

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 19 (2021) 676-693

Original

REST API composition for effectively testing the Cloud

B. G. Woldea* A. S. Boltanab

aMekelle University, Ethiopian Institute of Technology-Mekelle (EiT-M),

School of Computing, Mekelle, Ethiopia
bDirector General for ICT Sector, Ministry of Innovation and Technology, Addis Ababa, Ethiopia

Received 03 20 2020; accepted 01 06 2021

Available 12 31 2021

 Keywords: Testing the Cloud, mobility service composition, REST API, input domain modeling

Abstract: The Cloud offers many ready-made REST services for the end users. This offer allows

realizing a service level agreement (SLA) through the implementation of multiple services somewhere

on the Internet. Hereby, ensuring SLA is important. Hence, software testing is a way of attesting quality

assurance of a non-functional requirement from the end user’s perspective. However, test engineering

accesses only an interface that contains the high level behaviors without their underlying details.

Testing such behaviors becomes an issue for classical testing procedures. This implies that REST API

through composition be an alternative promising approach for modeling behaviors with parameters

to test the Cloud. This effort aids to devise test effectiveness via REST-based behavior-driven

implementation. It aims to understand functional behaviors through API methods based on input

domain modeling (IDM). By making a careful REST design, the test engineer sends complete test inputs

to its API directly on the application and gets responses from the infrastructure. This paper considers

the NEMo mobility API specification to design an IDM, which represents pattern match of mobility

search API path scope. In this way, sample mobility REST API service compositions are used to create

test assertions for validating each path resource on a specified service.

∗Corresponding author.

E-mail address: behailu.getachew@mu.edu.et (B. G. Wolde).

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
mailto:behailu.getachew@mu.edu.et
https://www.unam.mx/

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 677

1. Introduction

Testing the Cloud is one of the most promising way to verify

the quality of a cloud on the specified service (Gao et al., 2011).

Through this way as a System Under Test (SUT), the Cloud

provides an access to a test capability interface which enables

a tester in ensuring an end-to-end functionality. This interface

allows decoupling the behaviors of a system by abstracting

from its underlying resources (for example., logic and back-

end tiers). For instance, by abstracting the resources, the

specified service is seamlessly free from having a responsibility

to manage a state and provides a reusable interface regardless

of language and platform. Under true context the Cloud

follows a usage per pay model through accessing the required

interface on a single virtual gateway via Internet technology

(Blokland et al., 2013). Such accessing opportunity is letting us

using the Cloud as a test platform environment. The primary

motivation on this point is that an implemented cloud

includes built-in actual artifacts like a usage-based cost,

enhancing test execution, improving collaboration, behavior-

driven interface (Blokland et al., 2013). Such artifacts base on

pattern matching to offer the Cloud the capability that ensures

the service level agreement (SLA), cost, enhancing test

execution, improving collaboration, behavior-driven interface.

Such artifacts base on pattern matching to offer the Cloud the

capability that ensures the service level agreement (SLA),

which encapsulates the non-functional aspects.

This offer helps to realize multiple low-level

implementations through a high level matching interface

within the test environment. With this interface it actualizes

the access to a low-level privilege. Usage-based cost allows

testing on demand-driven without extra charges or

management with a high availability of resources. Enhancing

test execution enables us to have a shorter testing time to

complete test execution which reduces the efforts for test cost.

Improving collaboration enhances the testing quality by

distributing test units among different agile testing teams over

the internet through an interactive behavior-driven interface

(i.e., user stories). In this regard, use of the Cloud to support

testing operations for assessing challenges associated with its

software quality is another motivation. Challenges in software

quality product is dynamic and vary in its nature of

implementation for getting the access to service layers. This

dynamism is relatively high from a cloud-computing

perspective.

By definition, the challenges refer to an exposure of

software or hardware component to the various failures or

bugs. A bug can exist under two forms. One form is intended

and a client-side error. Another form is often unintended and

a server-side error. A bug that is intended is easily addressable

whereas a bug that is not intended is hard and becomes a

concern for quality assurance. The challenges are also

sparsely located based on its nature from top to bottom layers

in the Cloud. In this essence, the nature of these layers is

described as an application (functionality), non-functional (or

SLA) and infrastructure.

In (Blokland et al., 2013), a functionality challenge arises

when the change happens on the application at the end

user side. A non-functional challenge is usually known

when the bug is exposed at least one good test case, and

the infrastructure challenges become an issue when a

problem primarily happens at the back-end components,

e.g., a database or network infrastructure. Due to this

distinct layering implementation, the failure presented in

each layer demands its own way of testing for ensuring its

quality assurance.

Quality assurance is a way of maintenance and prevention

of a system from the bugs (Graham et al., 2008). Regardless of

the reasons for the failure, for instance, a service that the Cloud

offers often are a ready-made release from third-party

software developers (Blokland et al., 2013). These ready-made

software reduces the cost and time taking to create a new one.

This is a great advantage for software developers. However,

during revealing these software to be accessed by diversified

clients they are not taking a proper testing time in software life

cycle. This limited test time is one of the attributable factor for

posing a challenge on the server-side, and it usually remains

passive until it gets the favorable conditions to trigger it.

In such a case, the question is how to develop an effective

promising approach for testing end-to-end SLA functionality?

One way of guaranteeing this is to follow the rules and

procedures of a black box implementation in terms of REST

API service composition. A black box is a software testing

strategy at the level of user requirements regardless of the

source codes (Arcuri, 2019; Bertolino et al., 2010; Sneed &

Verhoef, 2015). Thus, by this strategy exercising the data

coverage through an interface is essential for testing the cloud

service.

The rest of this paper is planned as below: next section

discusses the motivations and its importance. Section 3 takes

foundations which introduce the key terms definitions, REST

service standard and API components. Section 4 elaborates

the related approaches consisting of how to design an input

domain model, REST API compositions (multiple API calls) to

create a REST-based model-based test implementation. In

section 5, the approach which creates a conceptual test

system architecture that bases on a black box to search the

matching pattern for REST service identifier. This identifier

uses the contextual idea based on behavior-driven approach

to execute NEMo sample instances like calling multiple

testRouteFinder components by assuming different route ids

generated from a Google map, and applying these routeids for

testRouteConcatenator to compute the best route. Section 6

covers the NEMo project case study that is executed on a

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 678

NEMo mobility platform with REST specification model which

aids to endow a behavior-driven development (BDD) based on

domain specific test frameworks. The evaluation, in Section 7,

stage includes a test object model diagram based on the

conceptual test system architecture which enables to apply a

sample test case specification, implementation, and

execution. Following, in the same section, the results and

discussions include the summary of findings. Finally, a

conclusion explains the lessons learned and contributions

with future work.

2. Motivations and their importance

In practice, the popular cloud providers offer the virtual

gateway access to the distributed end users over this interface

(Bertolino et al., 2010; Giessler et al., 2015). There are two

service interface options to interact between cloud system

and cloud users. The first option is a Representational State

Transfer (REST) service, and the second option is a Simple

Object Access Protocol (SOAP) service. The big providers like

Amazon Web service, or Microsoft Azure cloud, use REST-like

distributed architectural style and their documents prove

this, that is, REST-based Application Program Interface

(API). Commonly, this REST API becomes a useful approach

to test cloud application using REST interface (see Section

3 under definitions). API is a specification that contains a set

of standard testable functions with valid behaviors and

parameters to be easily accessed and quickly established

their data communication exchange. REST API testing is

one of the most promising approach for testing a cloud

through knowledge of model-driven software architecture.

