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Abstract

Nowadays, in power systems, we still lack the existence of standardized test systems that can be used to benchmark the performance and 
solution quality of proposed optimization techniques. Several authors report that the electric load pattern is very complex. It is therefore necessary 
to develop new methods for design of test cases for economic analysis in power systems. Therefore, we compared two methods to generate test 
systems: time series model and a method simulating stable random variables based on the use of Chambers-Mallows-Stuck. This paper describes 
a method for simulating stable random variables in the generation of test systems for economic analysis in power systems. A study focused on 
generating test electrical systems through stable distribution to model for unit commitment problem in electrical power systems. Usually, the 
instances of test systems in unit commitment are generated using normal distribution, but the behavior of electrical demand does not follow a 
normal distribution; in this work, simulation data are based on a new method. For empirical analysis, we used three original systems to obtain the 
demand behavior and thermal production costs. Numerical results illustrate the applicability of the proposed method by solving several unit 
commitment problems directly and through the Lagrangian relaxation of the original problem.
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access item distributed under the Creative Commons CC License BY-NC-ND 4.0.
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1. Introduction

The optimization problems for electrical power systems have 
been studied for more than five decades. One of them is the 
Economic Dispatch, which can defined as the operation of gen-
eration facilities to produce energy at the lowest cost to reliably 
serve consumers, recognizing any operational limits of genera-
tion and transmission facilities. 

Another optimization problem in power systems is the typi-
cal Unit Commitment (Wood & Wollenberg, 1996). The prob-
lem consists as determining the mix of generators and their 
estimated output level to meet the expected demand of electric-
ity over a given time horizon (a day or a week), while satisfying 
the load demand, spinning reserve requirement and transmis-
sion network constraints. An electric network consists of many 
generation nodes with various generating capacities and cost 
functions, lines of transmission and nodes of power demand. 
The application of optimization models for electrical power 
systems is marked by constant development for new algorithms 
like exact methods, metaheuristics and hybrid strategies. 

However, to benchmark the performance and solution quality 
for any solution technique, it is necessary to have variety of 
electrical test systems.

Nowadays, we still lack the existence of standardized test 
systems that can be used to benchmark the performance and 
solution quality of proposed techniques (Ledesma-Orozco et 
al., 2011; Kuo & Lin, 2013; Ding et al., 2014). Many papers 
consider different test systems, which make it very difficult to 
perform a proper comparison between the different methods 
that have been proposed (Diniz, 2010). 

Zhang and Schaffner (2010) refer that the existing IEEE test 
systems developed are mainly used for reliability, power flow and 
stability analysis, but not for economic analysis. Short time ago, 
some panels focused on the development of standard test systems 
of transmission and distribution systems for economic analysis 
has emerged. In 2007 the IEEE Working Group (WG) on Test 
Systems for Economic Analysis was created, sponsored by IEEE 
System Economics subcommittee (Zhang & Schaffner, 2010).

Finding an appropriate method for generating test cases of a 
specific electricity network is not an easy task. In this sense, 
this paper compares two methods to generate test systems: time 
series and a method simulating stable random variables based 
on the use of Chambers-Mallows-Stuck.
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tribution as a special case of this. On the other hand, there is 
some complexity in working with such distributions, since they 
lack, in general, of an analytical expression. Although given 
recent computational advances, it is now possible to apply them 
with more feasibility to different areas.

Definition: A random variable x has stable distribution hav-
ing the following characteristic function (Nolan, 2005):

	 �
(1)

where  and , whose parameters are  
 
defined as follows:  represents the characteristic exponent, 
which controls the degree of impulsiveness of the random vari-
able w. Moreover, the parameter  controls the sym-
metry of distribution ( ,  distribution symmetrical, 

 and  to the family of  distributions positive 
and negative respectively). While  is a scale parameter, 
also called dispersion, and  is the position parameter.

Remarkably, if the expression of the characteristic function 
parameter, , then the parameter  becomes meaningless, 
since . In this case, the characteristic function be-
comes:

	 � (2)

The above expression is the characteristic function of a 
Gaussian random variable with mean  and variance . 
So from the definition above, we also can show that the normal 
distribution is a particular case of  distribution. Given 
the properties of  distribution above, it follows that its 
use is justified in the same way as the Gaussian distributions 
and not only that, but the Gaussian distribution is a particular 
case of stable and therefore the range of application of  
distributions is even wider than the normal distribution.

