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Abstract

In this paper, we introduce a novel image reconstruction algorithm with Least Squares Support Vector Machines (LS‑SVM) and Simulated 
Annealing Particle Swarm Optimization (APSO), named SAP. This algorithm introduces simulated annealing ideas into Particle Swarm 
Optimization (PSO), which adopts cooling process functions to replace the inertia weight function and constructs the time variant inertia weight 
function featured in annealing mechanism. Meanwhile, it employs the APSO procedure to search for the optimized resolution of Electrical 
Capacitance Tomography (ECT) for image reconstruction. In order to overcome the soft field characteristics of ECT sensitivity field, some image 
samples with typical flow patterns are chosen for training with LS-SVM. Under the training procedure, the capacitance error caused by the soft 
field characteristics is predicted, and then is used to construct the fitness function of the particle swarm optimization on basis of the capacitance 
error. Experimental results demonstrated that the proposed SAP algorithm has a quick convergence rate. Moreover, the proposed SAP outperforms 
the classic Landweber algorithm and Newton-Raphson algorithm on image reconstruction.
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access item distributed under the Creative Commons CC License BY-NC-ND 4.0.
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1. Introducción

As one of the electrical process tomography imaging tech-
nologies, Electrical Capacitance Tomography (ECT) is featured 
in lower costs, no-irradiative and non-invasive methods, etc., 
and applicable to the visible measurement of two-phase and 
multiple-phase flows (York, 2001; Griffiths, 1988). The princi-
ple of ECT can be described as: different objects have different 
permittivities. If the concentration and the composition of the 
component phase are changed, the permittivity will change to 
fit the mixture. Variation in permittivity will cause a change of 
the capacitance measurements and the capacitance measure-
ments reflect the size and distribution of the medium phase con-
centration of the mixture. On this basis, using a corresponding 
image reconstruction algorithm can reconstruct the distribution 
of the test area of the pipeline. Because ECT is non-linearity 
and the number of capacitances independently measured are 

much less than the number of pixels for image reconstruction, 
there is no resolution for the reverse problem. Furthermore, the 
sensitivity field of ECT is featured in “soft field”, i.e. sensitivity 
is not evenly distributed, the reverse problem equation is in a 
seriously abnormal state (Yang, 1997). Therefore, image recon-
struction algorithm has been the bottleneck for the further de-
velopment of ECT, and a high precise image reconstruction 
algorithm is required.

The existing ECT image reconstruction algorithms can be 
divided into two mainly types: non-iterative algorithm and it-
erative algorithm. As one of the typical non-iterative algo-
rithms, Linear Back Projection (LBP) is simple and quick, but 
unsatisfying in imaging precision. So LBP is only used as a 
qualification method (Peng et al., 2004). Iterative methods in-
clude: Tikhonov regularization method (Peng et al., 2007), 
Landweber algorithm (Yang et al., 1999), Newton-Raphson al-
gorithm (Yang and Peng, 2003) and Conjugate Gradient meth-
od, etc. (Wang et al., 2005). Tikhonov method may cause 
detailed distortion of the reconstructed images due to over-
smoothness of regularization functions. As a widely used meth-
od in recent years, Landweber returns satisfying results only 
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acquisition. Data communication adopts USB2.0 Technology 
(Yang et al., 2010). As ECT System has more measurement 
channels, it is difficult for a single DSP to meet real‑time re-
quirements. Therefore, CPLD or FPGA is generally adopted to 
conduct auxiliary control of DSP (Ma et al., 2006). ECT image 
reconstruction unit is composed of two parts: hardware and 
software. Hardware indicates a general-purpose computer, and 
software indicates image reconstruction algorithm.

