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Abstract

In order to effectively analyze and forecast the global CO2 concentration, a collaborative fuzzy-neural agent network is constructed in this study. 
In the collaborative fuzzy-neural agent network, a group of autonomous agents is used. These agents are programmed to analyze and forecast the 
global CO2 concentration using the fuzzy back propagation network (FBPN) approach based on their local views. A collaboration mechanism is 
established to communicate the settings and forecasts of these agents, and to derive a single representative value from these forecasts using a radial 
basis function network. The real data were used to evaluate the effectiveness of the collaborative fuzzy-neural agent network approach.
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1. Introduction

It is concerned that the accumulation of greenhouse gases, 
especially CO2, in the atmosphere leads to undesirable changes 
of the global climate. The global CO2 concentration, derived 
from measurements of CO2 concentration in air bubbles in the 
layered ice cores drilled in Antarctica and from atmospheric 
measurements, is considered to be one of the most important 
causes of global warming, and should be closely monitored, ac-
curately forecasted, and controlled (National Assessment Syn-
thesis Team, 2000). For example, according to the measurement 
by Earth System Research Laboratory Global Monitoring Divi-
sion, the monthly average Mauna Loa CO2 concentration of Oc-
tober 2014 was 395.93 ppm, while that of October 2013 was 
393.66 ppm (Earth System Research Laboratory Global Moni-
toring Division, 2014). Long-term environmental planning is 
usually based on such figures. For example, targets are set for 
reducing CO2 emissions around the world. In addition, the range 
of the global CO2 concentration is also important, for which the 
narrowest range should be determined so that the global CO2 
concentration is neither over-estimated nor under-estimated 
(Chen & Wang, 2011). Otherwise, there is a risk of energy short-
age, or the government may raise budget unreasonably.

Agent network is remarkable for its promising use for human-
unattended tasks (Wang et al., 2008). Wang et al. (2008) men-
tioned that there are two performance measures in evaluating the 

optimal performance of an agent network — the network lifetime 
finally acquired and the total information finally collected. How-
ever, in different circumstances, targets may not be the same. In 
Yan et al. (2009), it was found that opportunistic collaboration 
can reach better performance than direct transmission.

Agent network-based data analyses have become an impor-
tant field of research, and new applications are expected to ap-
pear. For example, a synchronized agent network system was 
developed in Uchimura et al. (2007) for vibration measurement. 
It is now possible to obtain environmental information from 
difficult-to-reach places (Endo et al., 2008). In Morreale’s opin-
ions, agent networks have potential applications to urban tele-
health (Morreale, 2007). Recently, Fukushima nuclear power 
plant incident led to the rise in the radiation level in the plant. 
This environment is extremely dangerous for human operators 
to enter, and some robots have been sent to monitor the radia-
tion level. These examples tell us the importance of autono-
mous agents for detecting atmospheric conditions.

On the other hand, fuzzy agents have been used in various 
fields. For example, in Lee and Pan (2004), three types of 
agents, including meeting negotiation agent, fuzzy inference 
agent, and genetic learning agent, are designed to help search 
and decide the suitable meeting time. In Zarandi et al. (2008), 
an agent-based system is developed to minimize the total costs 
and to reduce the bullwhip effect in a supply chain. Each agent 
used a hybrid of the modified Hong fuzzy time series, genetic 
algorithm (GA), and a back propagation neural network (BPN) 
to forecast the trend in the collected data. In Lu and Sy (2009), 
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variables and parameters are expressed with triangular fuzzy 
numbers (TFNs), e.g. . In fact, only the lower 
and upper bounds, not the membership function, of  are of 
concern. For this reason, it does not matter whether the mem-
bership function is linear or nonlinear.

2.1. Forecasting the Global CO2 Concentration Using the 
FBPN Reasoning Module

In the collaborative fuzzy-neural agent network, each agent 
uses the FBPN reasoning module to forecast the global CO2 con-
centration, based on its local view. The theoretical background 
of the FBPN approach is explained as follows.

