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Abstract: A new system to optimize fuel assembly design, fuel reload design and control rod patterns
design is shown. Fuel assembly optimization is made in two steps. In the first one, a recurrent neural network
for the fuel lattice design of the bottom of the fuel assembly is used. In the second one, the top of the fuel
assembly is built adding gadolinia to bottom fuel lattice. Fuel reload is optimized by another recurrent
neural network whereas the control rod patterns are optimized by an ant colony method. This new system
starts building a fresh fuel batch. Later, a seed fuel reload is optimized according to a Haling calculation.
Afterwards an iterative process is started: firstly, control rod patterns through the cycle are optimized, once
that a new fuel reload with previously optimized control rod patterns is found. If thermal limits cannot be
satisfied in this iterative process after several iterations, a new seed fuel reload is designed. If cold shutdown
margin cannot be fulfilled, then gadolonia concentration is increased into the fuel assembly. Finally, if energy
requirements cannot be fulfilled, then the uranium enrichment of the fuel lattice of the bottom fuel assembly
is increased. Results of this new system are successful: thermal limits and cold shutdown margin are fulfilled,
and energy requirements are reached.
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1. INTRODUCTION

In-core fuel management tasks for BWR are fuel
lattice optimization, fuel bundle design, fuel reload
optimization and control rod patterns optimization. These
combinatorial optimization problems are difficult to solve
due to two aspects: they have large search spaces and

reactor simulation codes spend too much computation
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computation time. A methodology to solve these problems
must find an acceptable solution in a reasonable time.

In order to design an operation cycle, the nuclear fuel
lattice is the first problem to be optimized. The second
one is to design the fuel assembly. Fuel reload and control
rod patterns are two problems that should be solved in a
coupled way. In the fuel reload design, both fresh and
spent fuel assemblies are distributed into the reactor core
in order to have a constant and uniform power
distribution. That is verified by the thermal limits, the keff
value and the fulfillment of energy requirements. However,
the fulfillment
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However, the fulfillment of the generated energy is only
known until control rod patterns are designed. Control rod
patterns cannot be designed if fuel reload is not known.
Therefore, both problems must be optimized in a coupled
way. Traditionally, both problems have been solved in a
separated way. Firstly, fuel reload is optimized using a
Haling calculation to give a rough estimation of the end of
the cycle. Then control rod patterns are optimized.

Some papers about these problems can be found in the
literature, for example, genetic algorithms (Francois &
Lépez, 1999; Sobolev, Gazetdinov, & Samokhin, 2017),
Requena, 2004), firefly
algorithms (Poursalehi, Zolfaghari, & Minuchehr, 2015),
tabu search (Hill & Parks, 2015) and (Castillo et al.,
2004), ant colony optimization (Esquivel-Estrada, Ortiz-

neural networks (Ortiz &

Servin, Castillo, & Perusquia, 2011), swarm intelligence
(Ahmad & Ahmad, 2018) have been used to solve fuel
reload optimization making a rough estimation of the end
of the cycle. On the other hand, ant colony optimization
(Ortiz & Requena, 2006), neural networks (Mejia & Ortiz,
2005), genetic algorithms (Montes, Ortiz, Requena, &
Perusquia, 2004) and tabu search (Castillo, Ortiz, Alonso,
Morales, & Del Valle, 2005) have been used to optimize
control rod patterns for a given fuel reload. There are few
works where both problems have been solved in a coupled
way (Kobayashi & Aiyoshi, 2002; Ottinger & Maldonado,
2015).

With respect to fuel lattice optimization, several
tabu search
& Morales,
2003), ant colony optimization (Montes, Francois, Ortiz,

heuristic techniques have been  used:

(Frangois, Martin-del-Campo, Frangois,
Martin-del-Campo, & Perusquia, 2011), path relinking
& Silvestre, 2011),

(Martin-del-Campo,

(Castillo, Ortiz-Servin, Perusquia,

genetic  algorithms Francois,
Carmona, & Oropeza, 2007) and neural networks (Ortiz,
Castillo, Montes, Perusquia, & Herndndez, 2009), among
others. Fuel assembly design has been solved using
Montecarlo method (Tohjoh, Watanabe, & Yamamoto,
2006) and the block coordinate descent method (Tung,
Kuo, & Yaur, 2017). This paper is divided in the

following sections: in Section 2 a brief description of the

Lee,

problem is provided. In the third section the optimization
system is described. In Section 4 results for an equilibrium
Finally, conclusions,

cycle are shown.

acknowledgements and references are shown.

