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Abstract: This paper presents a modification of the Multi Depot Multi Period Vehicle Routing
Problem with heterogeneous fleet (MDMPVRPHF) to consider capital expenditures and operating
expenses (MDMPVRPHFMR). The aim is to design a product distribution network and minimize
the total delivery cost. The MDMPVRPHF only considers transportation costs with transportation
restrictions. In this paper, the purpose is to solve a real-life freight distribution problem that
considers capital expenditures and operations expenses. The MDMPVRPHFMR is formulated as a
mixed integer programming model. The results of the application of both models to a real case of
study demonstrate the advantages presented by the MDMPVRPHFMR over the MDMPVRPHF.
Hence, management restrictions must be considered when designing a real-life freight distribution
problem. The study case is to develop a liquefied natural gas distribution model based on a real
company operating in Mexico.
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1. INTRODUCTION

This paper presents a real-life problem for the design
of an opening hazardous material production and
distribution network by optimizing capital expenditures
(CAPEX) and operating expenses (OPEX). The problem
presents a high degree of complexity, mostly because
both CAPEX and OPEX play a major role in the
feasibility of the venture. CAPEX includes buying
machinery, acquiring permits, and investment in
transport vehicles (fleet size), whereas OPEX involves
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a hazardous material to the customers (truck drivers and
truck fuel) and the raw material costs.

The problem considers that a company has evaluated
several locations on which to install the processing of a
product and distribute from there to different customer’s
locations. The transportation is considered as in-house,
reason why the fleet size and vehicles capacities are a
decision of the owners or investors of the company. The
company business model requires the customers to sign a
take-or-pay off contract in which it is obligated to pay
for a specific amount of product independent on whether
it is consumed or not. This business model allows for the
planning of the whole contract period by the selection of
supply stations, machinery and transport routes.
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In this paper, a new version of the Multi Depot Multi
Period Vehicle Routing Problem with heterogeneous fleet
(MDMPVRPHF) is proposed. In this version, CAPEX
are included to the MDMPVRPHF model as a set of
restrictions that must be considered to design a better
freight distribution network. We called this model the
Multi Depot Multi Period Vehicle Routing Problem with
heterogeneous fleet
(MDMPVRPHFMR).

The MDMPVRPHF and the MDMPVRPHFMR are
variants of the vehicle routing problem (VRP). The VRP
is introduced by Dantzig and Ramser (1959). It is the

and management restrictions

generalization of the Traveling Salesman Problem (TSP)
presented by Flood (1956). The classic VRP aims to
design a network by minimizing distances, travel times
or transportation costs. The network is defined on a
graph

G = (V, & C), where V = {V,, .., V,} is a set of
vertices, &€ = {(Vi, V))|(V;, V}) e V% i+ j}is the arc
set; and

C = (Cy)(vi, vjee is a cost matrix defined over & The
depot is vertex V, and the customers to be served are
represented by the remaining vertices V (Pillac,
Gendreau, Guéret, & Medaglia, 2013). The classic VRP
consists in designing a network by finding a set of
routes for a fleet of vehicles with the same capacity,
customer’s demands are known and supplied by only
one vehicle (Archetti & Speranza, 2008).

Different VRP variants have been developed. The
most studied are the Capacitated VRP (CVRP), the
VRP with time Windows (VRPTW), the VRP with
Pick-up and Delivery (PDP), the Split Delivery Vehicle
Routing Problem (SDVRP), and the Heterogeneous fleet
VRP (HVRP).

In the CVRP, a set of customers have a different
demand for a good and the fleet of vehicles have finite
capacity (Pillac et al., 2013). The VRPTW designs
routes from one depot to a set of dispersed customers
who can be supplied once by only one vehicle in a time
interval, every route starts and ends at the depot, the
total demand transported per route (sum of the demands
of all points in a route) cannot exceed the capacity of the
vehicle (Braysy & Gendreau, 2005). In the PDP, a
specific amount of goods must be picked-up and
delivered to customers (Pillac et al., 2013). Contrary to
the classical VRP, the SDVRP does not consider the

restriction that customers are supplied by only one

different capacities and costs is available for the
distribution of goods (Baldacci, Battarra, & Vigo,
2008).

In the literature, there are many variations of the
HVRP problem with vehicles capacities constraints and
with time window constraints to consider multiple
depots, multiple trips to be operated by the vehicles,
multiple vehicles with different capacities and other
operational constraints. These HVRP variations are the
Heterogeneous VRP with Fixed Costs and Vehicle
Costs (HVRPFED), the
Heterogeneous VRP with Vehicle Dependent Routing
Costs (HVRPD), the Fleet Size and Mix VRP with
Fixed Costs and Vehicle Depending Routing Costs
(FSMFED), the Fleet Size and Mix VRP with Vehicle
Dependent Routing Costs (FSMD), the Fleet Size and
Mix VRP with Fixed Costs (FSMF), and the Site-
Dependent VRP (SDVRP) (Baldacci et al., 2008).

Goel and Gruhn (2008) study the VRP in real-life
applications, and they find different difficulties to be
the VRP

vehicles,

Dependent Routing

considered. In real-life, must consider a
fleet  of

restrictions, differing travel times and costs, vehicles

heterogeneous time  window
capacity, facility capacity, vehicle compatibility with
specific orders, multiple pick-ups per order, delivery
locations, service locations, orders where a vehicle can
start and finish a journey at different locations, and
vehicle route restrictions such as maximum sizes and
weights. They include these difficulties as restrictions
into the classic VRP and therefore, they formulate the
General Vehicle Routing Problem (GVRP). Based on
the  GVRP, Mancini (2016) develops  the
MDMPVRPHF. In her study, Mancini explains that
real-life cargo distribution problems have a high degree
of complexity because of multi-dimensional vehicle
capacity constraints, characteristics of the vehicles,
route lengths and travel times, time windows, the
compatibility between products, the compatibility

between products and vehicles, the compatibility
between customers and vehicles, and objective functions
which consider different costs such as transportation
costs, inventory costs, opportunity costs, etc.

In this article, the MDMPVRPHFMR recognizes
the MDMPVRPHEF restrictions and adds and proves
that CAPEX and OPEX must be considered to design a
freight distribution network much closer to real-life.

Therefore, the MDMPVRPHFMR includes CAPEX
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transport vehicles) and OPEX (raw material cost and
transportation of product to the customers such as truck
drivers and truck fuel).