Although there have been some more advanced artificial neu-
ral networks, such as compositional pattern-producing network, 
cascading neural network, and dynamic neural network, a well-
trained FBPN with an optimized structure can still fit any com-
plex relationship very precisely (Eraslan, 2009; Firoze et al., 
2013; Babaei et al., 2013; López et al., 2013). That is why it is 
selected in this study:

1.	 ‌K inputs, corresponding to the levels of the global CO2 con-
centration K periods ago. To facilitate the search for solu-
tions, it is strongly recommended to normalize the inputs 
into a range narrower than [0 1] (Chen, 2008).

2.	 The FBPN has only one hidden layer. Additional hidden lay-
ers may simply enable the memorization of the training 
data, not a true reflection of the actual input-output relation-
ship. The number of nodes in the hidden layer is chosen 
from 1 to 2K after trying each of them.

3.	 The output from the FBPN is the normalized forecast of the 
global CO2 concentration.

4.	 The activation function used for the hidden layer is the hy-
perbolic tangent sigmoid function, while for the others is the 
linear activation function.

5.	 10,000 epochs will be run each time. The start conditions 
will be randomized to reduce the possibility of being stuck 
on local optima. In this way, it is possible to achieve a glob-
ally optimal solution. Nevertheless, even if the original fore-
casts are just locally optimal, after collaboration these 
forecasts can still be improved considerably, showing that 
the proposed methodology is robust to the so‑called “bad 
experts”.

6.	 Early stopping: After each 100 training epochs, the FBPN is 
applied to the testing data. The training process will also 
stop if the testing performance begins to deteriorate.

The training of the FBPN reasoning module is decomposed 
into three subtasks: determining the center, upper, and lower 
bounds of the parameters. First, to determine the center of each 
parameter (such as , , , and ), numerous 
algorithms can be used, such as the gradient descent algorithm, 
the conjugate gradient algorithm, the scaled conjugate gradient 
algorithm, the Levenberg-Marquardt (LM) algorithm, the 
Broyden-Fletcher-Goldfarb-Shanno algorithm, the gradient de-
scent with momentum and adaptive learning rate back propaga-
tion algorithm, the resilient back propagation algorithm, and 

some fuzzy inference rules were established for fuzzy agents to 
make process control decisions, so as to quicken the response to 
customers’ requests.

The global CO2 concentration forecasting is a long-standing 
research task and we believe that there is still room for further 
development. For this reason, in order to effectively analyze 
and forecast the global CO2 concentration, a collabora-
tive fuzzy-neural agent network is constructed in this study. In 
the collaborative agent network, a group of agents is used. 
These agents are programmed to forecast the global CO2 con-
centration based on their local views, and may not share the raw 
data they own with each other. A collaboration mechanism is 
therefore required to aggregate their forecasts. Each agent 
is equipped with a fuzzy back propagation network (FBPN) 
reasoning module to forecast the global CO2 concentration, 
based on the agent’s setting. Each agent communicates its set-
ting and forecasting results to other agents through the central 
control unit. After receiving this information, if it reveals that 
the forecasting performance of an agent is very prominent, the 
others may change their settings, so that their settings and fore-
casting results will move closer. Similar iterative approaches 
have been used in Bhattacharya and Vasant (2007), Peidro 
and Vasant (2011), etc. To facilitate the collaboration process 
and derive a single representative value from the forecasts by 
the agents, the central control unit is equipped with a radial 
basis function network (RBF) reasoning module. Finally, the 
whole system is built on a centralized point-to-point (P2P) 
communication architecture. The real data of the global CO2 
concentration are used to evaluate the effectiveness of the col-
laborative fuzzy-neural agent network.