3. ECT image reconstruction

ECT image reconstruction process includes forward and re-
verse questions to be resolved. As the forward question, capaci-
tance values of all electrode pairs on basis of the permittivity 
distribution and excitation voltages of the known sensitivity 
field. The mathematic model of forward question of ECT is ex-
pressed as follows (Yang & Peng, 2003):

Ci , j = ε(x, y) ⋅Si , j (x, y)dx dy
Γ
∫∫ 	

(1)

where Ci,j is the capacitance between the electrode pair of i-j, 
(x,y) is the permittivity distribution on cross-section of pipes, 
Si,j(x,y)is the sensitivity functions when the capacitance between 
electrode pair of i-j is distributed on the cross‑section of pipe, 
and  is the electrode surface. It can be seen that the sensitivity 
of the electrode in a point is related to its position, namely the 
sensitivity is not evenly distributed within the sensitivity field, 
which is the so‑called effects of “soft field”.

The capacitance sensor comprising of n electrodes can pro-
vide M = n(n – 1)/2 independent capacitances. With M equa-
tions similar with equation (1), such equations shall be 
linearized and discredited to get:

C = S · G	 (2)

where C is a normalization capacitance vector of M dimension, 
G is N dimension normalized permittivity distribution vector, 
i.e. the grey level of pixels for visualization, and S is M 3 N 
factor matrix, reflects influence of medium distribution varia-

with large number of iterations as to complex flow patterns. 
Newton-Raphson algorithm is featured in local convergence, 
but the iterative convergence can’t be guaranteed if the initial 
value is not selected appropriately. Conjugate gradient method 
is applicable to positive definite matrix and thus it can’t obtain 
better effects when it is applied to complex flow patterns.

In this paper, we introduce an image reconstruction algo-
rithm with LS-SVM and APSO, which is named as SAP. The 
proposed SAP is described as follows: firstly, we construct LS-
SVM and excise the error between the capacitances arising 
from sensitivity matrix and the actual capacitance measure-
ments; then based on the error, we constructed the fitness func-
tion and simulated annealing mechanism for particle swarm 
optimization; finally, we search for the optimum solution for 
image reconstruction with APSO.

2. ECT system

As shown in Figure 1, ECT System is mainly consisted with 
three units: a capacitance sensor unit, a measurement and data 
collection unit, and an image reconstruction unit. By utilizing 
capacitive fringe effect, the sensor can produce a corresponding 
capacitance for a medium with certain permittivity. The combi-
nation of all sensing electrodes may provide multiple capaci-
tance measurements, which can be taken as the projection data 
for image reconstruction. The capacitance measurement and 
data collection unit primarily functions as rapidly, stably and 
accurately measuring minor capacitance. It changes in various 
arrays of electrode couples, and transmits the acquired data to 
a computer. This unit is mainly comprised of three modules: a 
capacitance measurement module, a data collection control 
module, and a communication module. The capacitance mea-
surement module is used to realize switching of capacitance to 
voltage (CV), to measure minor capacitance and effectively in-
hibit stray capacitance. Currently, two of the most mature meth-
ods to measure capacitance are as follows: capacitance 
charge-discharge method and AC-based CV switching circuit 
(Yang, 1996; Yang, 2001) The data collection control module 
generally takes DSP as the control core and takes ADC for data 

Sensor unit Measurement and
data collection unit

Image
reconstruction unit

Digital signal

Analog signal

Capacitance measurement module

Excitation signal

The multiplexer

Communication
module

Data collection
and control module

Fig. 1. Constitutes of electrical capacitance tomography system.
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vid (t +1) =ω ⋅ vid (t)+ c1 ⋅r1 ⋅[Pid (t)− xid (t)]
+c2 ⋅r2 ⋅[Pgd (t)− xid (t)] 	

(5)

x
id
(t +1) = x

id
(t)+ v

id
(t +1) 	

(6)

Where c1 and c2 are positive constants and called as speedup 
factors; r1 and r2 are two random numbers between [0,1]; w is 
called as the inertia factor; i is the ith particle 1 ≤ i ≤ m, d is the 
dth dimension of each particle 1 ≤ d ≤ D . The initial position 
and speed of particle swarm is generated randomly, and then 
iterated according to equations (5) and (6). The position vari-
ance range is [xd,min, xd,max] and the speed variance range is 
[vd,min, vd,max]. The boundary value shall be taken if the dimen-
sion of xid or vid exceeds the boundary.