2. PROBLEM DESCRIPTION

In Figure 1 a typical reactor core is shown. Each box
represents a reactor channel and each cross represents a
control rod. Four channels and the control rod in the
middle of them are named a control lattice. Control rods
in red are used to operate the reactor, black control rods
remain withdrawal of reactor core during the cycle

operation. Fuel assemblies are introduced into the reactor

channels.
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Fig. 1. A typical transverse view of a reactor core.

A fuel assembly is a square prism, which is divided in
25 axial nodes. Each node corresponds to a fuel lattice. In
Figure 2 a typical fuel lattice is shown.

From Figure 2 in small boxes a pellet with uranium or
a mixture of uranium and gadolinia can be introduced. Big
boxes are water channels. Up to the left, a control rod is
shown.

The reactor core operation time is divided in two kind
of periods: the electricity generation period (named
operation cycle) and the refueling period (the most spent
fuel assemblies are replaced by the fresh fuel assemblies).
Previously to start a cycle operation, a design stage is
needed. In that stage, fresh fuel assemblies, fuel reload,
and control rod patterns are optimized. In the remainer of
the section, brief descriptions of these optimization
problems are shown.
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Fig. 2. Typical 10x10 fuel lattice.

2.1 FUEL LATTICE DESIGN

Enriched uranium is introduced to the reactor core in
the form of pellets. Gadolinia (Gd;0;) is a neutron
absorbent material and it is used as a burnable poison in
the reactivity core control. The problem is to allocate
pellets in the small boxes in Figure 2 in order to minimize
the local power peaking factor (LPPF) subject to:

ki < kinf < k¢ (1)
and
2 wi

9;11 = Utar (2)

where kinfis the infinite multiplication factor of neutrons;
k" and kY, are the minor and major kinf permitted values;
u; is the uranium enrichment of each one of the 92 pellets;
and Uy, is the required uranium enrichment of the fuel
lattice. Uranium enrichment and gadolinia concentrations
can be chosen of the elements of the Table 1.

2.2 FUEL ASSEMBLY DESIGN

As it was said, a fuel assembly is a vertical array of 25
positions. One node at the bottom and two nodes at the
top of the fuel assembly typically contain fuel lattices with

natural uranium, in order to reflect neutrons into the core.

The other 22 nodes are divided in three zones, where each

zone has a different fuel lattice. A typical zones
distribution is the following: bottom zone has 10 nodes;
second zone has 6 nodes and the top zone has 8 nodes.
Normally, the fuel lattice of the bottom zone is optimized,
and the upper zones have the same uranium enrichment

but different gadolinia concentration.

Table 1. Uranium enrichment and gadolinia concentrations inventory.

U GhOs =0% | GhOs =4% | Gdb0Os =5% | Gd0s =6%

2.00% v

2.40%

2.80%

3.20%

3.60%

3.95%

4.20%

4.40%

= N

4.90%

2.3 FUEL RELOAD DESIGN

At the end of the cycle, the most spent fuel assemblies
are substituted by fresh fuel assemblies. Fresh and spent
fuel assemblies must be re-allocated into the core in order
to maximize the energy production subject to:

FLPDeuwrnen< FLPDy (3)
MAPRA Toures < MAPRAT, 0, (4)
FLCPR e < FLCPR 0 (5)
SDMeurrens > SD My, (6)

where FLPD. ey and FLPD,, are the current and the
maximum fraction to linear power density, MAPRA Teyrrens
and MAPRAT,. are the current and the maximum
fraction to the average planar linear generation rate,
FLCPR.yens and FLCPR,,, are the current and the
maximum fraction to the critical power ratio and
SDM. yrven and SDM,,;,, are the current and the minimum
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cold shutdown margin. FLPD.ywen, MAPRAT wrent
FLCPR .iyens and SD M yen; are calculated by SIMULATE-
3 (Dean, 2005).