This article presents the application of the
MDMPVRPHFMR to a real-life problem for the design
of an opening liquefied natural gas (LNG) distribution
network for a planning time horizon. In this study case,
the CAPEX and OPEX information of a real company is
used to design its distribution network prior to
establishing a contract with the client. The model
simultaneously optimizes location allocation, production
capacity and vehicle routing decisions. To solve the
problem, we present optimal solutions for different
random variables small instances using the optimization
software CPLEX from IBM. The customers’ demands
and the
customers) have been generated using Mersenne Twister

distances between mnodes (suppliers and
which is a random number generator. These values are
different for each instance and they are presented in
Appendix A.

The paper is organized as follows. In Section 2, the
MDMPVRPHF and the MDMPVRPHFMR problems
are described and the mixed integer linear programming
models are presented. In Section 3, the study case is
presented together with the computing results of the
application  of  the MDMPVRPHF and  the
MDMPVRPHFMR models. Section 4 presents the
aleatory instances used to test the MDMPVRPHF and
the MDMPVRPHFMR models and their computing

results. Finally, conclusions and references are included.

2. MDMPVRPHFMR PROBLEM
DESCRIPTION AND MATHEMATICAL

2.1 MDMPVRPHFMR PROBLEM
DESCRIPTION

The company’s business model is to deliver a steady,
guaranteed and contractual supply of natural gas to its
customers. To produce LNG, a liquefaction plant and
access to a natural gas pipeline are needed. Since the
natural gas pipeline network in Mexico is not vast, there
are industrial plants that do not have access to natural
gas via pipeline, and their natural gas consumption must
be delivered by truck as compressed natural gas (CNG)
or LNG. A typical supply chain of LNG consists of a
liquefaction plant that is connected to the natural gas

liquefaction plant that is connected to the natural gas
pipeline, terrestrial transport of the LNG via trucks and
LNG

natural gas to be consumed as fuel in the client’s

a vaporization plant that converts the into
installations. Storage may be added in the liquefaction
plant and in the customer’s plant as buffer to account
for transport eventualities.

When a customer quotes a LNG contractual supply,
the company has to determine the nearest feasible
connections to the natural gas pipeline in which
liquefaction plan must be installed and the possible
terrestrial routes to deliver the LNG to the client. The
investment required for LNG plants is high, therefore a
long-term supply take-or-pay contract is signed between
the customer and the company, in which the customer
is obligated to pay for a specific amount of product
independent on whether it is consumed or not. This
long-term contract requires the company to consider
and minimize the transportation costs, since after five
or seven years, the transportation costs may be greater
than the initial investment.

The different feasible connections to a natural gas
pipeline that the company evaluates to supply LNG to
a customer, bring several variables into consideration:
land cost, permit costs, natural gas (raw material) cost,
The

natural gas cost within the pipelines is not fixed

and different routes to the customer plant(s).

territory wise and therefore dependent on the location.
It can be concluded that the location of the processing
and distribution plant is correlated with the operation
costs, and this presents a high degree of complexity.

Since CAPEX and OPEX are correlated, the
model’s objective is to minimize both simultaneously.
The decisions of the MDMPVRPHFMR problem are to
locate a set of supply stations, allocate supply stations
to customers, select the distribution routes, manage the
fleet, and select the machinery in the supply stations.
The aim is to meet customer demand by designing an
optimal network for the company for a planning horizon
at minimum total cost.

The MDMPVRPHFMR requires solving investment
in infrastructure and transport decisions. These former
decisions are long-term or strategic decisions (Miranda
& Garrido, 2004). The investment in infrastructure
decisions are: location of supply stations through time
and buying machines for production capacity. These
decisions are long-term decisions that require high
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investment (Current, Ratick, & Revelle, 1997) because of
the cost associated with property acquisition and facility
construction (Owen & Daskin, 1998). The transport
decisions are: the management of the fleet and its size,
vehicles capacities (heterogeneous fleet), and routes
selection. These decisions are long-term decisions that
depend on operation costs, supply, and demand. The
product transportation is considered as in-house and the
allocation of supply stations to customers can change
over time, normally every year (Vidal & Goetschalckx,
1997; Current et al., 1997). The MDMPVRPHFMR
considers a multi-period approach and the flexibility for
a vehicle to end the route at another supply station. The
supply station capacity, vehicle capacity and inventory
control introduced by Coelho and Laporte (2012) are
restrictions also included in the MDMPVRPHFMR.
Besides these restrictions, the MDMPVRPHFMR adds
the cost of opening of supply stations (permits, city gate,
civil), penalties for service times, machinery selection,
raw material costs and fleet size.

A. Assumptions

e Costumer demands are independent and
location are known.

e Once a supply station is located, they cannot be
relocated.

e The company pays a fixed location cost for
opening a supply station.

e The company pays a fixed cost for the natural
gas in a supply station.

e Once the machines are installed in a supply
station, they cannot be moved to another
supply station.

e Vehicles capacities are known (heterogeneous
fleet).

e The

throughout the optimization period in each

natural gas costs remain the same

supply station.
e The CAPEX are through the

optimization period, which usually is equal to

amortized

the customer’s contract period.

e 28.00 standard cubic meters of natural gas [m3|
are equal to 1 million of British Thermal Units
[mmBtu] of LNG which is the standard unit
used scientific

in this industry, but for

purposes, in this paper we use cubic meters.

B. Decisions

e Location, production capacity and allocation

decisions: number of supply stations to locate,

where to locate them, set their production
capacities, and allocate customers to them.

o Fleet size decisions: number of vehicles to use.

What

Vehicles must start their journey from a supply

e Routing decisions: routes to operate,

station and serve their allocated customers.
Hence, the solutions include multi-period routes.

The assumptions and decisions are incorporated in a
mathematical programming model presented in Section
D. Its notation is introduced in Section C.

C. Definition and notations
The model works with a set of nodes, a set of supply
stations, a set of customers, a set of routes, and a set of

vehicles.

— V ={1...v} is the set of homogenous vehicles

— K = {1...k} is the set of routes

— I ={1...i} is the set of supply stations

— J ={1...j} is the set of customers

— M = {1...mj} is the set of machines

— N=1UJ={1...i}U{i+1..i+ } is the set of nodes

Therefore, the total number of nodes isn+m,
where and the maximum number of routes for all
vehicles is k € K.

