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Abstract: In this paper a novel voice activity detection approach using smoothed fuzzy entropy
(smFuzzyEn) feature using support vector machine is proposed. The proposed approach (smFESVM)
uses total variation filter and Savitzky-Golay filter to smooth the FuzzyEn feature extracted from
the noisy speech signals. Also, convolution of the first order difference of TV filter and noisy fuzzy
entropy feature (conFETV') is also proposed. The obtained smoothed feature vectors are further
normalized using min-max normalization and the normalized feature vectors train SVM model for
speech/non-speech classification. The proposed smFESVM method shows better discrimination of
noise and noisy speech when tested under various nonstationary background noises of different signal-
to-noise ratio levels. 10 — fold cross validation was used to validate the efficacy of the SVM classifier.
The performance of the smFESVM is compared against various algorithms and comparison suggests
that the results obtained by the smFESVM is efficient in detecting speech under low SNR conditions
with an accuracy of 93.88%.

Keywords: Voiced Activity Detection, Fuzzy Entropy, Support Vector Machine, Savitzky-Golay
filter, Total variation filter

INTRODUCTION (Hernéndez-Mena, Meza-Ruiz, & Herrera-Camacho, 2017;
Karray & Martin, 2003), mobile communications

Voice activity detection (VAD) tries to detect speech  (Freeman, Cosier, Southcott, & Boyd, 1991), VoIP
segments from background noises. It is an important (Sangwan et al., 2002; Zhang, Gao, Bian, & Lu, 2005), and
speech processing technique which is used in various noise suppression in digital hearing aids (Itoh &

applications such as automatic speech recognition (ASR)
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Mizushima, 1997). The outcome of VAD is usually binary
decisive, which indicate absence of speech (noise only
segments indicated as HRns) or presence of speech (noisy
speech segments, indicated as HRs). The challenge to the
VAD is to detect speech under low signal-to- noise ratio
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(SNR)
nonstationary noises.

scenarios and also under the influence of
During the past few decades,
researchers have tried many approaches to improve the
VAD performance under low SNRs and for various types
of noises. Still there is no unique feature or set of features
identified that would improve the performance of the VAD
and so the problem remains challenging to explore new
robust features and algorithms.

The performance of the VAD algorithm relies on two
key stages namely, features to VAD and HRs and HRns
classification. Simple features such as short-term energy
(Hsieh, Feng, & Huang, 2009), zero crossing rate (Kotnik,
Kacic, & Horvat, 2001) were considered in early days. But
the performance lacks at low SNR levels as well as with
non-stationary noises. These drawbacks are overcome by
robust features like spectrum (Davis, Nordholm, &
Togneri, 2006), autocorrelation (Shi, Zou, & Liu, 2014),
power in the bandlimited region (Marzinzik & Kollmeier,
2002), wavelet coefficients (LEE, 2006), higher-order
statistics(Nemer, Goubran, & Mahmoud, 2001), etc. These
robust features shows better performance when the SNR
levels are above 10dB assuming that the background noise
is stationary for certain period but still lacking at low SNR
levels, because at low SNR levels the structural and
spectral properties of the speech signals get distorted
(Khoa, 2012). Few algorithms improve VAD performance
by estimating noise during this stationary period which is
computationally expensive. So in order to improve the
performance of VAD, entropy based features were
considered. Entropy is a powerful tool to detect speech
from noisy signal which was first introduced by Shannon
to estimate the uncertainty in a signal (Wu & Wang,
2005). This can be used in both time and frequency
domain called spectral entropy. Similarly fuzzy entropy
(FuzzyEn) which is a modified algorithm of sample
entropy (SampEn) (Chen, Wang, Xie, & Yu, 2007; Chen,
Zhuang, Yu, & Wang, 2009; Richman, & Moorman, 2000)
is based on fuzzy set theory and is used to measure the
complexity of the time series data. FuzzyEn retains certain
characteristics of SampEn like excluding self-matches and
also it overcomes the limitations of SampEn by using an
exponential function to select or discard the similarities
between the two vectors rather using a Heaviside function.
Additionally, by inheriting the similarity measurement
using fuzzy sets, the limitations cited by SampEn which
uses the Heaviside function as the tolerance to select or
discard the similarities between the two vectors was

overcome by FuzzyEn, as FuzzyEn transits smoothly
through varying parameters with the use of the
exponential function.