2. Methodology

The operational procedure of the collaborative fuzzy-neural 
agent network consists of several steps that will be described in 
the following sections:

1.	 The collaborative fuzzy-neural agent network starts from 
the formation of a group of agents.

2.	 The administrators of these agents specify their require-
ments for certain aspects of forecasting that are incorpo-
rated into the agents’ FBPN settings.

3.	 Each agent analyzes and forecasts the global CO2 concen-
tration based on its own view.

4.	 Each agent communicates its setting and forecasting results 
to other agents through the central control unit. After receiv-
ing these, an agent may be affected to modify its setting.

5.	 To arrive at a representative value from the forecasting re-
sults, a RBF network is employed.

6.	 The collaboration process is terminated if the improvement 
in the aggregate forecasting performance becomes negligi-
ble. Otherwise, return to step 3.

The system diagram of the proposed methodology is shown 
in Figure 1. The variables and parameters that will be used in 
the proposed methodology are defined in Table 1. All fuzzy 
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Subsequently, the following goal programming (GP) prob-
lem is solved to determine the upper bound of each parameter 
(e.g. , , , and ) (Chen & Wang, 2012; 
Chen, 2012):

(GP I)

	
� (1)

subject to

	
� (2)

	
� (3)

	
� (4)

the TD‑Gammon algorithm. Eraslan (2009) provided a com-
parison of these algorithms. In this study, the LM algorithm is 
applied due to its efficiency.
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Fig. 1. The system diagram of the proposed methodology.

Table 1
The Nomenclature Table.

Variable/Parameter Meaning

The actual value (after normalization) of the global 
CO2 concentration at period t

The global CO2 concentration forecast at period t

the FBPN output, which is the normalized forecast 
of the global CO2 concentration at period t, i.e. 

The output from hidden-layer node l, l = 1 ~ L
The weight of the connection between hidden-layer 

node l and the output node
The weight of the connection between input node k 

and hidden-layer node l; k = 1 ~ K; l = 1 ~ L
The threshold for screening out weak signals 

by hidden-layer node l
The threshold for screening out weak signals 

by the output node
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where , , and   
 

are all constants. In addition,  can be replaced by a 
new variable ,

	
� (16)

In this way, the problem becomes a linear one.
In a similar way, the following GP problem is solved to de-

termine the lower bound of each parameter (e.g. , , 
, and ):

(GP II)

	
� (17)

subject to

	
� (18)

	
� (19)

	
� (20)

	
� (21)

	
� (22)

	 k = 1 ~ K� (23)

	 l = 1 ~ K (the number of hidden-layer nodes)� (24)

At first,  is set to  where  is nonnegative 
and randomly generated. If any feasible solution can be found, 

 is re‑generated so that  can be increased. In this  
 
way, the GP problem is solved some times. In these optimiza-
tion results, the best one giving the maximal  is cho-
sen.

	
� (5)

	
� (6)

	 k = 1 ~ K� (7)

	 l = 1 ~ L (the number of hidden-layer nodes)� (8)

At first,  is set to  where  is a randomly 
generated nonnegative value. If any feasible solution can be 
found,  is re‑generated so that  can be reduced.  
 
In this way, the goal programming problem is solved a few 
times. In these optimization results, the best one giving the 
minimal  is chosen.	  

Model GP I is a nonlinear problem that is not easy to solve. 
To simplify the problem solving, assume only the threshold on 
the output node, i.e. , is fuzzified as ( ), 
while the other network parameters are equal to their centers. 
As a result, model GP I is simplified as

(Simplified GP I)

	
� (9)

subject to

	
� (10)

	
� (11)

	
� (12)

	
� (13)

	 k = 1 ~ K� (14)

	 l = 1 ~ L (the number of hidden-layer nodes)� (15)
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After receiving this information, if it reveals that the fore-
casting performance of an agent is very prominent, the others 
may change their settings, so that their settings will move clos-
er. In addition, if an agent does not have an access to the data of 
a specific period or the data are not reliable, it should respect 
the forecasts by other agents that have accesses to the data.