1) Variables

The Boolean variables are:

— xl?’jk is a directed routing variable equal to 1 if arc
ij, with i € N,j € N, is used by a vehicle v €V in
route k € K, 0 otherwise
[]

— y}; is equal to 1 if node i € N is visited by a vehicle v €
V in route k € K, 0 otherwise [

— L, specifies if vehicle v € V starts a journey from the
supply station i € I in route k € K, 0 otherwise [

— Zy  is equal to 1 if route k € K for vehicle v €V,
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— uY is equal to 1 if vehicle v € Vis used in the
solution, 0 otherwise [
— P; is equal to 1 when node i €1 is used in the
solution, 0 otherwise [

The integer variables are:

— gi"indicates how many machines m € M are selected
for supply station i € I [

The continuous variables are:

— qij, s the quantity delivered to costumer j € ] by vehicle

v € Vinroute k € K departing from i € | [m3]
— CC; is the required production capacity for i € [ [m3/h]
— WY is the traveling time of vehicle v € V in route k €
K [b]

TV

ik
by vehicle v € V in route k € K [

is the time schedule in which node i € N is visited

2) Parameters
The parameters are:
— a the maximum route duration [h]

[km/h]
— 0 the planning time horizon is the time per day

— s the vehicles average speed

available to operate [h]
— Q; daily demand per location j € ] [m3]
— CV the transport capacity per vehicle v € V [m3]
— 1;; the distance matrix, with i € N,j € N [km]
— Y the cost of usage per vehicle v € V [$/km]
— p; the cost of opening a supply station i € I [$/day]
— p; the raw material cost in a supply stationi € I  [$/m3]
— p™ the cost of machine m € M [$/day]
— ¢™ the production capacity of machinem € M [m3/day]

— §; the time to discharge/charge material from

vehicles to customers j € J [h]
— ¥y a penalty cost in visit times [$]
[$/day]
the number of days in contract with

— B the cost of renting/buying the vehicle
— Numy
customer j € J [days]

— fc¢; the fuel consumed by customer j €] during

Num; [m3]
— margin; the company’s margin for supplying
customer j € | [$/m3]

3) Costs and Price definitions

— CAPEX is the company capital expenditures  [$/day]
— OPEX is the company operating expenses [$/day]
— TRA is company the daily transport costs [$/day]

— VEH is the company the daily vehicle rent costs [$/day]

— PEN is the company daily cost for customer time

services [$/day]
— RAW is the company daily raw material costs  [$/day]
— INV is the company daily cost for opening a supply
station [$/day]
— MCH is the company daily machines costs in the supply
stations [$/day]
— §; is the company fuel price to customer j € ] [$/m3]

The cost of opening a supply station p;, the cost of
the machines p™, and the cost of buying or renting
vehicles B are expressed in [$/day] by dividing the cost
by Num;.

D. Mized Integer Programming model (MIP)

The main objective of a LNG distribution company is
to maximize its utilities by offering different fuel price to
its customers depending on the number of days in
and the

company s margin. The fuel price (S;) to the customer

contract, the amount of fuel consumed,
j €] is calculated as the sum of all the company costs
(CAPEX and OPEX) divided by the amount of fuel

consumed plus the profit margin of the company:

_ CAPEX+OPEX

5; o

+ margin; (1)
The CAPEX and OPEX are considered daily costs
and then multiplied by the total number of days of the

optimization period. The daily costs are expressed as a
CAPEX and OPEX in equation (2).

g = Num j«(CAPEX +OPEX)
] ij

+ margin; (2)

The OPEX costs are TRA, VEH, PEN, and RAW,
and the CAPEX costs are INV and MCH. The TRA,
VEH, PEN, and RAW are daily costs throughout the
contract period. The INV and MCH costs are paid at the
beginning of the contract and must be divided by the
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planning time horizon. To optimize all the costs
simultaneously, the model is set to optimize per day,
therefore the INV and MCH costs are amortized along
the contract period and considered as daily payment. By
substituting the CAPEX and OPEX costs, equation (2)

becomes:

s Num]-*(TRA+VEH+PEN+RAW+INV+MCH)
] fej

+ margin; (3)

Since Num;, fc; and margin; are not variables, but
parameters, the maximization of the LNG distribution
company utility is achieved by minimizing the
company s CAPEX and OPEX.

1) Objective function

In this paper, we propose to modify the
MDMPVRPHF model objective function to consider
CAPEX and OPEX. In this paper, we propose two
MDMPVRPHF  to
management restrictions. The first modification considers
TRA, VEH, PEN, RAX, INV, and MCH costs, we called
this model the MDMPVRPHFMR model because it
includes management restrictions considering production.
TRA, VEH,
model the
includes

modifications to the include

The second modification only considers
PEN, and INV costs, we called this
MDMPVRPHFMRWP  model
management restrictions without considering production.

The MDMPVRPHFMR model aims to minimize the
TRA, VEH, PEN, RAX, INV, and MCH costs, hence
achieving a lower fuel price (S;) for the customer and

because it

higher profit for the company. The objective function for
the MDMPVRPHFMR model is shown in equation (4a).

min f = ZZZZnJ-u”x}’jk+Zﬁu” +ZZZ Y Vi,
vev

iEN JEN kEK vEV iEN k€K vEV

+ZpiPi +ZQiCCi+Z Z g pi" (4)

i€l i€l i€l meM

The objective function first term is the daily TRA. The
second term is the daily VEH. The third term is the
penalty cost PEN in time spent visiting customers. The
fourth term is the daily raw material costs RAW. The
fifth term is the daily amortization of the opening costs
INV. The last term is the daily amortization of the
machine cost MCH.

The MDMPVRPHFMRWP model aims to minimize

the TRA, VEH, PEN, and INV costs. The objective
function for the MDMPVRPHFMRWP model is shown
in equation (4b).