2.4 CONTROL ROD PATTERNS DESIGN

Control rods are used to compensate the burnup of the
uranium in order to keep the chain reaction. A control rod
can be positioned in 25 axial places. Normally, 6
intermediate axial positions are not used due to when a
control rod is put in these positions, the axial power
distorted. Thus,

determine the axial positions of the red control rods (see

distribution is the problem is to
Figure 1) in order to minimize the differences between a
distribution and the

distribution subject to restriction of Equations 3, 4 and

target power current power

5. In addition, reactor critically must be fulfilled.
3. OPTIMIZATION SYSTEM DESCRIPTION

In order to optimize the cycle operation, a new system
was developed. A recurrent neural network to optimize
fuel lattices was used. A local search technique to build
the fuel assembly was used. Another recurrent neural
network to optimize the fuel reload was used. Finally, an
ant colony to optimize the control rod patterns was used.
In the rest of the section, the description of the way the
heuristic techniques were used to solve these problems is
shown.

3.1 FUEL LATTICE OPTIMIZATION WITH
A RECURRENT NEURAL NETWORK

The Hopfield’s neural network is a recurrent neural
network. The response of the neurons is a bi-valued
output. This kind of neural network has associated an
energy function that measures the energy of the neural
net- work. With appropriate changes in the responses of
the neurons, the energy can be minimized. A
generalization of this model was proposed by Mérida-
Casermeiro, Galan-Marin, and Munoz-Perez (2011). The
responses of neurons can be multi-values in the interval [0,
...N'], where N is the number of elements in the Table 1.
For fuel lattice optimization, the recurrent neural network
has 47 neurons equivalent to 47 pellets that can be
introduced into a half fuel lattice. A half fuel lattice can

be seen when a line from control rod corner to corner
without control rod in Figure 2 is drawn. Besides, a water
channel is formed by the space of 4 positions. The response
of neurons corresponds with an uranium enrichment and
gadolinia concentrations of Table 1. The set of neurons’
responses is named the global neural state (GNS). The
neurons have to change their responses in order to
minimize the energy of the neural network. The energy
function to solve the fuel lattice optimization is the
following:

FE = w;LPPF(GNS) + w,|k{% — kinf (GNS)| (7)

where k7 is the target kinf value, and is determined
previously with the linear reactivity model (Driscoll,
Downar, & Pilat, 1990); LPPF (GNS) and kinf (GNS)
means that these lattice parameters depends on global
neural state. These variables are calculated by CASMO-4
code (Edenius, 2004). For more details about this neural
network and its implementation to solve this problem, you
can read Ortiz et al. (2009).

3.2 FUEL ASSEMBLY BUILDING WITH A
LOCAL SEARCH TECHNIQUE

Upper zones in the fuel assembly are built using the
pellets distribution found by the recurrent neural network
in the previous step. Only gadolinia concentrations are
changed. The space solutions to change gadolinia in the
just optimized fuel lattice is small. So, a sophisticated
optimization heuristic to solve this problem is not
required. It is enough to implement a simple local search
and to choose the one that has the minimum LPPF value.

3.3 FUEL RELOAD OPTIMIZATION WITH A
RECURRENT NEURAL NETWORK

Another recurrent neural network with 111 neurons to
optimize the fuel reload was used. In a quarter reactor core
(see the Figure 1), there are 111 channels. Fresh and burnt
fuel assemblies are sort according to their burnup level and
an integer number is assigned to each one. The response
number in the interval of
[1, ..., M ], where M is the number of the channels in the

of neurons is an integer
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quarter core. So, if neuron A has the integer B, like
response, it means that in channel number A the fuel
assembly number B (according to burnup level) is
introduced. Also, the global neural state is named to the
set of neuron’s response. A global neural state is a possible
fuel reload to be used in the reactor core. Responses of
neurons have to be changed in order to minimize the
energy value of the recurrent neural network. That energy
function is the following:

FE = C— wkeff(GNS) -
Wy(FLPDyow — FLPD(GNS) curr) —
wys(MAPRAT e — MAPRAT(GNS) curr) — (8)
Wy(FLCPR o — FLCPR(GNS) curr) —
ws(SDMcur — SDM( GNS) agin)

where C is a positive constant in order to do not have
negative values in energy function; keff is the effective
multiplication factor of neutrons at the end of the cycle;
FLPD(GNS)cum, MAPRAT (GNS)cur, FLCPR(GNS)
and SDM (GNS)¢ depend on global neural state and
were previously de- fined; FLPDyy, MAPRAT,,
FLCPR g, and SDMyy, are the limit values to the thermal
limits and the cold shutdown margin, respectively; w; are
weighting factors.