4.2. A simulated annealing particle swarm optimization 
algorithm

The inertia factor  in equation (5) keeps particles with the 
movement inertia of the last generation, and thus particles in-
tend to extend the search range. When  is larger, the last speed 
has significant influence and thus has better overall search ca-
pabilities; otherwise, the last speed has less influence and thus 
the local search capability is strong. Local optimization can be 
skipped by dynamically adjusting . In their studies, Shi and 
Ebethartln pointed out that the inertia factors reduce gradually 
with numbers of iteration and thus questions caused by equiva-
lent factor are improved (Eberhart & Shi, 1998). In other words, 
if the resolution after movement of particles are inferior to the 
solution before movement of particles, the movement shall be 
accepted at a certain possibility, which shall reduce gradually 
when time passes. However, the study result of Shi and Ebe-
thartln did not definitely give a mathematics definition; they 
only give a qualitative description with their experiences.

Simulated annealing algorithm is another widely used itera-
tive heuristic algorithm. The powerful feature of its intrinsic 
hill climbing capability (Kirkpatrick, 1983; Sait et al., 2013). 
On basis of the ideas of Simulated annealing, we introduced a 
cooling process function (Lin, 2001) to give a quantitative de-
scription on the process that the possibility reduces with the 
reduction of numbers of iteration.

T (t) = 1

τ +1
τ + tanh(Ω)t⎡⎣ ⎤⎦T (t −1)

	
(7)

vid (t +1) = T (t)vid (t)+ c1r1 Pid (t)− xid (t)[ ]
+ c2r2 Pgd (t)− xid (t)⎡⎣ ⎤⎦ 	

(8)

4.3. Selection of fitness functions

For each iteration of PSO, the fitness function is used to de-
termine whether the position of particle is satisfied or dissatis-
fied. When PSO is applied to the image reconstruction of ECT, 
the fitness function is generally taken as follows:

F = min (C – S · G)	 (9)

tion on capacitance C, and is called as sensitivity matrix (Tik-
honov & Arsenin, 1977).

Si , j () =
Ci , j () −C

l

i , j

Ch

i , j −C
l

i , j 	

(3)

Where Si,j() is the th unit of electrod pair to i-j sensitivity 
matrix, Ci,j() is the measurement capacitance, Ci,j(l) is the ca-
pacitances when the sensor is full of lower permittivity medi-
ums, and Ci,j(h) is the capacitances when the sensor is full of 
higher permittivity mediums.

The reverse question is to reconstruct permittivity distribu-
tion diagram in the sensitivity field with capacitance measure-
ments and sensitivity matrix S representing grey levels of 
pixels. Currently, most of the image reconstruction algorithms 
are achieved with the basis of:

G = S–1C	 (4)

There is no annalitic resolution for equation (4). Firstly, per-
mittivity distribution is not linear with the capacitance mea-
surements at boundaries in sensitivity field. Secondly, the data 
M is independently measurements and far less than the number 
of pixels N, therefore the solution of equation (4) is not unique. 
Furthermore, the equation (4) is ill posed, and the resolution is 
not stable. Minor error of C may have significant influences on 
G (Yeung & Ibrahim, 2003.). In addition, the matrix S is not 
truly constant, but varies with the actual permittivity distribu-
tion. Therefore, we try to resolve reverse question of ECT with 
a heuristic algorithm to achieve high‑precise imaging in this 
paper.