This is mainly due the existence and continuity of the prob-
ability density function of , but with a few excep-
tions, it cannot be expressed in a compact way. In other words, 
the integral with respect to (w) of the characteristic function 
(1), only have an analytical solution for the described cases, 
denoting the  distribution by four parameters  
(Nolan, 2005).

The current computational developments applied to estimate 
distribution parameter of  distributions had been a key 
element in the recent use of such distributions in many areas. 
The statistical significance of the estimated parameters can be 
contrasted by the Anderson Darling test, which has been gener-
ally accepted for the analysis of stable series (Belov, Kabasins-
kas & Sakalauskas, 2006).

There are some methods to find the best estimation of load 
forecasting. The major methods include time series such as ex-
ponential smoothing or autoregressive integrated moving aver-
age models (ARIMA). However, the electricity demand pattern 
becomes more complex and unrecognized by the classical tech-
niques used to forecast, one new alternative could be the use of 
stable distributions. 

Paul Lévy (Lévy, 1924) first developed the stable distribu-
tions theory in the 20s of last century. Since then, this distribu-
tion has been applied in different areas of knowledge, such as 
economics, physics, engineering and hydrology. The reason is 
that some phenomena of nature, like electrical demand, cannot 
be described assuming normal distribution. There are observa-
tions with extreme values, which characterizes the instability of 
the series and denotes the presence of heavy tails, and effect 
known as impulsivity.

Usually electrical demand presents a greater degree of im-
pulsivity that the normal distribution cannot describe due to the 
presence of peaks in the series during the hours of the day and 
seasons of high-energy demand. 

For this, we propose use Chambers-Mallows-Stuck algo-
rithm for simulating stable random variables characterizing 
demand patterns of real electrical systems. The use of Cham-
bers-Mallows-Stuck method for simulating stable random vari-
ables provides a new way to generate test systems widely used 
in power systems research. By modeling the demand using 
stable distribution can catch the real behavior of the electrical 
demand and build possible extreme scenarios, and each sce-
nario corresponds to a price-elastic demand curve. 

The simulations are based on real observations of demand 
for different reliability test systems. Electrical network data are 
taken from the 24 and 118 bus IEEE test systems (Charman et 
al., 1979; Christie, 1993), and a portion of electric energy sys-
tem of Mainland Spain (Alguacil & Conejo, 2000). Cost func-
tions of the thermal plants data are taken from the literature. 
After the elaboration of these test cases, we tested a mixed in-
teger non‑linear formulation of unit commitment problem based 
on these cases, in order to obtain estimation about the perfor-
mance of these new test systems.

Additionally, we tested the Lagrangian relaxation of the 
same problem to verify numerical stability of the generated test 
systems.

2. Stable Distributions

The stable distributions theory was developed in the 20’s of 
last century (Lévy, 1924). Since then, this distribution has been 
applied in different areas of knowledge. However, it was not 
until the work of Mandelbrot in the 60’s that the stable distribu-
tions were popularized. Mandelbrot proposed a revolutionary 
theory based on this distribution to solve the problem of price 
fluctuations, later shown that many other economic variables 
follow a stable distribution (Mandelbrot, 1997).

Significantly, the stable distribution meets the Central Limit 
Theorem and the stability property (which denotes that stable 
distributions are isomorphic) that also contains the normal dis-
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Ej1  Linear coefficient of operating cost for the plant j.
Ej2  Quadratic coefficient of operating cost for the plant j.
Fj  Fixed cost of power plant j.
Knm  Conductance of line n – m.
Rk  Spinning reserve requirement during period k.

  Maximum power output of plant j.
  Minimum power output of plant j.

nr  Reference node with angle zero.

Variables:

tjk  Power output of plant j in period k.
vjk  Binary variable which is equal to 1 when plant j is commit-

ted in period k.
Yjk  Binary variable which is equal to 1 when plant j is started 

up at the beginning of period k.
  Angle of node n in period k.

