑑𝑠]
 can be expressed as 

 
𝜕𝑖𝑑𝑢

𝜕𝑛𝑠
=

𝑟𝑠/𝑖𝑑𝑠

𝐾−1𝜋−1(𝑢) ⋅𝑛𝑠
−

(𝑟𝑠/𝑖𝑑𝑠)𝐾−1𝜋−1(𝑢) ⋅𝑛𝑠

𝐾−1𝜋−1(𝑢) ⋅𝑛𝑠
                                      (9) 

 
𝜕𝑖𝑑𝑢

𝜕𝑑𝑠
=

𝐾−1𝜋−1(𝑢) ⋅𝑛𝑠

𝑟𝑠 ⋅𝑛𝑠
  

 

As
𝜕𝑖𝑑𝑢

𝜕[𝑛𝑠,𝑑𝑠]
 does not depend upon 𝐼𝑓𝑛

 or its pose 𝑃𝑓𝑛
, it can be 

taken out of the sum and computed only once for all 𝐼𝑓𝑛
∈ 𝛺, 

which allows to reduce the computational burden of the GPU. 

Notice that even 𝑛𝑠 has two degrees of freedom, the 

optimization as calculated with the equation 9 utilizes three 

degrees of freedom for the normal. This is done to avoid such 

normal expressions as in cylindrical parameterizations, which 

adds singularities to the optimization procedure that can 

cause problems. It was chosen to implement a 3 degree of 

freedom parameterizations, and then normalize the resulting 

updated normal 

2.5. Surfel reference frame change 

A new reference frame 𝐹𝑘𝑓1
is selected as in the approach 

described in (Engel et al., 2014). First, the new reference frame 

pose 𝑃𝑘𝑓0

𝑘𝑓1  is estimated, relative to the previous reference 

frame 𝑃𝑘𝑓0
. If there are surfels previously estimated in the last 

reference frame 𝐹𝑘𝑓0
, its surfels are passed to the new 

reference frame. The position and normal of each surfel are 

changed as 

 

𝑝𝑠𝑘𝑓1
= 𝑃𝑘𝑓0

𝑘𝑓1𝑝𝑠𝑘𝑓0
  

                                                                                                                    (10) 

𝑛𝑘𝑓1
= 𝑅𝑘𝑓0

𝑘𝑓1𝑛𝑘𝑓0
  

 

where 𝑅𝑘𝑓0

𝑘𝑓1  ∈ 𝑆𝑂(3) is the rotation of 𝑃𝑘𝑓0

𝑘𝑓1 . The ray 𝑟𝑠𝑘𝑓1
can 

be easily calculated as 𝜋(𝑝𝑘𝑓1) . 

 

3. Implementation 

 
The proposed system is implemented using the parallel 

computing capabilities of common GPUs, by utilizing 

OpenGL core 3.3. This way good performance is achieved 

without the need to have a high performance system 

capable of CUDA or OpenCL.  

This depth estimation approach is integrated with the LSD-

SLAM system (Engel et al., 2014), thus having position 

estimation and map management. It was found that this 

system is a good choice, because of its state of the art 

performance while being open-source and easy to expand 

upon. 

 
3.1. System evaluation 

The system was evaluated in 3 benchmark datasets available 

in (TUM, Department of Informatics, 2017). These datasets 

depict 3 different scenes. The first dataset was taken on a 

foodcourt, with tables and benches in view. The street road 

present in the scene has a very smooth texture, so estimating 

its depth can be difficult. The second dataset was taken from 

inside a launch buffet, so the scene has many non-diffuse 

surfaces, such as the floor and doors. The last scene was taken 

walking around a machine building, so there are many open 

spaces and intricate structures. The dataset was obtained 

using a wide angle global shutter camera. The images are 

undistorted, and all camera calibration parameters are given 

by the dataset’s authors. 

In the following sections, results show how the depth and 

the normal of the objects are recovered for different 

environments. The color codes present in the figures are as 

follows. For the normal estimations, blue represents vectors 

whose directions are facing to the right edge of the frame, and 

red represents vectors which are pointing to the right of the 
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frame. Similarly, green represents vectors pointing up, and 

yellow are vectors pointing down. For the depth estimation 

figures, black represents a low inverse depth, and therefore 

high depth. Conversely, white represents high inverse depths, 

and so depths close to the camera focal point. 

For the following evaluations, the camera image has a 

640x480 resolution, and the surfel size was set to a radius of 

10 pixels. 

Foodcourt dataset: Results from the foodcourt dataset are 

shown in Fig. 1. It can be seen that the resulting depth is 

correctly recovered, even in 

the low texture sections of the street. The first column of 

figure 1 depicts a backward moving movement. This means 

that the pixels in the lower part of the image are pixels just 

entering the frame, and so they have received very few 

observations. This highlights the usefulness of the surfel 

initialization scheme explained in section 2.3. The third 

column of figure 1 depicts a forward movement, showing that 

both types of movements allow correct normal and depth 

estimations. In the second column it can be seen that the 

guarding fence, the food truck and the floor have correct 

depth and normal estimations. This part of the dataset is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particularly challenging, because the guarding fence was seen 

a few frames ago from the opposite side, so its normals had 

the inverse direction. The same happens with the normals of 

the food truck. 