4. Image reconstruction algorithm on basis of simulated 
annealing particle swarm optimization

4.1. Conventional particle swarm optimization algorithm

Particle swarm optimization (PSO) is a well known heuristic 
algorithm, which is firstly proposed by Kennedy and Eberhart 
(1995) and is sourced from studies on food‑catching of birds. 
Many kinds of PSO algorithms have been widely studied and 
have made certain achievements in the last twenty years (Reza-
zadeh et al., 2009; Arce et al., 2012; Gerardo et al., 2009). In 
PSO system, each alternative resolution is called as a “particle”. 
Particles are co‑existing and shall be optimized. That is be-
cause each particle should “fly” towards to a better position in 
the question space according its own experiences to explore the 
best resolution. The mathematic expression of PSO is shown as 
follows (Eberhart & Shi, 2000).

In this paper, we presume the space is D‑dimension and the 
scale of particles are m. The position of the ith particle is Xi = 
(xi1, xi2,…, xiD) . The best position of the ith particle in the “fly-
ing” history is Pi = (pi1, pi2,…, piD), and we presume the best 
value of Pi(i = 1,2,…,m) is located at Pg; the velocity of the 
ith particle is the vector of Vi = (vi1, vi2,…, viD); the position of ith 
particle will change according to the following equations:
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According to the optimization conditions, we make the par-
tial derivative of L against w, b, e and a as zero, and eliminate 
variant w and e and thus get the following linear equation:

0 ΠT
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(15)

Where, y = [y1, y2,…, yk], a = [a1, a2,…, ak] and  is column 
vectors with k dimension as 1 and Λij =ϕ xi( )Tϕ x j( ) . Accord-
ing to the principle of Mercer, the mapping function () and 
kernel function () existing and thus:

K xi ,x j( ) = ϕ xi( )Tϕ x j( ) i, j = 1,2,...,κ
	

(16)

The function estimates expression of the least square algo-
rithm is as follows:

f x( ) = α i
i=1

κ

∑ K x,xi( ) + b
	

(17)

Where, ai(i = 1,2,…,k) and b are obtained from equation 
(15), the specific forms of f(x) is subject to types of function 
K(x,xi). There are many kinds of kernel functions. In this pa-
per, we take the kernel function of radial basis (i.e. Gaussian) 
with higher regression capabilities which is defined as fol-
lows:

K x,xi( ) = exp −
x − xi

2

σ 2

⎛

⎝
⎜

⎞

⎠
⎟

	

(18)

Where,  is Gaussian kernel parameter.

5.2. Functions of LS-SVM in ECT image reconstruction

As described above, due to the soft field characteristics of 
ECT, the capacitance calculated through equation (2) and the 
actual measurement of capacitance have the following 
errors:

ΔC =C − S ⋅G 	 (19)

where, G
–

 is actual permittivity distribution vector. In order to 
get the capacitance error C under any permittivity distribu-
tion, we take use of LS‑SVM to exercise certain of quantities of 
samples with LS‑SVM. Taking samples of vectors into equa-
tion (19) and get:

y = ΔC = C − S ⋅G = f x( ) : Rn → R1

	 (20)

where the input vector x is normalization capacitance vector, 
and the output y is the norm of samples of capacitance error. 
When carrying out exercises with LS‑SVM, the input sample 
collection is actual capacitance vector under all kinds of flow 
patterns, and output sample collection is the norm of samples of 
capacitance error under all kinds of flow patterns.

Where C is the normalization measurement capacitance vec-
tor, S is a sensitivity matrix and G is position vector of particle 
(i.e. the required permittivity distribution vector).

Due to the matrix S is not truly constant, but varies with the 
actual permittivity distribution. PSO taking takes equation (9) 
as the fitness function, which can achieve an overall optimiza-
tion of convergence and there may be larger error between the 
optimization resolution and actual distribution of permittivity. 
The fitness function in this paper is given as the following:

F = min(C – S · G  –DC)	 (10)

Where DC is the output when LS‑SVM takes C as input. 
The fitness function takes use of the results predicted by 
LS‑SVM so as to eliminate errors arising from that different 
flow patterns under the same sensitivity matrix S.