S5 e T

iEN jEN kEK vev VEV

SRPNEEIVY

iEN k€K veV 13

min f =

(4b)

Finally, the MDMPVRPHF model proposed by
Mancini (2016) aims to minimizes only the TRA costs.
The objective function for the MDMPVRPHF model is
shown in equation (4c).

min f = ZZ Z z ri]-/,t"x{’jk

(4c)
iEN JEN keEK veV
2) Mixed Integer Programming model (MIPM)
The mathematical formulation is as follows:
s.t.
Z X =y, VELVkEKVreV (5)
iENi%]
z xf, = Vi, Vi€LVkEKYVvEV (6)
iEN|i#]j
z xlpjk+ Z nykS Zyll;c
JENTi#j JENTi#j
Viel,Vk €K,YvEV (7)
xfj, < Lj, VieLVYkeEK,VveEV (8)
JEN|i#j
xf <y VIENYVjENVKkEKVvEV (9)
yh. <yt Vi€ELVj€]VkEKVvEV (10)
Z xf, =2, VielLVkeKNYveV (11)
JEN,j#i
Z xi’;k=zz3§< vk €K, Vv EV (12)
i€l jENi%] iel
Z Vi S 1% Z Zi
JjEJ i€l (13)

Vk € K,Vv €V, is a very large constant
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1
v v v v
7}' k > Ti k+;ri]‘xijk_®(1_xijk)

Vi#j,VieNVj€eJVk €K, Vv EV
T, =0 viel

1
W]g = Z Z;rijxg]jk + Z Z Sly;;k

iEN JEN iEN JEN
Vke K,VveV

wE<a) z

i€l

ZZqij sc’ Zzi”k Vk €K, VvEV

i€l jeJ i€l

Vke K, VYveV

qu?’jk <Qjy., Vj€JVKEKVveEV

i€l

DO an =0 vie)

VEV KEK i€l

ZL‘{RS1 VkeK VveV

i€l
v E v
jEN

vielLVvveV,VweK|w=k—-1

u’ > ZZ}; VveV, k=1

i€l

Ew,g’se

keEK

DPIER

VEV kEK jEN|i#j
Vi € I,n is a very large constant

cci:zz Zq;’jk viel

VEV KEK j€EJ

VvEeV

Zglmcim > (G viel

meM

Tj"k <ay} Vj€JVkEKVvEV

a5, =0 Vi€ELVjE/VKkEKVVEV

Ly, ={0,1} Viel,Vk e K,Vv eV

(14)

(15)

(20)

(21)

(28)
(29)

(30)

yi ={0,1} ViEe N,Vk EK,YVvEV (31)
z; ={01} VielLVkeKVveV (32)
xfj, =1{0,1}

Vi € N,Vj EN,Vk €K,VvEV (33)
u’ = {0,1} YvEeV (34)
CC;>0 Viel (35)

gm={012,..,0} VielL,vmeM, (36)

Constraints (5) and (6) ensure that a customer is
only visited on a route if it is assigned to that route.
Constraint (7) allows the vehicle to return to the
supply station from which it departed. Constraint (8)
implies that the arcs leaving a supply station may be
used only if the vehicle v € V is located in that supply
station in the previous route (k —1). Constraints (9)
and (10) are logical inequalities. Constraints (11) and
(12) indicate that if vehicle v € V travels in route k € K,
it must depart from and arrive at a supply stationi € I.
Constraint (13) states that a customer j €] can be
assigned to routek € K only if the route is used.
Constraints (14) and (15) guarantee sub tour
elimination. Constrains (16) and (17) limit vehiclev € V
travelling time. Constraints (18) restricts vehiclev € V
capacity. Constraint (19) ensures no product quantity is
delivered if customer j €] is not assigned to routek €
K. Constraint (20) guarantees that during period 0, the
total quantity required is delivered. Constraints (21)
and (22) determine the starting supply stationi € I for
each routek € K, depending on the final location of
vehiclev €V on the previous route k € K. Constraint
(23) determines if the vehicle v € V is used. Constraint
(24) defines the planning time horizon. Constraint (25)
determines if supply station i € I is used. Constraint
(26) states the production capacity required in supply
Constraint  (27)
machinesm € M selected can produce the capacity

stationi € I. guarantees  the
required for each supply stationi € I. Constraint (30)
specifies that if a location is not visited, no time can be
assigned to it. Finally, constraints (29) to (36) specify
the variable domain.
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3. STUDY CASE

In this Section, a real-life study case is presented to
evaluate the performance of  the proposed
MDMPVRPHFMR model against the performance of the
MDMPVRPHFMRWP model and the MDMPVRPHF
model. For the real-life study case, the names of the
locations are confidential and therefore not shown.

In this study case, the currency is USD and the input
data is as follows: a contract period of 5 years, the
maximum route travelling time « is equal to 10 [h], the
vehicles average speed s is equal to 50 [km/h], the
planning time horizon @ is equal to 24 [h], the transport
capacity per vehicle CV is equal to 23,128 m3 of LNG,
the cost of usage per vehicle u” is equal to 0.526 [$/km],
the time to discharge/charge the hazardous material
from the vehicle to each customer §; is equal to 0.5 [h],
the penalty cost in time y is 20 [$], the cost of
renting/buying the vehicle g7 is equal to 6.36 [$/h] and
the machines production capacity of LNG ¢/* is equal to
863.33 [m3/h].

The cost of opening the supply stations are shown in
Table 1. This costs correspond to the legal paperwork
and a physical installations needed to connect the station
to a natural gas supply, which is the raw material. In the
case of Supply Station 2 (SS_2), there is no cost because
the client already has a connection to the natural gas
pipe line. The supply station opening cost p; for Supply
Station 1 (SS_1) and Supply Station 3 (SS_3) for a 5-
year contract period is p; = ps = 500,000 / (5*365) =
273.97 [$/day].

Table 1. Supply Station Opening Costs in USD

Supply Station Opening Costs [$]

node

SS 1 500,000.00
SS_2 0.00

SS-3 500,000.00

Table 2 shows the distance between nodes or between
supply stations and customers in km. Where Customer 1
(C_1), Customer 2 (C_2) and Customer 3 (C_3) are
three demand nodes for the same customer and SS 1,
SS_ 2 and SS_ 3 are the three possible supplier stations.

The total amount of fuel consumed by the three
demand nodes (C_1, C_2 and C_3) for a 5-year
contract period is 412,836,900[m3].

Table 2. Distance between nodes for case study in km.

C_1 C_2 C_3 SS_1 SS_2 SS_3
C_1 0 210 122 126 30 245
C_2 210 0 98 86 180 54
C_3 122 98 0 32 92 118
SS_1 126 86 32 0 94 96
SS_2 30 180 92 94 0 202
SS_3 245 54 118 96 202 0

The customer demand nodes are shown in Table 3.

Table 3. Dailv demand per location.