3.4 CONTROL RODS PATTERNS
OPTIMIZATION WITH AN ANT
COLONY SYSTEM

Ant colony system emulates the behaviour of real ants
and their ability to build short paths between their nest
and the food sources. Real ants can build such short path
because they communicate between them depositing a
substance named pheromone (). When a real ant finds a
pheromone trail, the probability to follow it is high. The
ants spend more time to go through long trails and the
pheromone deposit rate is lower than short trails. On the
other hand, the pheromone evaporates with the passage of
the time. So, long trails disappear easily, and short trails
endure. To optimize control rods patterns, red control rods
in a quarter core will be used (see Figure 1), it is to say 8
control rods. The artificial ants must decide an axial

position to insert each one of 8 control rods in the core. The
artificial ants deposit pheromone in each axial position
depending on the convenience of the axial position. The
most convenient axial positions have more pheromone
than those with less convenience to be used. For example,
if an axial position helps to mitigate a peak power or kept
the reactor in critical state, it is more convenient to be
chosen. For each axial position is possible to define a
convenience level (A) to mitigate power peaks or the
control rod worth. An artificial ant decides to use an axial
position in function of the pheromone deposits and the
convenience level. Ant colony system uses three rules to
operate and they are showing up next:

S = §/|max(p(i, ) A )P 9)

the i-th control rod will be inserted in the j-th axial
position with maximum product of pheromone and
convenience level. 8 is a constant greater than zero. The
pheromone is updated by each ant once it has chosen the
j-th axial position for i-th control rod. It is done with the
following equation:

p(,j) =1 —e)p@,j) +epo (10)
where ¢ is the evaporation rate whose values are in the
interval ([0, 1]), the pheromone is updated by fixing
increments denoted by py. Once that all ants have
proposed a control rod pattern, they are evaluated by
SIMULATE-3 code (Dean, 2005). The best control rod
pattern receives an extra pheromone, and it is updated
according to:

p(i.)) = (1 —&)p(i )+ (11)

F = wilkeffeur — keffir| —
Wo( FLPD oy — FLPDcyyr) —
wy( MAPRAT,,~ MAPRAT,.) -
wi(FLCPRyas — FLCPR )

where keff“ is the target keff and v’ are weighting factors.
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3.5 FLOW DIAGRAM
In Figure 3 the flowchart of the system is shown.

System starts optimizing the fuel lattice of the bottom fuel
assembly according to the average uranium enrichment
and gadolinia requirements. Then upper fuel lattices are
found with the local search technique. An initial fuel reload
is obtained with the recurrent neural network. The
involved variables in Eq. 8 are obtained with SIMULATE-
3 running a Haling calculation at the first iteration of the
system. The next step is to optimize control rods patterns
with the ant colony system. If thermal limits are not
fulfilled, then a new fuel reload is optimized. Control rod
patterns are simulated by SIMULATE-3 to obtain the
variables of Eq. 8 from second iteration until a stop
criterion is fulfilled. If cold shutdown margin is not fulfilled,
then gadolinia concentration is increased and a new fuel

assembly is made. Finally, if energy requirements are not
reached,then the average uranium enrichment is increased
0.01% U235 and a new fuel lattice must be optimized.

4. RESULTS

In order to test the capabilities of the new system, a
cycle operation of 18 months of cycle length was used. This
cycle has two types of fresh fuel assemblies, both have
3.66% of uranium enrichment but different gadolinia
concentration. 60 fresh fuel assemblies of the type one are
loaded into the core and this type is named FA1. 52 fuel
assemblies of the type two are loaded into the core and
the type is named FA2. This cycle has a length equal to
10.9 GWD/MT. For that burnup, the target keff is equal
to 0.9972. FLPD,4., MAPRAT . and FLCPR,,.. are equal
to 0.96. SDM,,;, is equal to 1.2%.