5. Least squares support vector machine and its 
applications in image reconstruction

5.1. Least squares support vector machine

LS-SVM is a kernel function study machine complying with 
Structural Risk Minimization (SRM) algorithm of the least 
square algorithm and principle of SRM (Gu et al., 2010). The 
concept is described as follows: specify sample collection {xi,yi}
k
i=1  

map n-dimension input vector Xi and output vector Yi from 
the original space Rn to the high dimension special space Rn+ 
through non‑linear transformation (x). In this space the opti-
mization linear decision function is given as the following:

f(x) = w ·  (x) + b	 (11)

Where, W is a hyper plane weight vector, and b is a polarization 
item. For LS‑SVM, the question to be optimized is as follows:

minΦ w,e( ) = 1

2
wTw + 1

2
γ ei

2

i=1

κ

∑
	

(12)

Where, ei is an error variant; g > 0 is a punitive parameter 
controlling the punishment for samples exceeding errors. 
LS‑SVM converts the inequality constraints into equality con-
straints (Ott et al., 1990). For LS‑SVM for regression estimate, 
the constraints are as follows:

yi = wTϕ xi( ) + b + ei , i = 1,2,...,κ
	

(13)

According to KKT conditions, the Lagrange factor ai e R 
(i.e. support vector factor) is introduced to construct Lagrange 
function.

L w,b,e,α( ) = 1

2
wTw + 1

2
γ ei

2

i=1

κ

∑ −

α i wTϕ xi( ) + b + ei − yi( )
i=1

κ

∑
	

(14)
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The experimental results of the relative image error are 
shown in Table 2. From Table 2 we can see that the quality of 
reconstruction image with SAP for all above flow types are sig-
nificantly improved by comparing with Newton-Raphson and 
Landweber algorithms. 

The elapsed time required for reconstruction of the three 
different algorithms are shown in Table 3. Obviously, the 
number of iterations for landweber and Newton-Raphson al-
gorithms are greater than that for SAP algorithm. It is inter-
esting to see from Table 3 that, in four cases, the elapsed time 
for the SAP algorithm is less larger than that for the Landwe-
ber algorithm, and is shorter than that for the Newton-Raph-
son algorithm. 

7. Discussion on chaos search

The chaotic movement is a kind of non‑periodic bounded 
dynamic activity sensitive to initial conditions in definite sys-
tems. The chaotic movement is featured in false randomness, 
ergodicity and sensitivity to boundaries, etc. (Liu et al., 2006). 
Chaotic theory has been widely used in particle swarm Optimi-
zation algorithm (Alatas et al., 2009). When it is determined 
that PSO algorithm is under premature convergence conditions, 
the diversity of groups and sustaining searching capabilities of 
particles can be improved with the chaotic search.

7.1. Chaotic annealing particle swarm optimization

Many rules can cause chaos and the representative chaotic 
model is Logistic equation (Chen & Zhao, 2009).

6. Simulation results and analysis

6.1. Algorithm flow process

The SAP algorithm comprises of LS‑SVM exercise forecast 
stage and APSO search stage. The algorithm flow process is 
shown as Figure 2, in which t is current iteration times of APSO.

In LS‑SVM stage, 40 groups of samples including 4 kinds of 
flow patterns are used as exercise samples, the punitive param-
eter g and the kernel parameter s shall be selected through ex-
periences. Based on the exercise results of LS‑SVM, forecast of 
the test samples and capacitance error C  are achieved. In 
this paper, we select 8 electrode capacitance sensors to get 
28 separated capacitance measurements and thus the input sam-
ple data of LS‑SVM xi is 28‑dimension (i = 1,2,…,40). Capaci-
tance measurements can be obtained with finite element 
methods. In finite subdivision, we take triangle unit to subdi-
vide the imaging area into 800 units, and we take finite subdivi-
sion unit as the pixel unit of images and the permittivity 
distribution G

–
 under all kinds of flow patterns of sample is an 

800-dimension vector.
In APSO stage, we firstly construct fitness function according 

to equation (10), then initialize particle swarm. The swarm scale 
is set as m=40, the number of dimensions is same as the number 
of pixels in image domain, i.e. D = 800. The maximum iteration 
number is tmax. We set up limit position of particles and variance 
range between limit speed and particle speed. Finally, we search 
for the optimum solution for image reconstruction with APSO.