In model-driven architecture, model-based testing (MBT) is

a black box approach to design the test case generation based

on the realization of functional behavior specification

(Bertolino et al., 2010; da Silva, 2017). In the second option, the

SOAP service is a standard protocol, but has overheads such

as enveloping and messaging data at the time of exchanges.

These overheads pose a high resource utilization that

degrades the performance and gives less attention for using

SOAP service than REST service by the providers for their

service interface. In this paper, a NEMo mobility platform

which runs REST services is used for execution. NEMo refers to

”Sustainable satisfaction of mobility demands in rural regions”

and offers the mobility services based on the requests of

clients in that regions (Kuryazov et al., 2019). NEMo mobility

services use a REST architectural style which consumes

JavaScript Object Notation (JSON) open standard data

interchange on the web (RFC 7159). One major task of this

work is to build the appropriate approach through a practical

experimental analysis on existing sample test cases taken

from NEMo mobility services. As a test case writing

environment, the client-side development with testing

Framework is also considered. The objective is to understand

the functional behaviors through API methods and validate

them with executable behaviors of parameters based on input

domain model using a specified mobility service.

3. Foundations

This section begins with key terms definitions like an API,

REST, BDD, and DSL. In addition, it explains about the basic

concepts that are the REST principles and API components.

3.1. Definitions
The terms definitions given below are a brief descriptions in the

context of this paper.

Definition 1: API is an application program interface that

endows the capability to integrate a software system through

composing the services (Angulo & Edwin, 2014; Ed-Douibi et al.,

2018a). This API uses to connect the back-end system of the

infrastructure via a cloud-native application development. The

API capability also enables to provide compositions test

effectiveness of the software system. The API capability also

enables to provide compositions test effectiveness of the

software system. An example in Figure 1 is indicated below with

minimized API-based REST testing services like a

RouteFinder(), RouteDetails(), and RouteConcatenator(). The

diagram is a simple demonstration for visualization of REST API

test model which will be further presented the in-depth

elaborations of this in Sections 5 and 7.

Figure 1. Example: Minimized API-based REST

testing services (RouteFinder(), RouteDetails(),

and RouteConcatenator()).

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 679

Definition 2: REST (REpresentational State Transfer) is an

architectural style which means no official standard for web

application that uses the RESTful web APIs (Fielding, 2000). A

REST initializes with a null style like a World Wide Web (WWW).

Every style extends from this null base concept like aJava class

inherits from the super Object meta language. In Figure 1, the

REST is a type of API that supports the implementation of the

REST API compositions for executing such as two route ids

(i.e., RouteDetails() and RouteDetails2()) via a route finder

service to find route details services that are consumed by the

route concatenate service. Meaning, multiple API calls are

possible with API composer which transforms the discovered

standard services into meta models for realization of language

libraries for further code generation (Ed-Douibi et al., 2017;

Izquierdo & Cabot, 2014).

Definition 3: Behavior-driven development (BDD) is an

approach that supports a domain specific language (DSL) for

testing a user acceptance using an agile development as a way

to communicate among the stakeholders like a software

developer, test engineer, business owners and customers (end

users) (Behavior-drivendevelopment, 2020; Sivanandan, 2014)

(see Table 1 in Section 5). Using this BDD principle a test

engineer transforms each REST API into human-readable

story. This user story helps to create a feature or test data like

Table 1 in Section 5. This feature allows expressing scenarios

with test steps in a Gherkin syntax (Given-When-Then)

command. Each scenario is executed for validating semantics

of each test steps using a cucumber test framework

(Cucumber (software), 2020) which supports the BDD DSL

approach in an Eclipse Integrated Development Environment

(IDE) (Eclipse (software), 2020).

Definition 4: Domain Specific language (DSL) is an instance

of meta model tool that aids to validate the models through

transformation and synchronization like a Xtext plain textual

language representation in (Wolde & Boltana, 2019) (see Figure 4

in Section 6). The Xtext is a language workbench consisting of

structure that characterizes concepts (or classes), properties

(attributes), operations (methods) and references (another

concepts). The structure in this Xtext template is enabled by the

workbench transformation engines to model, transform, validate

and generate codes for test coverage execution in a model-driven

architecture (MDA). The DSL structure has a pattern design that

accepts inputs via attributes in an operation and receives the

outputs from operations of the API components. From this, the

multiple REST API calls can be connected concurrently without

time and Geo-location constraints as the requests in demand

(see Figure 3).

3.2. Basic Concepts

The basic concepts cover the REST service standard with

respect to the basic REST architectural principles including

HTTP methods and API components.

3.2.1. REST Service Principles

In (Fielding, 2000), REST works in a distributed environment

through its capability of architectural style to use any protocol

which is mainly the HTTP protocol for designing a loosely

coupled application and a set of specifications to be used for

developing web services. Architecturally, REST is a client-

server in which a client side sends a data to a server then server

side processes the data and returns responses. Both side

communication builds the transfer state of resources. A

resource is accessed through an endpoint, Universal Resource

Identifier (URI). The design principles and guidelines for REST

(Angulo & Edwin, 2014; Ed-Douibi et al., 2018b; Murphy et. al,

2017) are as follows: uniform interface, addressable,

statelessness, layered system and code on demand.

Uniform Interface: REST enables the APIs interface for

accessing a resource to the API consumers. A system that

provides this resource has only one logical URI, and that

specifies a way to get a related data. Addressable: REST data

source works with the resources defined over URI. A standard

interface has to be assigned to access the REST resources

using the set of HTTP methods. Statelessness: Every state of

transfer using REST is independent to the previous state which

does not have overlap over the other one. Client session data

is not dependent on the server side which maintains in that

client requests only, and thereby, this architecture makes the

REST design simple and lightweight. layered system: a REST-

based service has multiple architectural layers. This layering

supports an easy manipulation like addition, modification,

and reorganizing through composition to meet the needs of

evolve-ability on that service. Code On Demand: this capability

allows some logic or behaviors to be isolated from a server to

a client, to be run on the client. It enables customizing the web

applications like a REST API generation through modeling the

RESTful web service (Masse, 2011; Surwase, 2016).

The web application that describes the REST architecture is

called a RESTful web service. RESTful web service uses the

verbs to define HTTP methods. Once the address of the

interface is specified, the API endpoints (that is, URI) is referred

with these methods to retrieve (i.e., GET), update (i.e., PUT),

create (i.e., POST) and remove (i.e., DELETE) the resources.

In computer programming, this API interface is a set of

methods, protocols, and tools for implementing software

applications. By using programming language, multiple

libraries are implemented within frameworks to represent

the actual behaviors.

3.2.2. API components

In (Masse, 2011; Mulloy et al., 2013), the API components consist

of libraries and frameworks. An API is a specification that

describes the expected behavior while the library is the actual

implementation of the business rules. One API can have more

than one implementation with different libraries that share the

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 680

same programming interface. A framework can rely on multiple

libraries implemented the several APIs. This API favors the success

to the behavior built into the framework which includes libraries to

be used for extending its content with new plugin software tools

into the framework itself. In the current definition, API components

are usually web services that are designed and implemented

inherently interoperability and are built with the explicit composed

knowledge that they will interact with the distributed service

consumers. In order to visualize and usable the REST API through

web services, an explicit discovery of composed-based API is

required. A typical example is the NEMo mobility services that

compose a set of core services in an orchestrated manner like a

FindNearestStation, FindRoute, RouteDetails, RouteConcatenator,

and RouteSelector (Kuryazov et al., 2019).

These mobility operations provide a set of testable

functions based on input domain modeling (Ammann & Offutt,

2016) for REST service composition. After an explicit interface is

discovered and published for each composition, a hub or

central coordinator acts as a managing one or more services to

work together while the service consumers continue accessing

each interface seamlessly independent of language and

platform. The access to each resource depends on an input

domain model to match with its API input pattern.