Customer node Daily demand [m3/day]

C_1 32,424.00
C 2 130,788.00
C_ 3 63,000.00

Fig. 1 shows the results for the application of the
MDMPVRFHF model. In Fig. 1, Fig. 2 and Fig. 3, the
dark circles indicate supply stations that are not part of the
solution, the big dark dots indicate the supply stations that
are part of the solution, the little light dots indicate the
customer locations and the medium size dots indicate the
customer locations where LNG is delivered. Each row
corresponds to a vehicle v €V whereas the columns
correspond to the route k € K. Each route has a title, e.g.
“V1-R2 T=5.5h"
corresponds to the vehicle, “R” corresponds to the route,

with the following notation: “V”

“T” corresponds to the time of the route. Vehicle routes are
consecutive, it means “R1” happens before “R2”, and so on.
The quantity delivered of LNG is indicated by the number
with an arrow pointing to its location in[m3]. The
subscript of the quantity delivered corresponds to the
supply station number where that quantity is produced.

The production needed in SS 1, SS 2 and SS_3 to
satisfy the customer demands at C_1, C_2 and C_3 are
shown in Table 4.

Table 4. Supply Stations productions using
the MDMPVRFHF model.

Supply Production No. of Machine
Station  [m3/day] Machines  Utilization
SS_1 86,128.00 5 83.10%
SS_2 32,424.00 2 78.20%
SS_3 107,660.00 6 86.60%
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V1-R1 T=4.2hr V1-R2 T=4.2hr V1-R3 T=4.2hr V1- R4 T=4.2hr V1- RS T=4.2hr
[ J [ ] (] [ ] (] @ [ ]
. 23,123: ® 15,148, o < 23,128, ® < 23,128, .\ “ 23,128,
L] L] L] L L
® e L J @ L ]
V3-R1 T=5.4hr V3-R2 T=3.3hr V3-R3 T=3.3hr V3- R4 T=5.5hr V3- RS T=3.2hr V3- R6 T=3.2hr
_® . L L ° e, ® . ® L2 e .
= o ° 23,128, ° 16,744, ™ ®
23,128,
® ® ° °
'y e @ l Ql 4 9,296, QO € 23,128,
Fig. 1. Transport routes of the solution obtained with the MDMPVRFHF model.
The transport routes using the MDMPVRFHF model are The transport routes using the
shown in Fig. 1. Vehicle 1 (V1) operates five routes per MDMPVRFHFMRWP model are shown in Fig. 2.

day and vehicle 2 (V2) operates six routes per day.

Although, in the MDMPVRFHF model only TRA
and VEH are minimized, all CAPEX and OPEX costs
are considered for the calculation of the customers fuel
priceas shown in Table 5.

Table 5. Case study costs using objective function

the MDMPVRFHF model.

Vehicle 1 (V1) operates five routes per day, vehicle 2
(V2) operates one route per day, and vehicle 3 (V3)
operates five routes per day. The production needed in
SS 2 and SS_3 to satisfy the customer demands at
C_ 1, C_2 and C_3 are shown in Table 6. The results
indicate that SS_ 1 is not required to operate, therefore
there are no opening costs for this station.

Table 6. Supply Stations productions using

Cost Total Cost [$] Unitary Cost [$/m3] the MDMPVRFHFMRWP model.
TRA 1,041,200.00 0.00250
VEH 557 110.00 0.00143 Supply Production No. of Machine
oonE ' Station [m3/day] Machines Utilization
RAW 51,605,000.00 0.12500 SS 1 0.00 0 -
INV 1,000,000.00 0.00250
SS_2 95,424.00 5 92.10%
MCH 48,085,000.00 0.11643
‘ 0
Total: 024786 SS_3 130,788.00 7 90.20%
V1-R1T=4.2hr V1-R2 T=4.2hr V1-R3 T=4.2hr V1- R4 T=4.2hr V1-R5 T=4.2hr
L o ° o L] o e o e o
N\ L o 2 & N @ e
® 23128, ® 15,148, ® 23,128, ® < 23,128, ® “ 23,128,
° ° ° ° °
L] L L] e L]
V2-R1T=4.2hr
° o
e
» < 23,128,
[ ]
V3-R1T=5.7hr V3-R2 T=5.7hr V3-R3 T=3.2hr V3-R4 T=5.7hr V3-R5 T=3.2hr
] o ] o L] o L] o ® o
| B | L | L
. 16,744, @® 23128, e e 23128, @
e e a e a
= = » < 9,296, ° » < 23,128,

Fig. 2. Transport routes of the solution obtained with the MDMPVRFHFMRWP model.
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Table 7 shows all the costs considered for the
customer’s fare when using the MDMPVRFHFMRWP
model. By comparing the total cost per m3 of LNG from
Table 5 and Table 7, it is possible to conclude that the
total cost is reduced from $0.24786 to $0.23893 USD.
The results demonstrate that the MDMPVRFHFMRWP
model achieves lower costs than the MDMPVRFHF
model.

Table 7. Case study costs using objective function the
MDMPVRFHFMRWP model.

Table 8. Supply Stations productions
using the MDMPVRFHFMR, model.

Supply Production No. of Machine
Station [m3/day] Machines Utilization
SS1 206,976.00 10 99.90%

SS1 19,236.00 1 92.80%

SS1 - 0 -

Cost Total Cost [$] Unitary Cost [$/m3]
TRA 1,267,900.00 0.00321
VEH 835,660.00 0.00214
RAW 51,605,000.00 0.12500
INV 500,000.00 0.00107
MCH 44,387,000.00 0.10750
Total: 0.23893
Finally, the  transport routes  using

MDMPVRFHFMR model are shown in Fig. 3. Vehicle 1
(V1) operates four routes per day, vehicle 2 (V2)

Table 9 shows all the costs considered for the
customer’s fare when using the MDMPVRFHFMR
model. By comparing the total cost per m3 of LNG from
Table 5 ($0.24786), Table 7 ($0.23893), and Table 9
(80.23), it is possible to conclude that the minimum total
cost, and hence the minimum fuel price (S;), is reached
when using the MDMPVRFHFMR model. Therefore, the
results obtained with the proposed MDMPVRFHFMR
model indicates that TRA, VEH, PEN, RAX, INV, and
MCH costs must be considered. It also demonstrates that
the model proposed by (2016)  (the
MDMPVRFHFMR model) does not achieve the lowest
possible cost.