6.2. Experimental results and evaluation on algorithm

In order to validate effectiveness of the algorithm, we take 
SAP algorithm to make image reconstruction for typical flow 
patterns (i.e. core flow, bubble flow, laminar flow, and circular 
flow), and then compared them with the imaging results of 
Newton-Raphson algorithm and Landweber algorithm. The 
simulation and calculation is carried out with MATIAB 7.10 on 
Intel Pentium 820 MHz CPU (RAM 512 MB). The experimen-
tal results are shown in Table 1. In imaging area, the dark area 
is even medium of permittivity 40 and the other areas is air (i.e. 
permittivity 1.0).

As shown in Table 1, we can see that imaging results with 
Landweber algorithm and Newton-Raphson algorithm are near 
to the original; however, there are too many false images. Obvi-
ously, the quality of images obtained with SAP is much better, 
for which the resolution of images is much higher and there is 
nearly no false image.

When the quality of image is analyzed, the relative image 
error shall be used as evaluation index of image quality, which 
is defined as follows:

ε image =
g − g
g 	

(21)

where, ĝ is permittivity distribution vector obtained with recon-
struction algorithm, and g is permittivity distribution vector in 
the original. ·

 
is a vector sample norm, which here is taken as 2. 

Start

Select exercise

LS-SVM exercise

LS-SVM forecast

Output the optimal particle

Construct �tness function accordint to
equation (10) and initialize particles

Calculate annealing temperature according to equation (7) and
calculate speed and position of all particles according to equation (8)

Update individual optimization Pi and general
optimization Pg according to the �tness function

LS-SVM stage

Apso stage

N

Y

t < tmax

Fig. 2. SAP algorithm process.
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zd
k+1 = u ⋅ zd

k ⋅(1− Zd
k ) k = 0,1,2,...kmax 	 (22)

where u is absorption factor, k is iteration times, and d is di-
mensions in question. When u = 4,zd

0  (0,1), the equation (22) 
will be completely under chaos conditions and zd

k + 1 shall tour 
through (0,1) along with the iteration process.

Application of the chaotic search in SAP algorithm is repre-
sented in the following two procedures:

1.	 Initialization of algorithm: generally, the scale of cha-
otic group mCHOAS is 0.3 times of the original group 
scale. We need set up the maximum iterations kmax and 
give initial values to zd

k with minor differences separate-
ly and then get d chaotic variables zd

k  with different 
tracks.

2.	 Searching with chaotic variables: the chaotic variables 
are mapped from chaotic space to the solution space for 
optimization of questions and chaotic search. After each 
step of iteration, a solution may be created for the solu-
tion space.

With kmax iteration, the solution mapped from chaotic vari-
ables will tour through the solution space for optimization ques-
tions and thus make full optimization.

Table 1
Imaging result.

Oritinal Newton-Raphson Landwever SAP

Table 2
Relative image error.

Original Newton-Raphson Landweber SAP

1 33% 41.8% 16.0%
2 37.6% 40.2% 19.5%
3 42% 40% 21%
4 71% 65% 41%
5 32.8% 40.1% 24%

Table 3
Elapsed time (in seconds).

Original Newton-Raphson Landweber SAP

1 10.77s
 500 iterations

3.61s
100 iterations

5.09s
80 iterations

2 11.12s
500 iterations

4.98s
130 iterations

9.10s
120 iterations

3 10.90s
500 iterations

5.04s
130 iterations

9.24s
120 iterations

4 14.05s
800 iterations

7.28s
200 iterations

12.55s
150 iterations

5 12.18
600 iterations

33.7s
5000 iterations

16.08s
180 iterations
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where l is the length of diagonals of the search space, m is group 
scale, D is the dimension of solution space, xid is dth dimension 
coordinates of ith particle, and xd

—
 is the average value of xid.