Finally, to classify for HRs and HRns, an adaptive
threshold based on the features extracted from the speech
signals can be used or with the use of machine learning
algorithms (MLA). Different classifiers based on machine
learning algorithms (MLA) are also invoked for HRs and
HRns classification. Neural networks have been widely
used, but its training procedures are cost expensive.
Another popularly used MLA is the support vector
machine (SVM) (Shabat & Tapamo, 2017; Nazir, Majid-
Mirza, & Ali-Khan, 2014). It is a powerful tool used in
classification because of its convergence speed in training
phase which is faster than that of other classifiers. In this
paper, SVM (Cortes & Vapnik, 1995) proposed by Vapnik
is used to classify HRs and HRns
applications in audio classification (Guo & Li, 2003),

because of its

pattern recognition (Ganapathiraju, Hamaker, & Picone,
2004), etc. The FuzzyEn feature is computed over the
short term analysis frames (usually 20 — 40 ms). Instead
of using noisy FuzzyEn feature directly as an input to
SVM, the obtained FuzzyEn features are smoothed to
attenuate the noisy features using two filters namely, total
variation (TV) filter and Savitzky — Golay (SG) filter.
Total variation (TV) filtering introduced by Rudin, Osher,
and Fatemi (1992) and Chan, Osher, and Shen (2001),
produces nonlinear function of the data, which is defined
by the minimizing a non-quadratic cost function. Even
though the output of the TV filter produces “staircase
effect”,

available

it flattens out the rapid fluctuations that’s
in the data.
regularization parameter (lambda) present in the cost

This is mainly due to the

function. The larger the (lambda) value the staircase effect
is obtained which removes major noisy information in the
data. SG filter (Savitzky & Golay, 1964) which was
proposed by Savitzky and Golay, can be generalized as a
least-squares smoothing filter, where the filter coefficients
are obtained using least-squares fit using a polynomial
degree. The effects of smoothing is controlled by two
parameters namely the size of the window and the degree
of the polynomial. The advantages with SG filter is that
it smooths the data to reduce the noisy information by
preserving the shape and height of the waveforms.

In this paper, the feature vector consists of TV-filter
smoothed FuzzyEn feature, SG filter smoothed FuzzyEn
feature and convolution of first order difference and
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FuzzyEn. This feature vector is fed as the input into the
SVM for VAD, and its performance was investigated
under various noisy conditions (airport, babble, car, and
train) at different SNR levels (—10 dB, —5 dB, 0 dB, 5
dB, and 10 dB). The structure of the rest of this article is
arranged as follows. Section 2 discusses the various stages
of proposed algorithm which includes feature extraction,
feature vector formation, etc and Section 3 presents the
speech and noise database and metrics used in the
evaluation along with the experimental results. Finally, a
conclusion of this work is given in Section 4.

2. PROPOSED METHODOLOGY

Voice activity detection usually addresses a binary
decision to detect the presence of speech for each frame of
the noisy speech signal. The noisy speech signal s(n) is
obtained by corrupting the clean speech signal x(n) by the
additive noise v(n), as in (1),

s(n) = x(n) +v(n) (1)

The proposed smFVAD block diagram is shown in
Fig.1. The motivation for the proposal is to identify robust
feature vectors that would improve the accuracy of the
VAD and speech detection under low SNR conditions.
Since speech signal is nonstationary in nature, the
obtained noisy signal is divided into sequence of small
frames of size ranging between 20 — 40 ms. In this paper,
the size of each frame is 32ms with a frame shift of 10 ms
which is windowed by Hanning window. Therefore each
frame consists of 512 samples each and the total number
of frames varies depending on the size of the speech signal.
The major blocks of the proposed VAD are explained in
detail in the following subsections.