Mancini

Table 9. Case study costs using objective function the
MDMPVRFHFMR. maodel.

operates two routes per day, and vehicle 3 (V3) operates Cost Total Cost[$] Unitary Cost[$/m3]
five routes per day. The production needed in SS_1 and TRA 1,383,100.00 0.00321
SS_ 2 to satisfy the customer demands at C_1, C_2 and VEH 835,660.00 0.00214
C_3 are shown in Table 8. The results indicate that RAW 51,605,000.00 0.12500
SS_ 3 is not required to operate, therefore there are no INV 500,000.00 0.00107
opening costs for this station. MCH 40,688,000.00  0.09857
Total: 0.23000
V1- R1 T=5.4hr V1- R2 T=3.3hr V1- R3 T=5.4hr V1- R4 T=5.4hr
o e, o LN o e, o _e,
* 23128, - 16,744, &% 33 128, " 53,128,
. ° . .
L] L ] L ] L ]
V2- R1 T=6.1hr V2- R2 T=3.2hr
o L " o L ]
. . ¢
o °
® ¢« 13,188, » « 19,235,
V3-R1 T=5.4hr V3- R2 T=5.4hr V3-R3 T=3.3hr V3- R4 T=3.3hr V3- R5 T=5.4hr
o e, o _e. o] LS o L N o _e
15128, 312, - &1, E BB e ;008
- - a - -
[ ] L ] L ] L ] [ ]

Fig. 3. Transport routes of the solution obtained with the MDMPVRFHFMR model.
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The best fuel price for the customer (S;) is obtained when
using the proposed MDMPVRFHEFMR model. It is
important to notice that the machine utilization increases
when we consider the MCH. The unitary costs TRA, VEH
and INV for the three models are compared in Fig. 4. The
unitary costs RAW, MCH and the sum of all costs are
compared in Fig. 5 for the three models under study.

Although OPEX increases when all costs are minimized,
the MCH costs decreases and therefore the total cost is
minimized and the best fuel price for the customer (S;) is
obtained.

5028

5025

%021
5018
5014
5010
5007
$0.04

RAW MCH TOT
EBNMR WMR 0 MRP

Fig. 4. The RAW, MCH and the total costs
for the MDMPVRPHF model.

500036
500032
500029

S00025

S00021
500018
S00014
S00011
S0.0007
500004
§-

TRA VEIT TNV
sNMR mMR = MRP

Fig. 5. The TRA, VEH and VIEH costs
for the MDMPVRPHF model.

4. COMPUTATIONAL RESULTS

In this section, we test the performance of the
MDMPVRPHF model, the MDMPVRPHFMRWP model,
and the MDMPVRPHFMR model. These tests study how
suitable the
instances. A description of the instances used in the

models are to solve small and medium

computational study is given in Appendix A. Table 10

shows the computation results for each instance tested.

Table 10. Computation results for each instance.

MDMPVRPHF MDMPVRPHFMRWP MDMPVRPHFMR
Instance UB LB Gap CPU $/m3 UB LB Gap CPU  §$/m3 UB LB Gap CPU  §$/m3
%) () %) () %) (s

3.10_2 3 748 748 0.00 145 0.2432 1005 1004 0.00 374 0.2293 17836 17835 0.00 52 0.2229
3_15_2_3 1012 918  0.09 3604 0.2411 1229 1098 0.11 3603 0.2236 25601 25545 0.00 3604 0.2236
3_20_3_3 1460 1202 0.18 3647  0.2368 1288 1012 0.21 3629  0.2279 30632 30287 0.01 3675 0.2214
3_25_4_4 1357 1011 0.25 3683 0.2454 1879 1236 0.34 3600  0.2346 - - - >3600 -
4 _10_2 3 626 626  0.00 23 0.2650 968 968  0.00 158 0.2471 15679 15678  0.00 214 0.2379
4 15 2 3 8% 865  0.03 3603 0.2300 1168 1065 0.09 3618 0.2325 24793 24649 0.01 3609  0.2218
4_20_3_3 1154 1019 0.12 3615 0.2325 1621 1209 0.25 3932 0.2282 30340 30033 0.01 3601 0.2168
4 25 4 4 1524 1016 0.33 3605 0.2389 - - - >3600 - - - - >3600 -
5.10_2_ 3 754 754 0.00 136 0.2539 983 983  0.00 54 0.2521 15624 15622  0.00 58 0.2400
5_15_2 3 909 855  0.06 3605 0.2393 1206 1051 0.13 3607 0.2286 22473 22408  0.00 3604  0.2146
5_20_3_3 1264 1091 0.14 3628 0.2464 1644 1294 0.21 3653 0.2289 31040 30842 0.01 3645 0.2146
5_25_4 4 - - - >3600 - - - - >3600 - - - - >3600 -
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Fig. 6 shows the relative gap between the upper and
lower bounds. Here, it is possible to conclude that the
MDMPVRPHFMR model achieves the lowest relative
gap in the same amount of computing time. For solving
the MDMPVRPHFMRWP, the relative gap increases
probably because the MDMPVRPHF does not narrow
the possible best solutions. In the case of the
MDMPVRPHFMR model, OPEX and CAPEX narrows
the feasible solutions region.

4515 2 3 -@520 33 -44152 3
30.0%

420 3 3 -%3.152 3 -3.2033

25.0%
20.0%
15.0%
10.0%

5.0%

NMR MR MRP

Fig. 6. Relative gap for instances with 15 and 20 demand points.

Fig. 7 shows the LNG fuel prices achieved with the
MDMPVRPHF model, the MDMPVRPHFMRWP model
and the MDMPVRPHFMR model. The LNG fuel price
are minimized for all instances the
MDMPVRPHFMR model. Therefore, we can conclude
that companies must consider CAPEX and OPEX for

designing their supply chain networks when the contract

when using

period is fixed between the supplier and the customer.

~-5_10_2_3-=-5_15_2 3-4-5_20_3_ 3

-®-4_20_3_3=-3_10_2_3=3_15_2_3==—3_20_3_3

4.10_2_3-%4_15_2_3

$0.27
$0.264
$0.257
$0.250
$0.243
$0.236
$0.229

$0.221

50214
NMR MR MRP

Fig. 7. Fuel cost for instances with 10,

15 and 20 demand points.