4. Related approaches

The related approaches include an API specification with input

domain model and pattern matching diagram. In such a

context, REST model-based testing is defined to aid the test

case realization process through various approaches for

generating executable test cases such as BDD approach with

input model to create a test instances or DSLs. For this, two

major relevant approaches are described below to design and

derive an approach of testing the Cloud: with consecutive

Arabic numbers within parenthesis.

• API specification: Input Domain model (IDM) and Pattern

Matching, and

• REST-based model-based testing: test case realization

process to the IDM.

Thus, this part helps to describe the combined techniques

towards formulating the approach for validating the SUT (see

Section 5).

4.1. API Specification: Input Domain Model (IDM) and

Pattern Matching
Input domain modeling (IDM) is a useful means to identify

the testable functions and their parameters in (Ammann &

Offutt, 2016; da Silva, 2017) which they are posed to affect the

testing process. In (Ammann & Offutt, 2016; da Silva, 2017), IDM

represents the range of input space of a SUT in an abstract way.

A tester describes the signature of the input domain with the

input properties. A tester builds a partition for each property.

The partition is a set of blocks, each of which consists of a set

of values. With the essence of a specific property, all values in

each block are equivalent. A test input or test method is a tuple

of values, one for the actual behaviors in each parameter. So,

the test method uses exactly one block from each property. In

essence, adding property with n blocks increases the number

of combinations by a factor of n. So, in a practical scenario

controlling the total number of combinations is a key task to

input domain testing. After the IDM is created and values are

assigned, a few combinations of values might be negative. The

IDM must help the tester to identify and avoid or remove

negative sub-combinations. With this, the IDM helps to design

the properties based on realization of interface and functions.

The former one depends on the parameters’ realization. The

latter one focuses on the actual behavior of the system rather

than the interface. For test effectiveness, the preconditions and

post-conditions are good sources of input properties. These

conditions help to control the behaviors, which separate

defined from undefined, within the chosen blocks and values.

More blocks will have more tests, demanding more resources

with high probable to find more bugs. Fewer blocks will have

fewer tests, demanding lower resources with reduction in

test effectiveness. For any given property one or two range

of test input scopes are likely chosen to be applicable in

(Ammann & Offutt, 2016):

• Valid vs. invalid values: Every partition must allow all

(complete) values, whether valid or invalid.

• Sub-block: A range of valid values can usually be split ted

into sub-blocks, such that each sub-block exercises a different

part of operations.

• Boundaries: Values at or close to extremes often cause

exceptions like a stress testing.

• Happy path: If the operational profile focuses heavily on

middle values that are in between two extremes but not

includes the boundary conditions.

• Enumerated types: A partition where blocks are a discrete,

enumerated set often makes sense.

• Balance: From a cost perspective, it may be cheap or even

free to add more blocks to the properties that have fewer

blocks.

• Missing blocks: Check that the union of all blocks of a

property completely covers the input space of that property.

• Overlapping blocks: Check that no value belongs to more

than one block.

Assume an abstract partition p over some domain D. The

partition p defines a set of equivalence classes (or blocks), 𝐵𝑝.

Together the complete block to avoid any missing element in

D (Ammann & Offutt, 2016):

𝑝 = ∑ 𝑏1, 𝑏2, . . . ,
𝑝
𝑖=1 𝑏𝑝 (1)

𝑏𝑖 ∩ 𝑏𝑗 = 0, ∀𝑖≠ 𝑗, 𝑏𝑖 , 𝑏𝑗 ∈ 𝐵𝑝 ∪ 𝑏 = 𝐷, 𝑏 ∈ 𝐵𝑝 (2)

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 681

The blocks are pairwise disjoint, that is no element of D in

more than one block:

𝑏𝑝𝑖 ∩ 𝑏𝑝𝑗 ∩ 𝑏𝑝𝑧 = 0, 𝑝𝑖 ≠ 𝑝𝑗𝑖 ≠ 𝑝𝑧, ∀𝑖≠ 𝑗, 𝑏𝑖 , 𝑏𝑗 , 𝑏𝑝𝑖 , 𝑏𝑝𝑗 , 𝑏𝑝𝑧 ∈ 𝐵𝑝

 (3)

Using (1) and (2), a partition must fulfill the two formal

properties:

•The p partition must cover the entire domain

(completeness)

•The B blocks must not overlap (disjoint)

In Figure 2, Input D activity node starts an input message

which has a fork point and creates three new activity nodes.

The emerging new nodes form three blocks having each a set

of values. Each block b for the partition p searches a matching

pattern. A decision point for each b block in the p partition will

check the preconditions to satisfy the searching. Once each

block finds its own match then the matching will be computed

through merging and join points to get the post condition. If

the decision point becomes false to get its pattern matching

then the activity transition becomes flow final node to exit the

actions. With this respect, in Figure 1, the three p partitioning

(that is, 𝑝𝑖 , 𝑝𝑗 and 𝑝𝑧) bases class equivalence to build set of

blocks or regions.

Class 𝑝𝑖 = 𝑝𝑖−1, 𝑝𝑖−2, 𝑝𝑖−10 = 0,1,2, . . . ,9.
The i th in p class takes only a digit value. Class 𝑝𝑗=a, b, ..., z

and/or A, B, ..., Z. The jth in p class takes the alphabetic

characters.

Class𝑝𝑧 = ¬(𝐴 − 𝑍𝑎 − 𝑧0 − 9). The zth in p class takes the

special characters. For example, in java language with class

Pattern library the regular expression can be searched through

passing it in a static compile method using a static object

regex,i.e,Patternregex=

Pattern.compile(“[¬(𝐴 − 𝑍𝑎 − 𝑧0 − 9)]”);

Thus, an input model is needed to represent the functional

behaviors in a modeling data such as API oriented REST

compositions for testing the Cloud.

Each input key in the input model acts as an action to send

a message to get its block size memory addressing, bp at i, j

and z positions respectively. Then, each block like 𝑏𝑝𝑖, 𝑏𝑝𝑗 , and

𝑏𝑝𝑧validates the truthiness for extracting the block matching

pattern at each region, 𝑏𝑚𝑖𝑖
, 𝑏𝑚𝑗𝑗

and 𝑏𝑚𝑧
. Before the final

node in the activity model, the three searched blocks are

merged and joined at one final activity node to return the post

condition r=𝑏𝑚𝑖
+ 𝑏𝑚𝑗

+ 𝑏𝑚𝑧
for locating input pattern

matching. In simlar fashion, once the searched pattern using

the regex, this regex uses the Matcher object to find the pattern

match of str parameterized values via the static matcher

method, that is, Matcher ma=regex.matcher(str);

In the same way, in REST API computation this sequence of

input action will be validated while the actual behaviors are

executing from the libraries (implementation) that searches a

pattern from the given API model to execute a REST data

element such as a resource. Therefore, any test input violation

to the given query for the required API implies a rule violation

to the input model for accessing that resource, which is one of

the motivational factors in this work.

The IDM approach uses the parameters as an interface and

the behaviors as a function for making use of regular

expressions for pattern matching. API design uses such

pattern matching rules to describe a REST service

composition. IDM also enables tester to examine the actual

behaviors based on the rules set to represent the scenarios.