Start
] Increase U235
Fuel
Lattice
Optimization
Thermal Is the
Fuel Limits SDM
Assembly fulfilled? fulfilled?
Fuel
Reload Control Rod
Optimization Patterns Optimization End
Il T
Fig. 3. General flowchart.
Table 2. Core parameters of cycle operation.
Case [LPPF kinf FLPD |MAPRAT FLCPR | SDM% keff
1 [1.215 1.17012 | 0.951 0.902 0.908 1.210 | 0.99720
2 ]1.246 1.16419 | 0.949 0.938  0.889 1.513 | 0.99770
3 [1.275 1.17519 | 0.942 0.867  10.932 1.515 | 0.99753
4 1.317 1.08461 | 0.958 0.948 0.936 1.536 | 0.99785
5 |1.255 1.16759 | 0.945 0.922  0.897 1.720 | 0.99927
6 [1.257 1.17211 | 0.939 0.859 0.884 1.552 | 0.99970
7 [1.250 1.14790 | 0.942 0.867  0.932 1.515 | 0.99753
g |1.277 1.17784 | 0.951 0.927 10.914 1.547 | 0.99843
Ref <0.960 <0.960 |<0.960 >1.200 | 20.9972
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In Table 2 core and fuel lattice’s parameters of several 115 104

9.9
9.8

executions of the system are shown. As can be seen,
1.10
thermal limits of all executions are lower than the upper

limit (0.960), also all cold shutdown margins values are ¥

1.00

greater than 1.2%. The required keff to guarantee the -

9.6

= ' |95

energy specifications is 0.9972. In all executions the keff 0.95 B MDU MU =

values are greater than the required value. So, system can 0.90

anfeA uonoung A310ug

find a complete solution of all involved problems in the in-

Fractions to Thermal Limits

0.85 9.4

core fuel management. Besides, cases 5, 6 and 8 have a

high enough keff value to generate more energy than 10.9 0'800 2 4 6 8 10 12 14 16 18 20 -
GWD/MT.

In Figure 4, a typical evolution of the fuel lattice
optimization is shown. It can be seen that the energy ~keff —FLPD - MAPRAT FLCPR — Energy Function

function value decreases when the number of iterations

Iteration Number

. . . Fig. 5. Typical fuel reload optimization.
increases and also LPPF value is decreased. In Figure 5, a

typical evolution of the parameters of a fuel reload
optimization is shown. It can be seen that the energy
function value decreases when the number of iterations 0.0020
increases, and also thermal limits are decreased below

0.96.
In Figure 6, a typical pheromone evolution is shown.

It can be seen that at the starting of optimization, the
pheromone is accumulated in the axial position 32.
However, the ants change the position of that control rod
and it is inserted at axial position 02. Similar graphs are
built for all control rods in the core. At the end of the
optimization process, the ants assign the axial position
according to the pheromone accumulation. It is difficult to
graph pheromone and thermal limits evolution in the same
figure, but according to pheromone is accumulated, the el : . a0

sure, g to b ’ 40 Axial Position
thermal limits and the critically state are fulfilled. g0 48

UORE[NUINIIE JUOWOINJ

Iteration Number
Fig. 6. Typical pheromone accumulation.

EF typical evolution

14 5. CONCLUSIONS

In this paper a new methodology to optimize cycle

nvalue
&

o

# operations in BWRs was shown. The heuristic techniques
5 13 4 called recurrent neural networks and an ant colony system

were used to solve the involved combinatorial optimization

Energy Fumct

128 problems. It was shown that the energy function of

recurrent neural networks has good convergence towards

-+

+!
-
&

14 124 minimum values. Also, pheromone accumulation works to
! ! 4 . improve thermal limits and keff value throughout the
e cycle. This methodology is able to find solutions to all
== —a P problems of the in-core fuel management so that thermal

limits, cold shutdown margin are fulfilled and energy

Fig. 4. Typical fuel lattice optimization. requirements are reached.
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