δ 2 = 1

m

fi − favg
f

⎛
⎝⎜

⎞
⎠⎟i=1

m

∑
2

f =
max
1≤i≤m

fi − favg max
1≤i≤m

fi − favg >1

1 other

⎧
⎨
⎪

⎩⎪ 	

(26)

where fi is the value of fitness function of ith particle, favg is av-
erage value of fitness functions of all particles. When d2 or D(t) 
is less than the given thresholds, it may be considered that the 
algorithm has been under premature convergence conditions.

7.2. Performance analysis of CAPSO algorithm

In order to analyse the performance of chaotic search in SAP 
algorithm, we take SAP algorithm to make image reconstruc-
tion for typical flow patterns (core flow, bubble flow, laminar 
flow and circular flow), and then compared them with the imag-
ing results of CAPSO algorithm. The imaging results are shown 
in Table 4. From Table 4, we can see that imaging results of the 
two kinds of algorithms are almost the same. It indicates that 
SAP algorithm embedding chaotic search did not significantly 
improve the imaging precision. 

The mapping relationship between the variable xd  [xd,min, 
xd,max] and chaotic variable zd  [zd,min, zd,max] shall be specified by 
equation (23) and (24) (Krilc et al., 2002).

xd = xd ,min +
(zd − zd ,min )(xd ,max − xd ,min )

zd ,max − zd ,min 	
(23)

zd = zd ,min +
(xd − xd ,min )(zd ,max − zd ,min )

xd ,max − xd ,min 	
(24)

The chaotic search is carried out when the particle swarm 
algorithm is under premature convergence conditions, i.e. mak-
ing secondary search in small field neighboring local optimal 
values so as to get away from local optimal values. Premature 
convergence is used to search for the overall optimal values 
with particles. All particles are trending to be collected to the 
same extreme point, thus the diversity of particles is gradually 
decreased. If such extreme value is locally optimal one, the al-
gorithm is under premature convergence conditions. In this pa-
per, we take the average particle distance D(t) and the fitness 
value variance d2 (Lv & Hou, 2004) as the conditions for deter-
mination of premature convergence.

D(t) = 1

l ×m
(xid − xd )

2

d=1

D

∑
i=1

m

∑
	

(25)

Table 4
Imaging results of SAP and CAPS.

Oritinal CAPSO SAP
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In the worst case, the time complexity of the SAP and CAPSO 
algorithms are O(tmax3m32D) and O(tmax3m32D3mchaos3kmax3D), 
where, m is group scale, D is the dimension of particles, tmax is the 
max iterations, mchaos is the chaotic group scale, and kmax is the 
maximum chaotic iterations. 

Obviously, the time complexity of the CAPSO algorithm is 
much greater than that of the SAP algorithm.

8. Conclusions

In this paper, we have introduced an ECT image recon-
struction algorithm on basis of LS‑SVM and APSO, named 
SAP algorithm. In order to propose this algorithm, we intro-
duced annealing ideas into particle swarm optimization algo-
rithm, taking cooling process function to replace inertia factor 
and constructing the time variant inertia weight function fea-
tured in annealing mechanism. As errors caused by the fixed 
sensitivity matrix for ECT reverse questions, we took 
LS‑SVM to exercise for the errors and apply exercise results 
to the improvement of APSO. Then the optimized resolution 
of reconstructed images was searched. The experimental re-
sults demonstrated that using SAP algorithm can get high pre-
cise reconstructed images.

Finally, in order to further improved the precision of SAP 
algorithm, chaotic search process was merged into SAP. Ex-
perimental results demonstrated that though SAP algorithm 
embedding chaotic search did not significantly improve the im-
aging precision. However the time complexity of the algorithm 
is greatly improved.
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