Sets:

J  Set of indices of all plants.
K  Set of period indices.
N  Set of indices of all nodes.
Λn  Set of indices of the power plants j at node n.
Ωn  Set of indices of nodes connected and adjacent to node n.

The objective is minimizing a function that includes fixed 
cost, start up cost and operating cost. A second order polyno-
mial describes the variable costs as a function of the electric 
power.

	
� (8)

There is a power balance constraint per node and time peri-
od. In each period, the production has to satisfy the demand and 
losses in each node. Line losses are modeled through cosine 
approximation and it is assumed that the demand for electric 
energy is known and is discretized into t periods.

	
(9)

Spinning reserve requirements are modeled. In each period 
the running units have to be able to satisfy the demand and the 
prespecified spinning reserve.

	
� (10)

Each unit has a technical lower and upper bound for the pow-
er production.

	
� (11)

2.1. Stable Random Variable

For a random sample with  distribution, the Cham-
bers-Mallows-Stuck (Chambers, Mallows & Stuck, 1976) meth-
od. A random variable x with distribution  can be 
generated from a non‑linear transformation of two random vari-
ables independent, one uniform (V) and another exponential 
(W) using the following theorem:

Theorem: Let (V) a uniform random variable in the interval 

 and (W) an exponential random variable with mean  
 
equal one. If (V) and (W) are independent, then:

	

�(3)

x follows a stable distribution with , where:

	
� (4)

	
� (5)

Once you get the variable (X), a variable with stable distribu-
tion for any value of the parameters  is generated.  
If , then:

	 � (6)

	
� (7)

3. The Multiperiod Unit Commitment Model

In this work we address a Multiperiod Unit Commitment 
(MPU) based on Marmolejo, Aceves and Ramírez (2011) nota-
tion, where network constraints are represented through a DC 
model (Alguacil & Conejo, 2000). The following notation is 
used in the mathematical model: 

Constants:

Aj  Start up cost of power plant j.
Bnm  Subsceptance of line n – m.
Cnm  Transmission capacity limit of line n – m.
Dnk  Load demand at node n during period k.
Ej(tjk)  Nonlinear function representing the operating cost of 

power plant j as a function of its power output in period k.
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Data setting parameters were obtained characterizing the 
distribution by regression method (Nolan, 1999). This method 
is generally used in the analysis of stable series that has a better 
adjustment of the tails of the distribution (Table 2).

To test the fit of the distribution to data, many authors agree 
with the utility of Anderson-Darling test for data with fat tails 
(Stephens, 1977). For all cases, the null hypothesis was not re-
jected (Table 3). The parameter alpha in three systems shows 
the presence of impulsivity, all series are symmetric positive, 
and have high dispersion. That depend the demand in the 
24 hours of day and shows the habits of consumption. 

The effect of parameter alpha in the distribution function 
fitted is showed in the Figure 1. The parameter alpha measure 
the impulsivity of data that the reason because is one of the 
most important parameters for this analysis.

Whit the parameters estimated and using Chambers-Mal-
lows-Stuck method were created 300 instances for each origi-
nal test system according to the original energy demand range. 
The numerical behaviors of some of these instances are showed 
in the next section.

Additionally, three ARIMA models were estimated to com-
pare two methods to generate demand data for the three sys-
tems analyzed. Dickey Fuller test was performed for stationary 

Transmission capacity limits of lines avoid dynamic stability 
system problems.

	 �
(12)

This constraint holds the logic of running, start‑up and 
shut‑down of the units. A running unit cannot be started‑up.

	 � (13)

Angle in all buses has a lower and upper bound.

	 � (14)

4. Test Systems Generation

To generate new test systems (instances) by the proposed 
methods, we worked with three standardized test systems:

•	 SYS-104: Based on 104-bus electric energy system of Main-
land Spain with 104 nodes, 62 thermal units and 160 trans-
mission lines (Alguacil and Conejo, 2000).

•	 IEEE-24 bus test system with 24 nodes, 24 thermal units and 
38 transmission lines (Charman et al., 1979).

•	 IEEE-118 bus test system with 118 nodes, 54 thermal units 
and 186 transmission lines (Christie, 1993).

All instances consider a 24-hour planning horizon with one 
period per hour. 