After communication agent g refits the corresponding FBPN 
with the following GP models, based on Chen and Wang’s 
fuzzy collaborative forecasting method (Chen & Wang, 2014):

(GP III)

	
� (32)

subject to

	
� (33)

	

� (34)

	

� (35)

	 � (36)

� (37)

	 �
(38)

	
,� (39)

	
� (40)

	 k = 1 ~ K� (41)

	 l = 1 ~ L (the number of hidden-layer nodes)� (42)

Model II can be simplified as:

(Simplified GP II)

	
� (25)

subject to

	
� (26)

	
� (27)

	
� (28)

	
� (29)

	 k = 1 ~ K� (30)

	 l = 1 ~ K (the number of hidden-layer nodes)� (31)

All actual values will fall within the ranges of the fuzzy 
forecasts. However, such a “robust” property no longer holds 
under a distributed environment in which an agent has only par-
tial access to the data. To solve this problem, the forecasting 
results by all agents can be communicated to each other, so that 
they can modify their settings, and generate more robust fore-
casts as if all data are taken into account. To this end, the GP 
problems are modified so that a collaborative formulation can 
be proposed in the next section.

2.2. Collaboration Among Agents

The setting of an agent is indicated with VSg = { (g), sR(g) 
, sL(g)}, g ∈ [1 G], and will be packaged into information gran-
ules, which are then encoded using extensible markup language 
(XML). Subsequently, a software agent is used to transmit in-
formation granules among agents through a centralized P2P 
architecture. The communication protocol is as follows:

Input Agent g , 1 ≤ g ≤ G, provides input data  for T peri-
ods, where n ≤ t ≤ T + n – 1. In case of computing the FBPN 
output, the setting vector VSg is public.

Output Agent g , 1 ≤ g ≤ G, learns  without  
 
anything else, where  is computed using the center‑of‑grav-
ity method (Wrather & Yu, 1982).
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right-hand sides, respectively. Constraint (37) and (38) force 
the upper bound on the fuzzy forecast to be greater than those 
made by other agents for a period the datum is lacking. On the 
contrary, in (48) and (49), the lower bound should be less than 
those made by other agents for the same period.

If there are L agents, then after incorporating the users’ 
views into the FBPN reasoning modules, there will be at most 
2L GP problems to be solved. After solving every two GP prob-
lems, the optimal solution is used to configure the correspond-
ing FBPN reasoning module. Eventually, there will be at most 
L FBPNs, each of which generates a forecast of the global CO2 
concentration.

2.3. Aggregating the Fuzzy Forecasts With a RBF

Subsequently, a RBF is used to aggregate and defuzzify the 
fuzzy forecasts from a few agents to arrive at a representative 
value. The RBF network has three layers: the input, hidden (mid-
dle), and output layers. Inputs to the RBF are the three corners of 
the fuzzy forecasts. For example, if a fuzzy forecast is (a, b, c), 
then the inputs to the RBF are a, 0, b, 1, c, and 0. As there are G 
agents, the number of inputs to the RBF is 6G. The reason is 
simple — aggregation results in a convex domain, and each point 
in it can be expressed with the combination of corners. Most of 
the defuzzification algorithms do the same thing.

As mentioned earlier, all the input parameters are normal-
ized into a range narrower than [0 1]. Each input is assigned to 
a node in the input layer and passed directly to the hidden layer 
without being weighted. The transfer function used for the hid-
den layer is Gaussian transfer function:

	 � (54)

where  is the input vector;  is the out-
put from the i-th node in the hidden layer, i = 1 ~ I;  and  are 
the center and width of the i-th RBF unit for input variable j, 
respectively. The output layer uses the linear transfer function:

	
� (55)

For determining the parameter values, k‑means (KM) is first 
used to find out the centers of the RBF units. Subsequently, the 
nearest-neighbour method is used to determine their widths 
(Ahmadaali et al., 2013). The weights of the connections can be 
obtained by linear regression.