Each behavior to its API in the scenarios has sequence of valid

test steps which have the executable scripts for matching

patterns in the given input (or testable) model. Through

standard UML modeling language, the input model and the

input pattern matching are described to show the input

domain activity diagram as indicated in Figure 2. Based on

this, each REST API in a mobility service has an input to be

encoded from the standard keyboard, which constituents to

make a set of block in each partition and a corresponding set

of values. By designing the constituents, a valid combination

for computing the matching pattern to its API method are

implemented to execute based on the needs on the given URL

path. This path will validate the given REST API which is related

to the matching between the input values from the keyboard

and the business values in the system to be tested. For the

sake of demonstration, a sample HTTP method is used for

testing NEMo mobility platform. This is done through

implementation of test assertion in TestNG framework. This

way, by using REST API testing, the behaviors of each test case

are exercised, and the functionality of mobility services (REST

API) are ensured with a model-based testing (MBT). RES-

based MBT is the best option which allows creating the

optimal range of test cases to its input domain model using

black box testing approach.

4.2. REST-based model-based testing: Test case

realization process

By definition, model-based testing [MBT] follows a model-

driven architecture for testing participants in practice with

respect to the need of a model or a specification (Bertolino et

al., 2010; Utting et al., 2012). The model simplifies the

complexity by abstracting essential elements to its

specification at the back-end of the Cloud. A cloud serves as a

containment of implementation and execution over the

infrastructure, which primarily includes REST application, web

server, and back-end components. A model also wires these

elements by using modeling language that has multiple

modules as libraries implemented in the frameworks, which

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 682

are deployed for the end users to have interactions and

synchronization of data in the production environment. In

model-based testing, test case realization process uses

different approaches. With the favor of web technology, the

end users prefer to use the published data via REST API.

Figure 3 represents the REST-based NEMo mobility web

application and its realization approach for enabling the DSL

instance from BDD meta-modeling. BDD creates the keywords

derived from the requirements (see Table 1). For this, REST API

is a source to realize the various data model from simple JSON

to complex JSON schema. In the realization process, the

different tools are applied like a REST API composer, a postman

as REST Client request and response, JSON2JSONSchema to

get JSONSchema, BDD framework like a cucumber with

Gherkin model to enable meta model for creating instance of

DSL, web driver as test adaptation, and testing framework like

a JUnit (de-facto for test component) and TestNG for test

integration through executing the test implementation with

visualization and interpretation. Accordingly, Figure 3 is

authored and edited using a graphical tool with the Object

Management Group (OMG) Business Process Modeling

Notation (BPMN) 2.0 standard for designing a multiple REST

API calls (Aagesen & Krogstie, 2015).

With this, the hollow uniheaded arrow refers to the data

object as an input, which is a composed REST API. The round

rectangle shape refers to various tool operations for the

realization of various models such as data model, object

model, BDD model, meta model, DSL and test adapter for test

implementation. In each realization the corresponding output is

expected. This output is presented with shaded uniheaded arrow

business process. The upper long round rectangle highlights

REST API service composition to data model realization where as

the lower one shows the requirement to derive the BDD and IDM

respectively for enabling the test realization process, and building

test implementation and visualization.

In both ways, many authors have dealt with REST API

composition approaches as described in (Asghari et al., 2018;

Bellido et al., 2019; Ed-Douibi et al., 2018a; Ed-Douibi et al.,

2017; Giessler et al., 2015; Neumann et al., 2018; Sangsanit et

al., 2018). The findings in the papers are all at the conceptual

levels that need an option to build a test system architecture

especially for testing the Cloud, and a model-driven technical

space to demonstrate test case specification with test

implementation (see Table 2 and Figure 9). There are also

works written in the testing services that do not have a

relationship with issues for testing the Cloud rather they focus

on the legacy web-based application in the desktop

environment. In this context, the typical papers that support

such testing (Arcuri, 2019; Bertolino et al., 2010; da Silva, 2017;

Ed-Douibi et al., 2018b; Fertig & Braun, 2015; Ma et al., 2018;

Sneed & Verhoef, 2015; Utting et al., 2012). In addition, all

works associated with REST API do not consider the

importance of IDM concepts and relationships for the target

group to be tested as SUT. That means the research problem

of addressing the technical spaces through model-based test

architecture on the specified interface from the Cloud is not

fully synchronized with a range of possible testing strategies.

Thus, this paper raises an alternative and a new approach that

supports both the software developer and customers on how

to validate the REST product which is hosted in the cloud-

based environment. Therefore, how does one realize given a

test instances through BDD approach?

5. Approach

The approach depends on the requirements which meet the

black box implementation to test the de-fined REST API

service identifier (da Silva, 2017; Sivanandan, 2014). A black

box focuses on behavior-driven descriptions of service

features like a MBT to realize the domain specific language

(DSL) as parameters and behaviors. Parameters include the

attributes and types to specify an instance under a class like

an object-oriented programming language. For example, in

mobility service the class Location has a method

startLocation with a parameter attribute String type. A test

method or behavior (e.g., Rout-eDetails) and test object

(e.g., Route Plan) are preconditions of this system model in

the approach. The most promising agile solution to enable

DSL is a BDD approach that captures the IDM based on

model-based engineering (example, metamodeling using

Gherkin syntax (Cucumber (software), 2020).

5.1. Gherkin model to perform domain specific language

(DSL)

Gherkin model is a way for enabling behaviors to realize the

model through metamodeling concept, which creates an

instance for domain specific language (DSL). By this DSL, a

runner cucumber BDD framework using Eclipse plugin is

scripted to simulate the Gherkin behaviors through REST API

based on IDM (Cucumber (software), 2020; Smart, 2014). JUnit

Framework is a defacto standard to test the components

interacting with the behaviors executable in mobility service. In

Figure 4, a JUnit test for component testing on Gherkin BDD is

demonstrated. The test result validates the web driver browser

Firefox together with cucumber test steps definitions

implementation which is executed and displayed in the left

preview console output of Eclipse IDE window. In the right

preview Eclipse IDE window, the feature file shows the Gherkin

model listed with keywords, which consist of scenarios and test

steps Given-When-Then syntax, as is defined in Table 1.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 683

Figure 2. Input domain activity model for keyboard expression pattern matching.

Figure 3. Multiple REST API calls using different stage realization approaches to

 derive BDD input domain test implementation.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 684

Figure 4. JUnit test assertion for DSL Gherkin model in cucumber framework using Eclipse IDE.

Table 1. Sample behavior-driven styles.

Feature

Sample Test Data1

Test Steps

Trip Search

in Action

routeid:33b9f7f6-efe5-

429f-8bc8-

32fb567b9eed

start:

oe1e1fa7-0351-4e26-

8d43-7134520481ea

end:

b8a203d7-1ee3-4990-

81af-391c77f97d42

time:

2018-09-

16T12:00:24+02:00

Scenario:

Get login credentials

Given User is on home

page.

When User is on login

page.

And User enters

username & password.

Then Message

displayed login

successfully.

Scenario:

Logout successfully.

When User logout from

the application.

Then Message

displayed logout

successfully.

1The sample test data is taken from the NEMo API specification document, avaliable at Oldenburg University repository system.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 685

5.2. Conceptual test system architecture

Using this system architecture, a test model is described to

support the validation of the test plan that is implemented in

Figure 9. A textual and graphical symmetry visualization

describe to represent how an API component initiates the

required infrastructure in a given cloud system to specify the

REST service composition for a Web API using a Hypertext

Transfer Protocol (HTTP). The live preview visualization to

switch from textual to graph form is done immediately as

indicated with

In this case, the test system model-based architecture

defines the major sections which are infrastructure,

Composed Services, Route Composer, Composed Route

Details, Route Concatenator,and Test Automation as defined

in Figure 5.

• Infrastructure includes DBType as [DB] and WebServer as

Web service to represent the mini-mized [cloud] component

to describe NEMoCloudPlatform that contains the [API] for

connecting the [NEMoMobility] composition REST [Services*]

capable for accessibility and availability by the end users.