Eccv dataset: This dataset is particularly challenging, because 

of the specularities present in almost all of the surfaces. The floor, 

the ceiling, and even some of the furniture present in the scene 

have this characteristic. The first column of Fig. 2 shows that the 

floor depth and normal were correctly estimated, even when 

there are specularities and blurriness. In the second, third and 

fourth columns of Fig. 2 it can be seen that the depth and normal 

of the ceiling were correctly recovered. The movement in the 

second row was backward, so all of the pixels in the lower part of 

the frame are new and with very few observations. 

Again this shows the usefulness of the surfel initialization. 

Machine dataset: This dataset has the particularity that it 

was taken outside, and the sky is a very prominent part of most 

of the frames. As it was a cloudy day, the sky has texture, even 

when it is very smooth with a very low gradient. As can be seen 

in Fig. 3, the depth of the sky was correctly recovered, even 

with the conditions described before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

    
 

    
 

Figure 1. Foodcourt dataset results. First column: raw frame. Second 

 column: estimated normals. Third column: estimated depth. 
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Figure 2. Eccv dataset results. First column: raw frame. Second column:  

estimated Normal. Third column: estimated depth. 

 

 

 

 

    
 

    
 

    
 

Figure 3. Machine dataset results. First column: raw frame. Second column: 

estimated normals. Third column: estimated depth. 
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3.2. Usefulness of normal estimation 

The usefulness of the joint depth and normal estimation was 

tested, by modifying the Levenberg-Marquardt estimation 

algorithm described in 2.4. In equation 9, 
𝜕𝑖𝑑𝑢

𝜕𝑛𝑠
 was set to 

[0.0,0.0,0.0], effectively just optimizing for 𝑖𝑑𝑠, similarly to 

approaches like (Engel et al., 2018). 

The resulting surface reconstruction of the foodcourt 

dataset with and without normal estimation can be seen in 

Fig. 4. The resulting scene reconstruction has a quality not 

present in the reconstruction made without normal 

estimation. 

 

3.3. Impact of surfel size selection 

In this evaluation, the surfel radius was set to 12 pixels wide. Results 

of the scene reconstruction can be seen in Fig 5. The widening of 

the surfel causes a coarse reconstruction result, losing many details 

present on the scene. Nevertheless, the proposed approach can 

reconstruct the scene correctly, including the surfels on the floor 

and benches. Without using normal estimation the resulting 

reconstruction has a very poor quality, at the point of almost being 

unrecognizable, as seen in Fig 5. 

 

4. Conclusions 

 

The approach described here can estimate a monocular 

dense depth map as a set of surfels, directly from the raw 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

image pixels. As far as the authors know, this is the first time 

this approach is utilized for monocular depth estimation. This 

presents several advantages over methods more commonly 

found in the literature, that implement pixel depth estimation 

followed by a regularization schema. Firstly, there is no need 

for a computationally costly and physically unlikely depth 

regularization. Also, the information from the normal 

estimation can be used to initialize new neighboring surfels, 

thus being able to initialize the Gauss Newton optimization 

approach without the need to perform further computations. 

The method was tested in several datasets, showing that 

the depth and surfels can be recovered correctly. The normal 

estimation allows for a more precise scene reconstruction, 

even when the surfel pixel radius is incremented considerably. 

Most monocular depth estimation approaches present in 

the literature perform pixel wise depth estimation in 

conjunction with depth regularization methods. The results 

obtained in this paper suggest that more plausible depth 

priors can be utilized for scene reconstruction. 

Since the proposed method has as objective fast robust 

dense depth estimation, unlike most of the methods currently 

present in the literature that aim just for sparse depth 

estimation, a proper comparison with the benchmark 

methods would only be possible in a real-time setting. 

Therefore, the next step aims to implement our and other 

benchmark methods on a mobile robot with an integrated 

GPU computer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
 

    
 

Figure 4. Detail of reconstruction, using a surfel radius of 5 pixels. First row: proposed method.  

The benches and tables present in the scene are easily recognizable, resulting from the correct surface normal estimation.  

Second row: without estimating surfels normals. This time the scene cannot be easily recognized, and artifacts caused by  

incorrect surfel normals are present. 
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Figure 5. Detail of reconstruction with a surfel radius of 12 pixels. The first row shows results with the present method, while the second 

row shows results without estimating the surfels normal. With the proposed method, even with such a coarse surfel reconstruction size, 

the benches and tables present in the scene can be still recognized, and the floor is correctly recovered. On the other hand, without 

estimating the surfels normal, the scene is almost completely unrecognizable, and there are heavy plane-depth related artifacts. 
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