3. Application and Analyses

To demonstrate the application of the proposed methodolo-
gy, the real data of the global CO2 concentration were used. 
From 2004 to 2013, the average annual increase in the global 
CO2 concentration was 2.1 ppm per year (CO2Now.org, 2013). 

(GP IV)

	
� (43)

subject to

	
� (44)

	

� (45)

	

� (46)

	
� (47)

,� (48)

	 �
(49)

	
� (50)

	
� (51)

	 i = 1 ~ K� (52)

	 l = 1 ~ m (the number of hidden-layer nodes)� (53)

where VSqq = { (qq), sR(qq) , sL(qq)} is the setting of agent 
q and so on, following the notations suggested by Pedrycz 
(2008); t(qq) includes the time indexes of all data in the part 
assessed by agent q; tc(qq) is the complement of t(qq), i.e. 

; s(ii) is the satisfaction level request-
ed by agent i. , and  are equal to 1 if the forecast 
by agent g is better than those by others, on the left-hand and 
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the Excel Link add‑in of MATLAB was used, which communi-
cates between the Excel workspace and the MATLAB work-
space and positions Excel as a front end to MATLAB. Finally, 
the Neural Network Toolbox of MATLAB (2006a) was applied 
to implement the FBPN approach. We considered the following 
performance measures: root mean squared error (RMSE), mean 
absolute error (MAE), mean absolute percentage error (MAPE), 
and the hit rate (i.e. the percentage that the actual value is con-
tained in the fuzzy forecast). 

The actual values of the global CO2 concentration are shown 
in Figure 2. If an agent has the integral access to the data, then 
the forecasting results by the FBPN reasoning module will be 
like Figure 3. Obviously, the FBPN reasoning module can pro-
vide a perfect fit for the data collected. A fuzzy global CO2 
concentration forecast is defuzzified with the COG formula:

	
� (56)

To make a comparison with some existing approaches, MA, 
ES, BPN, and ARIMA were also applied to forecast the global 
CO2 concentration. The forecasting accuracy achieved by ap-
plying these approaches were recorded and compared in Ta-
ble 2. The accuracy of forecasting the global CO2 concentration, 
measured in terms of RMSE, of the FBPN reasoning module, 
was significantly better than those of the traditional approaches 
by achieving a 31% reduction in RMSE over the comparison 
basis — MA. The advantages over ES, BPN, and ARIMA were 
21%, 87%, and 7%, respectively. The accuracy of the FBPN rea-
soning module with respect to MAE or MAPE was also sig-
nificantly better than those of the other approaches.

However, these agents only had partial access to the data. 
Therefore, the forecasting results by the three agents before col-
laboration are shown in Figure 4. Their forecasting perfor-
mances are compared in Table 3.

In the first communication, the exchange of information 
among the three agents is not limited. After receiving the fore-
casting results of other agents, some of them changed their set-
tings. The central control unit compared the Euclidean 
distances between the settings of two agents before and after 
communication. Two agents favor each other if the distance be-
tween their settings is reduced after collaboration. On the con-
trary, if the distance between the settings of two agents 
increases after collaboration, then they disfavor each other. 
Subsequently, in the next communication, the exchange of in-
formation between two agents will only be done if they lack 
consensus and favor each other. On the contrary, two agents 
will be allowed to exchange forecasts if they disfavor each oth-

Three agents, each was programmed on a PC with Intel Core 
i5‑3470 CPU and 8GB RAM, forecasted the global CO2 con-
centration from 2005~2009 based on their local views. To con-
figure the FBPN reasoning modules, there were six GP 
problems to be solved. From the optimization result of every 
two GP problems, a corresponding FBPN reasoning module 
was configured. All three FBPN reasoning modules were ap-
plied to forecast the global CO2 concentration. Each agent com-
municated its setting and forecasting results to other agents 
with the aid of the central control unit. The central control unit 
selectively transmitted information between agents, to maxi-
mize the efficiency of collaboration. After receiving this infor-
mation, each agent adjusted its setting according to the two 
collaboration mechanisms. Finally, a RBF network was applied 
to derive the representative value, i.e. the crisp global CO2 con-
centration forecast, from these fuzzy forecasts.