• Composed services are helpful to define the [Services*]

components consisting of Service 1, Service 2, and Service 3,

for instance. This opportunity allows enhancing the reliability

through having an access to multiple APIs at the same time by

the consumers of that service.

• Route composer uses the node [RouteFinder] component

to find two or more services for enabling a capability mode

(that is, Bus, Walk or Bike) based on the trip request operation

to compute at least the three parameters like a time, start and

end locations. After computing these parameters the

composed route information is determined (see Figure 9).

• Composed route details mainly defines to include the

testRouteDetails and testRouteDe-tails2 to validate

[RouteDetails] and [RouteDetails2] respectively. These

composed route paths consist of sequences of composed

stop stations for the capability modes which support the

transportation or application in a NEMo mobility cloud

system (see Figure 10).

• Route Concatenator is a component to support the

testRouteConcatenator that consumes the Composed Route

Details for validating each mode path based on the time

capability to determine the best routes out of a given paths in

the SUT. The inputs to this Route Concatenator are the

outputs obtained from [RouteDetails2] and [RouteDetails].

Note that in the cloud system, tasks are executed in parallel,

simultaneously, which are aided by the configuration of

libraries in System Development kits (SDK) for Google map

routes, places and directions. The details of these topics are

not part of this paper.

• Test automation is the stage that enables using the

[TestModel] to take the [TestValidation] action through

executing a sample test instances from the [CodeGeneration]

in a testing framework like a Test Next Generation (TestNG)

(see Figure 9).

6. Application: NEMo project descriptions

This section is about the application that is executed on NEMo

Mobility Platform with respect to NEMo essential libraries,

NEMo In-Out sequence flow, and NEMo test instances.

6.1. NEMo essential libraries

NEMo project uses a JSON data representation seamlessly as

communication between client and back-end via NEMo

mobility platform as-a Service (PaaS). NEMo mobility platform

gives interface libraries which use Java to implement services,

mostly IOData, RESTInvoker, and NEMoDatastructures

(Kuryazov et al., 2019). The IOData (i.e., InputOutput Data)

specifies the input requested parameters such as coordinate

points as locations and takes corresponding route id assigned

from Google Direction identifier and then, passes them to the

REST invoker framework to get JSONObject through

ObjectMapper. This mapper class transforms to the specified

JSONObject through JSON serialization process and stores

the JSON data as a NEModata structure and returns as an

output in the form of JSON data structure with key-value

pairs at the client side through REST client service. This

NEModata is also useful to create a data-driven testing

since the In-Out sequence through action model transfers

a state for each activity node till all the states terminate its

In-Out sequence flows.

6.2. NEMo In-Out sequence flow

In (Kuryazov et al., 2019), NEMo mobility platform primarily

consists of four core REST mobility services to provide inter-

modal (different capability mode) routing like a Bus, Bike and

Walk which aim to achieve sustainable and flexible

transportation mode based on demands to satisfy the

customer. According to the Authors in 2019, NEMo action

model is built for system mobility cloud platform with client inter-

model traveler. In this model the In and Out activity to represent

the input and output action-state sequence flow poses REST API

service compositions through orchestrated data oriented model.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 686

Using this data model the standard schema model

transformation is made. As it is designed in Figure 3 above, the

transformed standard schema model from simple JSON

model will be used to derive the user requirements. Each

mobility data on the web via REST API is easily accessed during

real time interaction between mobility cloud system and end

users. To realize this interaction, the key NEMo core services

are composed through service orchestration to enable the

mobility inter-modal routing. In this regard,

FindNearestStation is a NEMo service to find the nearest

station given origin and destination states which are encoded

to initiate the inter-modal routing. This routing enables to

describe multiple modes concurrently. Based on this nearest

station, RouteFinder NEMo service finds the routeid for accessing

the RouteDetails. This routeid can have number of capability

modes, which include many sub routeids. With this respect,

routeConcatenate NEMo service evaluates the outputs of each

sub routeid. At the end, routeSelector service considers the time

parameter of each concatenated routeid to compute the best

route (i.e., fastest) and return the result back to the client.

6.3. NEMo test instances

Each NEMo mobility service is implemented with signatures

that include service data points such as names, descriptions,

input and output parameters, and its data types. These data

fields are used to implement the NEMo services. Sample of two

test instances are taken from the list of core mobility services

for conducting evaluation in Section 7. Such instances are

RouteFinder and RouteDetails. In a practical scenario,

according to (Graham et al., 2008), an absence of fault does not

mean that a software is free from bugs. That means under

normal scenario an application may show success with a good

test case that covers all IDM parameters interacting based on

combinatorial testing approach (Jackson, 2017; Kuhn et al.,

2016). However, this scenario outcome does not guarantee the

quality to be sustained, and also an exhaustive testing is not

feasible in practice (Graham et al., 2008). A sample of test input

for each range of test data through input model is preferable.

A good input model contains a data type with a range of values

on the specified service.

Figure 5. Test system model-based architecture.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 687

On this point, a continuous testing is useful to consider the

impact of negative threats on the service provided. In

considering this issue, a predefined correct syntactic API

specification that comprises high level descriptions of basic

service elements is essential. This API should have an

endpoint, input request, and output response. Endpoint is the

entry point to access services based on its RESTinterface

identifier. An identifier is an address of the service which

contains baseURI plus an effective basePATH. baseURI refers

to the server which serves as a common entry point whereas

basePATH refers to a resource on the specified service.

The Scheme: HTTP://baseURI[:port]/basePath/, where

the scheme is an HTTP, a port indicates a service (optional).

Input request contains the test data and data types. For

instance, the RouteFinder test request contains five

parameters key-value pair composition as a test data to

determine the subroute. The list of parameters are

startLocation (string type), endLocation (string type), arrive

(boolean type), time (date type), and transport Mode (string

type). RouteDetails test request contains routeId as a test

data which uses a String type. Output response refers to

either expected or actual result. Thus, with the normal

scenario, RouteFinder provides the expected JSON data as

an output response which shows a route between origin

and destination, and RouteDetails defines the JSON data as

an output to show at least one complete route information

(see Table 2 information).

7. Evaluation

The evaluation section mainly covers the efforts obtained

during and after the approach formation followed by the

results and discussions. Accordingly, first as a test setup, test

case specification, execution, visualization and interpretation

are explained. Test case specification contains the test plans

which provide test requests (or test inputs), test data, expected

and actual results. Once the test plan is arranged, the test

implementation and adaptation are defined in a testing

environment such as TestNG as testing automation, Eclipse IDE

as development environment and third party libraries

configurations. At the end a summary of results and discussions

are made using concrete test object visualization diagram.

7.1. Test case specification

In Table 2, the test case specification is adapted from the

server side. This specification is part of the test plan to be used

for implementation at the client side so that testing the cloud

is done as intended. The test environment includes the cloud

resource, which is run on a NEMo mobility platform. The client

machine is used to implement the test driver based on the test

case specification with behavior-driven styles in the behavior-

driven development (BDD) framework. Based on client-side

implementation, a tester sends a request through test script

and receives a response from the web service, that is, NEMo

mobility service.

7.2. Test model to create implementation

This part uses two test cases (TC-1 and TC-2) for execution and

visualization based on Table 2. It is conducted using TestNG

testing framework with annotation @Test for both

testRouteFinder() and testRouteDetails().

Table 2. Sample test case specification.