5. CONCLUSIONS AND FUTURE WORK

The Multi Depot Multi Period Vehicle Routing
Problem with heterogeneous fleet and management
restrictions (MDMPVRPHFMR) has been introduced
and formulated in this paper. This is a modification of
(2016) Multi Depot Multi Period Vehicle
Routing Problem with heterogeneous fleet
(MDMPVRPHF) to consider capital expenditures and
operating expenses (MDMPVRPHFMR). In the
MDMPVRPHFMR, the goal is to carry out delivery
operations at

Mancini

the minimum costs by considering
transport costs, vehicle rent costs, time services, raw
material, investments, and machine costs. In this paper,
we test the proposed MDMPVRPHFMR model and the
MDMPVRPHF model in a real case scenario and by
solving different instances with random parameters to
test the effectiveness and efficacy of these models. The
results allows to compare the performance of the
proposed MDMPVRPHFMR model with the results
obtained using the model proposed by Mancini (2016) or
MDMPVRPHF model.

possible to conclude that the minimum total cost, and

By comparing results, it is

hence the minimum fuel price (S;), is reached when using
the MDMPVRFHFMR model. The results indicates that
CAPEX and OPEX must be considered.
demonstrates that the model proposed by Mancini (2016)
(the MDMPVRFHFMR model) does not achieve the

lowest possible cost in a real company scenario.

It also

the
proposition of a model capable of minimizing CAPEX

The major contribution of this paper is
and OPEX at the same time with the aim of designing a
LNG supply chain network considering must of the
variables presented in a real company scenario. By
considering more variables and having more real
restrictions the feasible solutions region is narrowed and
therefore the relative gap between the upper and lower
bound is reduced. Finally, it is possible to conclude that
CAPEX and OPEX for

designing real supply chain networks when the contract

companies must consider
period is fixed between the supplier and the customer.

As future work, a Periodic Multi Period Vehicle
fleet

management restrictions can be developed for companies

Routing Problem with heterogeneous and
that require periodic deliveries. Such a model can be an

extension of the periodic vehicle routing problem
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APPENDIX A.

All instances have the parameters shown in Table A.1.

Table A.1. Fixed parameters for all instances.

Description Variable Value Unit
Contract period - 7 [year]
Maximum route duration a 24 [b]
Vehicles average speed S 50 [km/h]
Planning time horizon o 24 [b]
Transport capacity per vehicle cv 23,128 [(m3]
Cost of usage per vehicle u $ 0.50 [$/km]
Machine cost p™ $1,447.70 [$/day]
Production capacity of machine c™ 20,720 (m3/day]
Time to discharge/charge material 5; 60 [b]
Penalty cost in visit times 20 (%]
Cost of renting/buying the vehicle B 150 ($/day]

Instance 3 10 2 3:

Table A.2. General information of instance

Description

Variable Value Unit

No. of possible supply stations 1

No. of demand locations D

No. of vehicles

No. of routes

No. of machines

3 [
10 ]
2 [
3 [
1 [

Table A.3. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw material
[m3/day] Station [$/day] cost [$/m3]

C_1 11,760 SS 1 195.69 0.1464
C_2 3,500 SS 2 195.69 0.1429
C_3 6,776 SS 3 195.69 0.1393

C 4 10,332

C_ 5 11,480

C_6 1,624

C 7 13,468

C_8 10,024

C_9 3,892

C_10 6,076
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Instance 3 15 2 3:

Table A.5. General information of instance.

Description Variable Value Unit
No. of possible supply stations 1 3 [-]
No. of demand locations D 15 [-]
No. of vehicles v 2 [-]
No. of routes K 3 [-]
No. of machines M 1 [-]

Table A.6. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw material
[m3/day] Station [$/day] cost [$/m3]
C_1 11,760 SS 1 195.69 0.1464
C_2 2,688 SS 2 195.69 0.1429
C_3 3,388 SS 3 195.69 0.1393
C_4 6,776
C_ 5 10,332
C_ 6 3,108
C_r7 13,020
C_ 8 7,532
C_9 11,480
C_10 1,624
Cc 1 7,448
C_12 13,468
C 13 10,024
C 14 3,892
C_15 6,076
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Instance 3 20 3 3:

Table A.8. General information of instance.

Description Variable Value Unit
No. of possible supply stations I 3 [-]
No. of demand locations D 20 [-]
No. of vehicles v 3 [-]
No. of routes K 3 [-]
No. of machines M 1 [-]

Table A.9. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening Raw material cost
[m3/day] Station  [$/day] [$/m3]

C_1 11,760 SS 1 195.69 0.1464

C_2 9,184 SS 2 195.69 0.1429

C_3 2,688 SS 3 195.69 0.1393

C 4 3,388

C_5 1,624

C_6 3,500

C 7 6,776

C_8 10,332

C_9 3,108

C 10 13,020

C_11 7,532

C_12 11,480

C 13 2,492

C_14 6,468

C_15 1,624

C_16 7,448

C_17 13,468

C_18 10,024

C_ 19 3,892

C_20 6,076
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Instance 3 25 4 4:

Table A.11. General information of instance.

Description Variable Value Unit
No. of possible supply stations I 3 ]
No. of demand locations D 25 ]
No. of vehicles v 4 ]
No. of routes K 4 ]
No. of machines M 1 ]

Table A.12. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw material
[m3/day] Station [$/day] cost [$/m3]

C_1 2,352 SS 1 195.69 0.1464

C_2 5,880 SS 2 195.69 0.1429

C_3 1,484 SS 3 195.69 0.1393

C 4 4,424

C 5 10,220

C_6 3,500

C 7 1,876

C_8 6,244

C_9 1,624

C 10 7,448

C_11 4,424

C 12 9,492

C 13 1,624

C_14 7,448

C 15 5,264

C_16 952

C_17 7,588

C 18 3,948

C_19 6,748

C_20 9,604

C_ 21 2,940

C_ 22 8,540

C_23 4,592

C_24 7,168

C 25 1,876
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Instance 4 10 2 3:

Table A.14. General information of instance.

Description Variable Value Unit
No. of possible supply stations 1 4 [-]
No. of demand locations D 10 [-]
No. of vehicles 4 2 -]
No. of routes K 3 -]
No. of machines M 1 -]

Table A.15. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw material cost
[m3/day] Station [$/day] [$/m3]

C_1 3,388 SS 1 195.69 0.1357

C_2 13,020 SS 2 195.69 0.1393

C_3 2,492 SS 3 195.69 0.1429

C_4 6,468 SS 4 195.69 0.1464

C_5 1,624

C 6 4,424

C_17 13,468

C 8 10,024

C_9 3,892

C 10 6,076
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Instance 4 15 2 3:

Table A.17. General information of instance.