In the equipped FBPN reasoning module, the setting of an 
agent was stored into a database which was constructed using 
Microsoft Excel 2003. The Optimization Toolbox of MATLAB 
(2006a) was applied to solve the GP problems. To exchange and 
synchronize the data between the database and the optimizer, 
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Fig. 2. The real values of the global CO2 concentration.
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Fig. 3. The forecasting results by the FBPN reasoning module with integral 
access.

Table 2
The Forecasting Accuracy by Various Approaches.

Method RMSE MAE MAPE

MA 0.39 0.31 0.8%
ES 0.34 0.28 0.7%
BPN 2.12 1.72 4.5%
ARIMA 0.29 0.24 0.6%
FBPN 0.27 0.21 0.1%
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er and their consensus is high. After collaboration, the forecast-
ing performances of the three agents were considerably 
improved (see Table 4).

Subsequently, a RBF was used by the central control unit to 
aggregate and defuzzify the fuzzy forecasts from the three 
agents to arrive at a representative value. The aggregate fore-
casting performance was as follows:

•	 The hit rate: 100%
•	 RMSE: 0.34
•	 MAE: 0.25
•	 MAPE: 0.07%

The aggregate forecasting performance was clearly superior 
to those of the three agents (see Fig. 5), and was quite close to 
that when the agents have the integral access to the data, which 
confirmed the effectiveness of the RBF network. It was not easy 
since the three agents did not share the raw data they owned 
with each other.

To further elaborate the effectiveness of the proposed meth-
odology, it was also compared with the seasonal recurrent sup-
port vector regression model with chaotic artificial bee colony 
(SRSVRCABC) algorithm (Hong, 2011) that is composed of four 
major steps: dividing training data into different sizes of fed‑in 
and fed‑out subsets, determining the values of parameters using 
the chaotic artificial bee colony (CABC) approach, adjusting the 
parameters using the back propagation algorithm, and seasonal 
adjustment. The proposed methodology is an external collabora-
tion method that seeks the consent of all agents. In contrast, the 
SRSVRCABC algorithm is an internal collaboration method 
that groups artificial bees to effectively search the solution space. 
The comparison results are shown in Figure 6. The proposed 
methodology still outperformed the SRSVRCABC algorithm. 

4. Conclusions and Directions for Future Research

A positive relationship between global warming and the 
global CO2 concentration has been confirmed in a lot of studies. 
However, the magnitude of this effect is highly uncertain and 
difficult to be forecasted using the available methods. In order 
to effectively forecast the global CO2 concentration, a collab-
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Table 3
The Forecasting Performances of the Three Agents Before Collaboration.

Agent # The hit rate MAE MAPE RMSE

1 69% 0.77 0.20% 1.00
2 65% 0.79 0.21% 1.00
3 76% 0.83 0.21% 1.04

Table 4
The Forecasting Performances of the Three Agents After the First Collaboration.

Agent # The hit rate MAE MAPE RMSE

1 100% 0.49 0.13% 0.59
2 100% 0.51 0.13% 0.63
3 100% 0.63 0.16% 0.73
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mechanism that can provide agents more information on 
how to improve their forecasting performances is also help-
ful. 

2.	 The aggregate forecasting performance was considerably 
improved through the agents’ collaboration without sharing 
the raw data they owned. 

3.	 It is therefore possible to forecast the global CO2 concentra-
tion precisely and accurately using a group of local agents 
governed by a centralized P2P network.

In future studies, more sophisticated fuzzy-neural agent net-
works or collaboration mechanisms can be developed.
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