TC#

Testable

Functions

Sample Test Data

Expected

Actual

TC-1 RouteFinder startLocation:

oe1e1fa7-0351-

4e26-8d43-

7134520481ea

endLocation:

b8a203d7-1ee3-

4990-81af-

391c77f97d42

time:

2018-09-

16T12:00:24+02:00

arrive: true

mode: bike

One full

route2

TC-2 RouteDetails routeid:33b9f7f6-

efe5-429f-8bc8-

32fb567b9eed

or

05903d72-557f-

4130-b009-

dffe9055f33a

At least

one best

route3

7.2.1. Results in TC-1 and TC-2 discussions

In Figure 6, the TC-1 test plan result is as expected to retrieve a

real time route information. The test request from the client

side is successful to send all five parameters as they are stated

in Table 2 under second column. The actual result shows

overflow exception, which is shaded in green color for

testRouteFinder result. This is due to the logs exception on the

web server as witnessed by the web administrator blogs and

forums. Thus, with the TC-1 test plan, the test completed as

normal scenario with PASSED status. The test functional

2 Validated sug routes for each stop for evaluating the one full route start to

end station.
3 Time parameter is considered as capability during evaluating the best route.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 688

completeness do not attain to cover all the required data

accurately as expected, which misses to show a transport

mode, BIKE. The finding helps to suggest that there is a need

to maintain or update the web server at the level of server side.

In Figure 7, the TC-2 test plan uses the routeid test data for

testRouteDetails. It is a success in retrieving the expected

response (one complete route from start to end location). The

origin starts at stop Fuweg (label A in circle) station and the

mobility starts, and then, wires with the coordinate points as

latitude (lat) (53.14744) pair with longitude (lng) (8.19827) at

label B, and continues to next stop till it reaches at the end

locations coordinate point (53.14744-8.19827) at label C.

7.3. Object model for test implementation

Object modeling with sample test instances are important to

precisely demonstrate the intended test system model

architecture definition and usage. In line this idea the model

checking is done for the two instance services such as

RouteDetails and RouteDetails2 to compute a

RouteConcatenator service. Accordingly, MyTestRESTAPIModel

implements the test models for those test instances as

indicated in Figure 8. This MyTestRESTAPIModel is stated by the

numbers labeled (1, 2, 3, 4, 5, 6,and 7).

• 1-5 refer to represent the MyTestRESTAPIModel class on

calling the API models for executing the testRouteDetails and

testRouteDetails2 via testRouteFinder which perform self

validation first and follow to compute testRouteConcatenator

(see Figure 9 and 10).

• 6 refers to show the ObjectMapper super class to

generalize the Jackson Google GsonObjectMapper for

enabling the realization of object serialization from JSON data

model to Object Java Model.

• 7 refers to the association between GsonObjectMapper

libraries and MyTestRESTAPIModel object to define and support

the constructor method, MyTestRESTAPIModel(), to be

instantiated for executions of the test instances (DSL models)

in the validation stage.

7.4. Results and discussions

The results and discussions consider the execution and

visualization which are followed the approach and test model

implementation. For validity, the experimental analysis is made

through test implementation of testRouteDetails and

testRouteDetails2, and are executed to testtestRouteConcatenator

using routeids (e.g., 05903d72-557f-4130-b009-dffe9055f33a and

33b9f7f6-efe5-429f-8bc8-32fb567b9eed) in the Mobility Route Plan

System (see Figures 10 and 9).

In Figure 9, the TestNG@Test annotation aims to validate

mobility DSL REST libraries within the JSON API framework

using concepts of BDD principles to define the behaviors like a

Gherkin model Given-When-Then syntax in Table 1.

This test implementation in Figure 9 also evaluates

indirectly the low level artifacts through high level descriptions

in REST BDD framework. In Figure 10, all stops labeling such as

stop1, stop2 and stop3 of capability mode would compose to

get the best route during evaluation of testRouteConcatenator.

For routeid: 05903d72-557f-4130- b009- dffe9055f33a, the best

route is found at the stop station on location Fuweg, and for

routeid: 33b9f7f6-efe5-429f-8bc8-32fb567b9eed, the best route

is found at the stop station on location Radweg. In this regard,

Figure 9 shows the partial view of TestNG Test Adaptation with

@Test Annotation for RouteFinder and RouteDetails using

REST API service composition routeid: 05903d72-557f-4130-

b009- dffe9055f33a, the best route is found at the stop

station on location Fuweg, and for routeid: 33b9f7f6-efe5-

429f-8bc8-32fb567b9eed, the best route is found at the stop

station on location Radweg. In this regard, Figure 9 shows

the partial view of TestNG Test Adaptation with @Test

Annotation for RouteFinder and RouteDetails usingREST

API service composition.

Figure 6. TC-1 Test Result For RouteFinder end-to-end

integration testing using TestNG framework.

Figure 7. TC-2 Test Result For RouteDetails end-to-end

Integration Testing using TestNG framework.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 689

Figure 8. Test assertion object modeling (model checking) implementation.

Figure 9. TestNG test adaptation with @Test Annotation for RouteFinder and RouteDetails.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 690

8. Conclusions

The summary of this paper includes the lessons learned and

its contributions.

8.1. Lessons learned

In this paper, the lessons basically introduce about the

challenges and the promising approaches related to testing

the Cloud and give its motivational importance through

comparing against legacy testing procedure. The promising

approach to testing the Cloud in REST API is the model-based

black box testing strategy through REST API service

composition running on NEMo mobility platform. In REST API

the testers gain an effective way for ensuring an end to end

testing with respect to the access to the behaviors

implemented with libraries within API framework. This work

also underlines the importance of input-output data coverage

to derive test data for input request and output response based

on IDM via REST API.

On this point, the evaluation is conducted using the three

test instances of mobility services (i.e., testRouteFinder(),

testRouteDetails() and testRouteConcatenator()). The test

results show that the REST API has the capability to help the

testers to be involved directly on the application by making test

inputs to its API, and also getting an effective test response

Figure 10. Test assertion (model checking) for RouteConcatenator

 using RouteDetails and RouteDe-tails.

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 691

from the infrastructure via application domain of the web

server. This response is represented through REST API Modeling

Language (RAML) that supports the JSON data exchange from

web server like Apache Tomcat running on GlassFish Application

server v5. The findings elaborates a promising result with a few

test plans for demonstrating the test effectiveness. The

visualization from test implementation through execution of test

runner agent in the testing frameworks are also imperative for

motivating towards an extension of this work.

8.2. Contributions

Its main contribution is to design the most promising approach

with REST API model-based testing in the context of behavior-

driven styles based on a black box strategy and show an end-

to-end testing of the cloud-based system through targeting an

effective REST API test input service composition. Since this

research work is on the basis of REST service principle that

includes API specification as defined in OMG. By using this

standard principle several libraries implementation into API

frameworks enable the access to be the executable behaviors

isolated from the NEMo mobility services. The offer for

selecting the best route is made through Google Cloud map

integrated with enterprise cloud, which is Web Service Oxygen

(WSO2). In addition, this work is able to show how to define an

effective testing approach through REST service composition

in MBT for testing the Cloud.

Furthermore, the study shows the applicability of this

approach that testers have the chance to ap-ply a complete

coverage with reasonable input model scopes or test case

specification derived to test remotely the Cloud. This way, the

software engineers will get a chance to improve the product by

making detailed quality assurance and coverage analysis

reporting. A run-time visualization technique to the client side

at the end user is also attained through a simulation real time

events at the server side in the Cloud. In general, this paper

addresses four major aspects of contributions as below:

• Input Action Pattern Matching Analysis (See Figure 2).

• Designing REST API Composition Input Model (See Figure 3).

• Enabling Conceptual Test System Architecture (see Figure 5).