4.1. Stable Distribution

Kolmogórov-Smirnov normal test show that three systems 
do not follow a normal distribution, and for the nature of the 
series have a fat tails characteristics (Table 1). For that reason, 
we use alpha stable distribution to fit the data. It was felt that S1 
parameterization it is usually used for modeling stable data 
(Samorodnitsky & Taqqu, 1994).

	

� (15)

Table 1
Kolmogórov-Smirnov normal test.

Variable Obs P-value 5%

SYS-104 1541 .0030
IEEE-24 408 .0004
IEEE-118 2376 .0010
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Fig. 1. Stable distribution for simulations in three scenarios of alpha param-
eter a = 1.50, a = 1.69 and a = 1.84

Table 2
Alpha stable parameters.

IEEE-104 bus system α β γ δ
Stable-parameters 1.6938 1.0000 113.085 227.7650
IEE-24 bus system 
Stable-parameters 1.8430 1.0000 42.8166 121.925
IEE-118 bus system
Stable-parameters 1.5092 1.0000 13.3914 35.9108

Table 3
Alpha stable parameters.

System α β γ δ Anderson Darling 
statistical

P-value (5%)

SYS-104 1.69 1.0 113.08 227.7 0.63 .626
IEEE-24 1.84 1.0 42.816 121.9 3.22 .021
IEEE-118 1.50 1.0 13.391 35.9 1.40 .201
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grangian Relaxation (LR) of the problem. Through LR we can 
obtain a lower bound on the value of the objective function of 
the original problem.

LR decomposes the original problem into a Dual Master 
Problem and makes better and easily manageable Dual Sub-
problems to be solved separately. Lagrange Multipliers that are 
added to the master problem to yield a dual problem link the 
subproblems. The dual problem has lower dimensions than 
the primal problem and is easier to solve. The multipliers are 
updated through different methods; in this work, we use sub-
gradient method. The major difficulty of this method is associ-
ated with obtaining solution feasibility, because of the dual 
nature of the algorithm.

Dual Master Problem:

	

� (16)

Dual Subproblem:

	 �
(17)

Subject to Eqs. (11), (13), and (14).

6. Computational Results

In this section we present the results to the computational 
experiments that we carried out to evaluate the performance of 
the generated test systems by the proposed method (Figures 
2‑7). All simulations and mathematical models were carried out 
on an AMD Phenom™ II N970 Quad-Core with a 2.2 GHz pro-
cessor and 4 GB RAM. Table 8 shows the results of the MPU 
for 20 generated instances by DICOPT solver.

test series. For SYS-104 system, data series is stationary in lev-
els, IEEE-24 system is stationary in first difference and IEEE-
118 is stationary in second difference (Table 4).

The adjustment of the three models, shows components au-
toregressive (p) and moving average (q). Tables 5‑7 show the 
estimates of the models. Based on the time series models for 
the three systems, were forecast 50 observations of each one. 
One of the main limitations of using ARIMA models for gener-
ating test systems is that each model is a specific case, so it is 
not possible to generalize results.

From the initial values of (p) and (q) definition, several alter-
native models with various combinations AR (p) and MA (q) 
are proposed. The proposed models are compared to each other 
using the value of the coefficients and criteria of Akaike (AIC) 
and Schwarz (SC).

5. Solving Strategies

Generated test systems can be used to benchmark the perfor-
mance and solution quality in several solving strategies. In this 
work, we compare the direct solution through GAMS and La-

Table 4
Dicky Fuller test.

lags(n) Test statistic 5% Critical 
value

Mackinnon approximate 
P-value for Z(t) at 95%

SYS-104 0 -38.91 -2.86 .0000
IEEE-24 1 -2.573 -2.874 .0101
IEEE-118 2 -3.029 -2.874 .0323

Table 5
Results of estimations for ARIMA (3, 0, 1).

Variable Coefficient Standard error P-value (5%)

Constant 265.5036 9.086378 .0000
AR(1) –0.860231 0.046913 .0000
AR(2) 0.085455 0.034277 .0130
AR(3) 0.150288 0.027799 .0000
MA(1) 0.886205 0.027199 .0080
Wald χ2 608.6600
Prob. > χ2 .000000

Table 6
Results of estimations for ARIMA (2, 1, 0).