Description Variable Value Unit
No. of possible supply stations I 4 ]
No. of demand locations D 15 ]
No. of vehicles v 2 ]
No. of routes K 3 ]
No. of machines M 1 ]

Table A.18. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw
[m3/day] Station [$/day] material cost

[$/m3]

C_1 11,844 SS 1 195.69 0.1357

C_2 3,388 SS 2 195.69 0.1393

C_3 7,168 SS 3 195.69 0.1429

C_4 6,776 SS 4 195.69 0.1464

C_5 13,020

C_6 7,532

C_7 11,480

C_8 2,492

C_9 6,468

C_10 1,624

C_11 4,424

C_12 13,468

C_13 10,024

C_14 3,892

C_15 6,076
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Instance 4 20 3 3:

Table A.20. General information of instance.

Description Variable Value Unit
No. of possible supply stations 1 4 ]
No. of demand locations D 20 ]
No. of vehicles 4 3 [
No. of routes K 3 [
No. of machines M 1 [

Table A.21. Daily demand, opening costs and raw material cost of instance.

Location Demand[m3/day] Supply Opening cost Raw material
Station [$/day] cost [$/m3]

C_1 9,856 SS 1 195.69 0.1357
C_2 11,844 SS 2 195.69 0.1393
C_3 2,688 SS 3 195.69 0.1429
C_4 3,388 SS 4 195.69 0.1464
C_5 1,624

C_6 7,168

C_7 6,776

C_8 10,332

C_9 3,108

C_10 13,020

C_1 7,532

C 12 11,480

C_13 2,492

C_14 6,468

C_15 1,624

C_16 4,424

C_17 13,468

C_18 10,024

C_19 3,892

C_20 6,076
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Instance 4 25 4 4:

Table A.23. General information of instance.

Description Variable  Value  Unit
No. of possible supply stations I 4 [-]
No. of demand locations D 25 [-]
No. of vehicles v 4 [-]
No. of routes K 4 [-]
No. of machines M 1 [-]

Table A.24. Daily demand, opening costs and raw material cost of instance.

Location  Demand Supply Opening cost Raw material
[m3/day] Station [$/day] cost [$/m3]

C_1 2,352 SS 1 195.69 0.1357

C_2 5,880 SS 2 195.69 0.1393

C_3 1,484 SS 3 195.69 0.1429

C_4 4,424 SS 4 195.69 0.1464

C_5 10,220

C 6 3,500

C_T7 1,876

C_38 6,244

C 9 1,624

C_10 7,448

cC_11 4,424

C_12 9,492

C_13 1,624

C_14 7,448

C_15 5,264

C_16 952

C_17 7,588

C_18 3,048

C_19 6,748

C_20 9,604

C_21 2,940

C_22 8,540

C_23 4,592

C 24 7,168

C_25 1,876
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Instance 5 10 2 3:

Table. General information of instance A.26.

Description Variable  Value  Unit
No. of possible supply stations 1 5 [-]
No. of demand locations D 10 [-]
No. of vehicles 4 2 -]
No. of routes K 3 -]
No. of machines M 1 -]

Table A.27. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw material
[m3/day] Station  [$/day] cost [$/m3]

C_1 700 SS 1 195.69 0.1500
C_2 1,288 SS 2 195.69 0.1464
C_3 8,344 SS 3 195.69 0.1429
C_4 3,388 SS 4 195.69 0.1393
C_5 11,788 SS 5 195.69 0.1357
C_6 12,012

C_17 13,496

C_8 6,860

C_9 3,108

C_10 3,192
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Instance 5 15 2 3:

Table A.29. General information of instance.

Description Variable Value Unit
No. of possible supply stations 1 5 [-]
No. of demand locations D 15 [-]
No. of vehicles 1% 2 [
No. of routes K 3 [
No. of machines M 1 [-]

Table A.30. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw material
[m3/day] Station [$/day] cost [$/m3]

C_1 700 SS 1 195.69 0.1500
C_2 1,288 SS 2 195.69 0.1464
C_3 8,344 SS 3 195.69 0.1429
C_4 3,388 SS 4 195.69 0.1393
C_5 11,788 SS 5 195.69 0.1357
C_6 12,012

C 7 13,496

C 8 6,860

C_9 3,108

C 10 3,192

C_11 7,532

C_12 10,696

C 13 4,872

C_14 6,468

C 15 8,960
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Instance 5 20 3 3:

Table A.32. General information of instance.

Description Variable Value Unit
No. of possible supply stations 1 5 [-]
No. of demand locations D 20 [-]
No. of vehicles |4 3 [-]
No. of routes K 3 [-]
No. of machines M 1 [-]

Table A.33. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cos Raw
[m3/day] Station  t[$/day] material cost

[$/m3]

C_1 700 SS 1 195.69 0.1500

C_2 1,288 SS 2 195.69 0.1464

C_3 8,344 SS 3 195.69 0.1429

C_4 3,388 SS 4 195.69 0.1393

C_5 11,788 SS 5 195.69 0.1357

C_6 12,012

C_7 13,496

C_8 6,860

C_9 3,108

C_10 3,192

C_11 7,532

C_12 10,696

C_13 4,872

C_14 6,468

C_15 8,960

C_16 12,852

C_17 2,268

C_18 10,024

C_19 8,092

C_20 6,076
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Instance 5 25 4 4:

Table A.35. General information of instance.

Description Variable Value  Unit
No. of possible supply stations I 5 [-]
No. of demand locations D 25 [-]
No. of vehicles v 4 [-]
No. of routes K 4 [-]
No. of machines M 1 [-]

Table A.36. Daily demand, opening costs and raw material cost of instance.

Location Demand Supply Opening cost Raw
[m3/day] Station [$/day] material cost

[$/m3]

C_1 2,352 SS 1 195.69 0.1500

C_2 5,880 SS 2 195.69 0.1464

C_3 1,484 SS 3 195.69 0.1429

C_4 4,424 SS 4 195.69 0.1393

C_ 5 10,220 SS 5 195.69 0.1357

C_6 3,500

C 7 1,876

C_ 8 6,244

C_9 1,624

C_10 7,448

C_11 4,424

C_12 9,492

C 13 1,624

C_14 7,448

C 15 5,264

C_16 952

C_17 7,588

C_18 3,948

C 19 6,748

C_20 9,604

C_ 21 2,940

C_ 22 8,540

C_23 4,592

C_ 24 7,168

C 25 1,876
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