• Modeling and Implementing Concrete Test Automation

Model (see Figure 8)

Therefore, the contributions of this work are multiples and

useful for the scientific world especially for professionals as

well as for business analysts. As a future work, this REST API

testing covers the several aspects to be extended for covering all

composed core NEMo mobility services with the range of optimal

test data supplemented with appropriate artificial intelligence

algorithms. Detailed test assertions should also be considered

along with model checking to evaluate a cloud-based system like

a NEMo cloud mobility platform as System Under Test (SUT).

Acknowledgments
We are highly indebted and credited by the gracious help from

University of Oldenburg, Software Engineering Group for their

constant support for enabling this paper completion. We

would also like to thank for the DAAD scholarship Grant for

Research together with the Ethiopian-Engineering Capacity

Building Program (EECBP). We are also thankful to the

reviewers of this paper to reach this fruitful end. The research

leading to these results has received funding from EECBP

grant 57251549.

References

Aagesen, G., & Krogstie, J. (2014). BPMN 2.0 for Modeling

Business Processes. Handbook on Business Process

Management 1, 219–250.

https://doi.org/10.1007/978-3-642-45100-3_10

Ammann, P., & Offutt, J. (2016). Introduction to software testing.

Cambridge University Press.

https://doi.org/10.1017/9781316771273

Angulo, B., & Edwin, J. (2014). Dynamic composition of rest

services. [Thesis (Doctor in Engineering Sciences)-Pontificia

Universidad Católica de Chile]

Arcuri, A. (2019). RESTful API automated test case generation

with EvoMaster. ACM Transactions on Software Engineering

and Methodology (TOSEM), 28(1), 1-37.

https://doi.org/10.1145/3293455

Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2018). Service

composition approaches in IoT: A systematic review. Journal

of Network and Computer Applications, 120, 61-77.

https://doi.org/10.1016/j.jnca.2018.07.013

Behavior-drivendevelopment. (2020, September 14). In

Wikipedia, The Free Encyclopedia. Retrieved: September 14,

2020, from:

https://en.wikipedia.org/wiki/behaviordrivendevelopment

Bellido, J., Alarcon, R., Pautasso, C., & Vairetti, C. (2019). SAW-

Q: a dynamic composition approach of REST services based

on queue model. International Journal of Web and Grid

Services, 15(1), 29-58.

https://doi.org/10.1504/IJWGS.2019.096555

Bertolino, A., Grieskamp, W., Hierons, R., Le Traon, Y., Legeard,

B., Muccini, H., ... & Tretmans, J. (2010). Model-based testing

for the cloud. In Dagstuhl Seminar Proceedings. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik.

https://doi.org/10.1007/978-3-642-45100-3_10
https://doi.org/10.1017/9781316771273
https://repositorio.uc.cl/xmlui/handle/11534/15509
https://repositorio.uc.cl/xmlui/handle/11534/15509
https://repositorio.uc.cl/xmlui/handle/11534/15509
https://doi.org/10.1145/3293455
https://doi.org/10.1016/j.jnca.2018.07.013
https://en.wikipedia.org/wiki/behaviordrivendevelopment
https://doi.org/10.1504/IJWGS.2019.096555

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 692

Blokland, K., Mengerink, J., & Pol, M. (2013). Testing cloud

services: how to test SaaS, PaaS & IaaS. Rocky Nook, Inc.

Cucumber, (software) (2020).

https://en.wikipedia.org/wiki/Cucumber_(software)

da Silva, R. V. E. (2017). Model Based Testing-From

requirements to tests.

https://hdl.handle.net/10216/106157

Eclipse, (software) (2020).

https://en.wikipedia.org/wiki/Eclipse_(software). Ed-douibi,

H., Cánovas Izquierdo, J. L., & Cabot, J. (2017). Example-

Driven Web API Specification Discovery. Lecture Notes in

Computer Science, 267–284.

https://doi.org/10.1007/978-3-319-61482-3_16

Ed-douibi, H., Cánovas Izquierdo, J. L., & Cabot, J. (2018a).

APIComposer: Data-Driven Composition of REST APIs. Lecture

Notes in Computer Science, 161–169.

https://doi.org/10.1007/978-3-319-99819-0_12

Ed-douibi, H., Canovas Izquierdo, J. L., & Cabot, J. (2018b).

Automatic Generation of Test Cases for REST APIs: A

Specification-Based Approach. 2018 IEEE 22nd International

Enterprise Distributed Object Computing Conference (EDOC)

(pp. 181-190). IEEE.

https://doi.org/10.1109/edoc.2018.00031

Fertig, T., & Braun, P. (2015). Model-driven Testing of RESTful

APIs. Proceedings of the 24th International Conference on World

Wide Web.

https://doi.org/10.1145/2740908.2743045

Fielding, R. T. (2000). Architectural styles and the design of

network-based software architectures. [Doctoral thesis

University of California, Irvine].

Gao, J., Bai, X., & Tsai, W. T. (2011). Cloud testing-issues,

challenges, needs and practice. Software Engineering: An

International Journal, 1(1), 9-23.

Giessler, P., Gebhart, M., Sarancin, D., Steinegger, R., & Abeck, S. (2015).

Best practices for the design of restful web services. In International

Conferences of Software Advances (ICSEA) (pp. 392-397).

Graham, D., Van Veenendaal, E., & Evans, I. (2008). Foundations of

Software Testing: ISTQB Certification. Cengage Learning EMEA, 30.

Izquierdo, J. L. C., & Cabot, J. (2014). Composing JSON-Based

Web APIs. Composing JSON-based web APIs. In ICWE 2014-

14th International Conference on Web Engineering, (Vol. 8541,

pp. 390-399).

https://doi.org/10.1007/978-3-319-08245-5_24

Jackson, E. (2017). Combinatorial Testing in Cloud Computing.

Kuhn, D. R., Kacker, R. N., & Lei, Y. (2015). Measuring and specifying

combinatorial coverage of test input configurations. Innovations in

Systems and Software Engineering, 12(4), 249–261.

https://doi.org/10.1007/s11334-015-0266-2

Kuryazov, D., Winter, A., & Sandau, A. (2019). Sustainable

Software Architecture for NEMo Mobility Platform. Smart

Cities/Smart Regions – Technische, Wirtschaftliche Und

Gesellschaftliche Innovationen, 229–239.

https://doi.org/10.1007/978-3-658-25210-6_18

Ma, S. P., Chen, Y. J., Syu, Y., Lin, H. J., & FanJiang, Y. Y. (2018).

Test-Oriented RESTful Service Discovery with Semantic

Interface Compatibility. IEEE Transactions on Services

Computing, 1–1.

https://doi.org/10.1109/tsc.2018.2871133

Masse, M. (2011). REST API Design Rulebook: Designing

Consistent RESTful Web Service Interfaces. " O'Reilly Media, Inc.

Mulloy, B. (2013). Web API design.

https://hashingit.com/elements/research-resources/2012-

web-api-design.pdf

Murphy, L., Alliyu, T., Macvean, A., Kery, M. B., & Myers, B. A.

(2017). Preliminary Analysis of REST API Style Guidelines. Ann

Arbor, 1001, 48109.