Variable Coefficient Standard error P-value (5%)

Constant –0.008357 1.665174 .0090
AR(1) 0.241515 0.024658 .0000
AR(2) 0.010278 0.047456 .0300
Wald χ2 123.5100
Prob. > χ2 .000000

Table 7
Results of estimations for ARIMA (2, 2, 1).

Variable Coefficient Standard error P-value (5%)

Constant –0.000015 0.003098 .0096
AR(1) 0.133620 0.008207 .0000
AR(2) 0.084121 0.012665 .0000
MA(1) –0.102000 0.038950 .0060
Wald χ2 857.4416
Prob. > χ2 .000000
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Fig. 2. Bounds and computational time in IEEE-24 bus system by DICOPT 
Solver.

75,000

70,000

65,000

60,000

55,000

50,000

45,000

40,000

100

95

90

85

80

75

70

C
O

S
T

$

INSTANCES

SYS-104

C
O

M
P

U
TA

TI
O

N
A

L 
TI

M
E

M
IN

U
TE

S

BOUND TIME

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

Fig. 3. Bounds and computational time in Sys-104 bus system by DICOPT 
Solver.
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Solver.
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We test all generated instances in the Multiperiod Unit Com-
mitment Problem and the LR. The results show that the pro-
posed methodology is relevant, obtaining feasible solutions 
with GAMS solver in the same way of the original systems. 

This work contributes to have standardized test systems that 
can be used to benchmark the performance of many proposed 
techniques.
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For LR, we use the solver DICOPT for solving the MINLP 
problems (dual subproblems), CONOPT for solving the NLP 
problems (primal subproblems), and CPLEX for MIP problems 
(master primal problem).

Concerning the computational times, we note that they are 
similar than original systems. In general, the generated instanc-
es do not have numerical problems in the optimization process, 
which normally occurs in Unit Commitment Problem.

7. Conclusions

Nowadays, we still lack the existence of standardized test 
systems that can be used to benchmark the performance and 
solution quality of proposed techniques.

Several authors report that the electric load pattern is very 
complex. It is therefore necessary to develop new methods. 
Therefore, we compared two methods to generate test systems. 
However, we found that the time series methods perform poor-
ly due to the limited capacity to generate new data and the 
specificity of the results. The results show that the method of 
stable distributions generate better test systems than those 
caused by time series. By using the stable distribution, setting 
data is more accurate and the range of values that can be gener-
ated is unlimited.

By introducing Chambers-Mallows-Stuck method, we pre-
sented a new way to generate electrical test systems for eco-
nomic analysis. We show that the electrical demand fits a stable 
random variable, so we use it to generate several instances for 
the original test systems.

Electrical demand presents a greater degree of impulsivity 
due to the presence of peaks in the series during the hours of 
the day and seasons of high energy demand. 

By modeling the demand through the use of alpha stable dis-
tribution can catch the real behavior of the electrical demand 
and build possible extreme scenarios, each scenario corresponds 
to a price-elastic demand curve.

Table 8
Results obtained by DICOPT Solver.

SYS-104 IEEE-24 IEEE-118

INSTANCE Bound  
($)

Time 
(min)

Bound  
($)

Time 
(min)

Bound  
($)

Time 
(min)

I1 67,398.22 34 5616.41 18 1215.18 23
I2 67,281.37 34 5665.61 18 1237.50 23
I3 67,104.12 32 5669.13 18 1296.74 22
I4 67,623.65 34 5711.97 19 1307.85 30
I5 67,207.35 33 5579.78 19 1284.37 24
I6 67,027.43 35 5699.76 18 1286.55 28
I7 67,250.75 34 5603.32 19 1290.00 24
I8 67,211.65 33 5670.61 19 1327.28 26
I9 67,708.45 33 5543.96 18 1294.47 24
I10 67,088.38 34 5453.76 19 1354.32 22
I11 68,018.36 33 5484.37 19 1366.83 24
I12 69,096.21 33 5283.34 18 1379.43 23
I13 68,526.73 32 5408.32 17 1385.47 25
I14 69,827.10 33 5491.87 20 1392.12 25
I15 70,466.12 34 5192.34 20 1425.01 22
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