Neumann, A., Laranjeiro, N., & Bernardino, J. (2018). An

analysis of public REST web service APIs. IEEE Transactions on

Services Computing.

https://doi.org/10.1109/TSC.2018.2847344

Sangsanit, K., Kurutach, W., & Phoomvuthisarn, S. (2018). REST

web service composition: A survey of automation and

techniques. 2018 International Conference on Information

Networking (ICOIN). (pp. 116-121). IEEE.

https://doi.org/10.1109/icoin.2018.8343096

http://tisten.ir/wp-content/uploads/2018/09/Testing-Cloud-Services-How-to-Test-SaaS-PaaS-IaaS-Rocky-Nook-Inc-2013.pdf
http://tisten.ir/wp-content/uploads/2018/09/Testing-Cloud-Services-How-to-Test-SaaS-PaaS-IaaS-Rocky-Nook-Inc-2013.pdf
file:///C:/Users/yolis/Desktop/TRABAJOS%20AÑO%202020/JART_VOL%2019_2021/VOL_19%20No6_DICIEMBRE%202021/WORDS%20Y%20PDFS%20FINALES/Cucumber%20(software)%20(2020).%20https:/en.wikipedia.org/wiki/Cucumber_(software)
https://hdl.handle.net/10216/106157
https://en.wikipedia.org/wiki/Eclipse_(software).%20Ed-douibi,
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-99819-0_12
https://doi.org/10.1109/edoc.2018.00031
https://doi.org/10.1145/2740908.2743045
https://www.proquest.com/openview/fc2d064044b971dda476dfb429a2b344/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/fc2d064044b971dda476dfb429a2b344/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/fc2d064044b971dda476dfb429a2b344/1?pq-origsite=gscholar&cbl=18750&diss=y
http://seij.dtu.ac.in/Paper%201.pdf
http://seij.dtu.ac.in/Paper%201.pdf
http://seij.dtu.ac.in/Paper%201.pdf
https://www.researchgate.net/profile/Roland-Steinegger/publication/301694429_Best_Practices_for_the_Design_of_RESTful_Web_Services/links/57231ec908ae262228a89d6f/Best-Practices-for-the-Design-of-RESTful-Web-Services.pdf
https://www.researchgate.net/profile/Roland-Steinegger/publication/301694429_Best_Practices_for_the_Design_of_RESTful_Web_Services/links/57231ec908ae262228a89d6f/Best-Practices-for-the-Design-of-RESTful-Web-Services.pdf
https://www.utcluj.ro/media/page_document/78/Foundations%20of%20software%20testing%20-%20ISTQB%20Certification.pdf
https://www.utcluj.ro/media/page_document/78/Foundations%20of%20software%20testing%20-%20ISTQB%20Certification.pdf
https://doi.org/10.1007/978-3-319-08245-5_24
https://citations.springernature.com/book?doi=10.1007/978-981-10-4481-6.
https://doi.org/10.1007/s11334-015-0266-2
https://doi.org/10.1007/978-3-658-25210-6_18
https://doi.org/10.1109/tsc.2018.2871133
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://hashingit.com/elements/research-resources/2012-web-api-design.pdf
https://hashingit.com/elements/research-resources/2012-web-api-design.pdf
https://www.cs.cmu.edu/~NatProg/papers/API-Usability-Styleguides-PLATEAU2017.pdf
https://www.cs.cmu.edu/~NatProg/papers/API-Usability-Styleguides-PLATEAU2017.pdf
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1109/icoin.2018.8343096

B. G. Wolde, A. S. Boltana/ Journal of Applied Research and Technology 676-693

Vol. 19, No. 6, December 2021 693

Sivanandan, S. (2014). Agile development cycle: Approach to

design an effective Model Based Testing with Behaviour driven

automation framework. In 20th Annual International

Conference on Advanced Computing and Communications

(ADCOM) (pp. 22-25). IEEE.

https://doi.org/10.1109/adcom.2014.7103243

Smart, J. (2014). BDD in Action: Behavior-driven development

for the whole software lifecycle. Simon and Schuster.

Sneed, H. M., & Verhoef, C. (2015). Measuring test coverage of

SoA services. In 2015 IEEE 9th International Symposium on the

Maintenance and Evolution of Service-Oriented and Cloud-

Based Environments (MESOCA) (pp. 59-66). IEEE.

https://doi.org/10.1109/MESOCA.2015.7328128

Surwase, V. (2016). REST API modeling languages-a developer’s

perspective. International Journal of Science and Technology and

Engineering, 2(10), 634-637.

Utting, M., Pretschner, A., & Legeard, B. (2012). A taxonomy of

model‐based testing approaches. Software testing, verification

and reliability, 22(5), 297-312.

https://doi.org/10.1002/stvr.456

Wolde, B. G., & Boltana, A. S. (2019). Combinatorial Testing

Approach for Cloud Mobility Service. In Proceedings of the 2019

2nd Artificial Intelligence and Cloud Computing Conference,

(pp. 6-13).

https://doi.org/10.1145/3375959

https://doi.org/10.1109/adcom.2014.7103243
https://www.simonandschuster.com/books/BDD-in-Action/John-Smart/9781638353218
https://www.simonandschuster.com/books/BDD-in-Action/John-Smart/9781638353218
https://doi.org/10.1109/MESOCA.2015.7328128
https://d1wqtxts1xzle7.cloudfront.net/47318910/IJSTEV2I10199-with-cover-page-v2.pdf?Expires=1638248630&Signature=Pb4FyGNLP7gQy0tuBPhyLGYuJv8eewiHt1E3h1ABepRd7yBXfnj9zmOcMTDs~oYcNpui25Qthi24ugBQwR1pi2P5tKtunYrcMjH2-0VBy5aq8jyQm3485almUjUkBL12AuoXdhQLiCjVmk8oEseoP0eFKLF9K8vo7IQ1iTelPDT6jAk1kVmp1b7i6yV83VCgeWQku4Px7wgqN~8ylQRkJ-C~QnhXZGtQytu5fRvHKvCiW26GQ01qu5~2Hbv0eYcSZ2ioGIcwcLESggfvULKlBStjH8XZfVAo~OHYigB~vo4xEGw9B28hpLzBgBmtbinjM0yO0pOp-jJhMYGme4FGOg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/47318910/IJSTEV2I10199-with-cover-page-v2.pdf?Expires=1638248630&Signature=Pb4FyGNLP7gQy0tuBPhyLGYuJv8eewiHt1E3h1ABepRd7yBXfnj9zmOcMTDs~oYcNpui25Qthi24ugBQwR1pi2P5tKtunYrcMjH2-0VBy5aq8jyQm3485almUjUkBL12AuoXdhQLiCjVmk8oEseoP0eFKLF9K8vo7IQ1iTelPDT6jAk1kVmp1b7i6yV83VCgeWQku4Px7wgqN~8ylQRkJ-C~QnhXZGtQytu5fRvHKvCiW26GQ01qu5~2Hbv0eYcSZ2ioGIcwcLESggfvULKlBStjH8XZfVAo~OHYigB~vo4xEGw9B28hpLzBgBmtbinjM0yO0pOp-jJhMYGme4FGOg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/47318910/IJSTEV2I10199-with-cover-page-v2.pdf?Expires=1638248630&Signature=Pb4FyGNLP7gQy0tuBPhyLGYuJv8eewiHt1E3h1ABepRd7yBXfnj9zmOcMTDs~oYcNpui25Qthi24ugBQwR1pi2P5tKtunYrcMjH2-0VBy5aq8jyQm3485almUjUkBL12AuoXdhQLiCjVmk8oEseoP0eFKLF9K8vo7IQ1iTelPDT6jAk1kVmp1b7i6yV83VCgeWQku4Px7wgqN~8ylQRkJ-C~QnhXZGtQytu5fRvHKvCiW26GQ01qu5~2Hbv0eYcSZ2ioGIcwcLESggfvULKlBStjH8XZfVAo~OHYigB~vo4xEGw9B28hpLzBgBmtbinjM0yO0pOp-jJhMYGme4FGOg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1002/stvr.456
https://doi.org/10.1145/3375959