2.1 FEATURFE EXTRACTION - FUZZY
ENTROPY (FuzzyEn)

Let s (i) be a N sample noisy speech sequence of &
frame, where i = 1, 2, 3, .., N, which is reconstructed by
phase-space with an embedded dimension m, and the
reconstructed phase-space speech vector S/* is given by in

(2),

S™ = {s(0),s( + 1), .., s + m — 1)} — 50(0), (2)
i=12,..,.N-m+1

and is generalized by removing the baseline as in (3),
m-1

S0 =m=1 ) s@i+)) (3)
2

For given vector S/, the similarity degree D;; of its
neighboring vector S/"through its similarity degree is

defined by fuzzy function, given in (4),
D;; = n(djj,m) (4)

and d{}l is the maximum absolute difference of the scalar
components of S and S/™, given in (5),

an = d[sy,sm] = | fnax [(sG+D—s0D)) = (sG+D -5 (5)

(0o,m-1)

Here p(d;j,7) is the fuzzy membership function, which

is given by the exponential function, as in (6),
—(am™\"
) = e ) ®

where n and r are the gradient and width of the fuzzy
membership function.

. Fuzzy . . Feature
‘I‘ bt Framin 8 Smoothing
™ ¢ ™ Entropy | ) ™ vectors
Speech ¥
SVM
Classifier

Non speech

Fig. 1. Block diagram of smFuzzyEn VAD.
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For each S/*, averaging all similarity degree of the
neighboring vectors S, we get (7),

1 N-m
M =—" Z pm
¢ (N-m—-1) Y

j=1j=#i

(7)

Now construct (8) and (9),

- S?W&) "

P =

and

1 N-m (9)
(pm+1(r) — N Z ¢Zn+1 (T)

From this, FuzzyEn(m, r) of the speech, is defined by,
given in (10),
(10)
FuzzyEn(m,r) = I}]ijglo[ln @™ —In@™*1(r)]

In this work, the embedding dimension, m is 2 and the
exponential function parameters n and r are set as 2 and
0.2 times standard deviation, respectively. Note, FuzzyEn
n (10) will be denoted as nFE hereafter.

2.2 TOTAL VARIATION (TV) FILTER

The total variation (TV) of the fuzzy entropy feature
(AFE) is given by the sum of the absolute values of its first

order difference, which is given by,
LL

TV (AFE) = ZIﬁFE(n) _AFE(m — 1)

n=2

(11)

where LL is the length of AFE. Note TV of the signal nFE

can be written as,
(12)

TV(AFE) = ||DAFE||,

Where
-1 1

is a matrix of size (LL - 1) x LL. The notation [|. ||; denotes
the [; norm. Given noisy fuzzy entropy feature (nFE) from
equation (10), the output of TV filter is defined as the
solution AFE to the minimization problem,

arg min AIDAFE|l; + [nFE — AFE|3 (13)
n

where A is a parameter that controls the trade-off between

denoising and signal distortion.

2.3 SAVITZKY - GOLAY (SG) FILTER

The FuzzyEn features (nFE) obtained using (10) are
further smoothed using Savitzky-Golay (SG) filter. SG
filter can be generalized as a least-squares smoothing filter,
where the filter coefficients are obtained using least-
squares fit using a polynomial. This filter depends on two
main parameters, window size and degree of the
polynomial, M. If M is too high, redundancies of data is
obtained and when M is too low, the signal gets distorted.
Similarly, when the size of the window is larger, valid
information may be lost and when the window is smaller,
poor denoised signal is obtained. Smoothing the obtained

noisy features through SG filter is given by,

m
i= —m Ci NFEy4; v

NN

FES, = (14)

where nFEpis the noisy FE features and FESyis the
smoothed output of the SG filter, c¢; is the coefficient for
the i-th smoothing, NN is the number of data points in
the smoothing window and is equal to 2m + 1, where m is
the half-width of the smoothing window. The essence of
SG filtering is adopting a polynomial in a sliding window
to fit the original signal piece-by-piece depending on the
least-squares estimation algorithm. The polynomial can be
modelled as:

Pm = Qo + alk + -+ aMkM (15)

2.4, CONVOLUTION OF ABSOLUTE
FIRST ORDER DIFFERENCE OF
TV FILTER (conFETV')

The output of the TV filter (FETV) is further
optimized by computing the absolute first order difference
of the TV filter which is given by,

FETV' = |FETV(n) — FETV(n — 1)| (16)
, _(FETV',  FETV'> pizgry,
FETV' = { O FETV' < e (17)

Where, HFrETYVI = Zfil FETV’
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The absolute first order difference (FETV') obtained in
equation (16) is further refined by replacing with zeros for
values of FETV' less than average of FETV' (upgry,) and
the resultant obtained is convoluted with the Fuzzy
entropy, FE obtained in equation (10) which is given by,

conFETV' [n] = nFE[n] * FETV'[n] (18)
LL-1

conFETV' [n] = Z FETV'[k] nFE[n — k] (19)
k=0

where * is a convolution operator.

2.5 FORMATION OF FEATURE VECTOR

The nFE obtained using (10) is further processed as
explained in section 2.2 to 2.4 to form the feature vector
of dimension J x K, where J is the number of frames in
the noisy speech signal and K to be 3. The first feature
vector is obtained as the output of TV filter which flattens
out the rapid changes in the signal due to “staircase-effect”
while preserving the slow changes in the signal. The
second feature vector obtained as a result of SG filtering
preserves the peak information in the signal. The third
feature vector which was obtained as a result of
convolution shows better discrimination between HRs and
HRns regions. The significance of the feature vectors
considered is explained in Figure 2.

2.6 FEATURE SCALING - minmazx

This minmax scaling method, rescales the given
feature vectors from one range of values to a new range of
values. More often, the feature vectors are rescaled to lie
within a range of [0, 1] or [-1, +1], depending on the output
classes. This rescaling is accomplished by using a linear

interpretation equation given in (20),

smFE — min(smFE)

FE' =
s max(smFE) — min(smFE)

(20)

where smFFE is the smoothed feature vectors obtained
using TV filter, SG filter and conFETV' and sFE' is the
normalized feature vector which is rescaled to fit the range
[0, 1].

2.7 CLASSIFIER - SUPPORT VECTOR
MACHINE

In this work, SVM is used as a classifier, because of its
effectiveness in classification accuracy and computational
time than other conventional nonparametric classifiers
such neural networks, kNN, etc. SVM constructs an
optimal hyperplane [(w,x)+ b = 0] that maximizes the
margin using a known kernel function that accurately
predicts the unknown data into two classes, where w
and b, shall be derived based on the classification accuracy
of the linear problems. Let (x;,v;).; be the training set
samples, where y; € R™ is the corresponding target classes
for the input data x; € R™. This is achieved by minimizing
the error function shown in (21),

N AN
min 5 Il +C ) &
i=1
Subject to y;[wTo(x;) — bl = 1-¢;
§>0i=12.,n

(21)

where @(x;) is a mapping function to map x; to its higher
dimensional feature space, §; is the misclassification error
and C controls the tradeoff between the cost of
classification and the margin. The classification of the new
data as +1 or —1 is obtained by minimizing the error
in (21) based on the

function decision function,

100 —— ——r— ——— p—— =

=

&)

g 50— —
e

[SEE 1}

Airport Babble Car Subway Train
(a)
100 Nimn Tl T T I=T=Tn
=
B
~" S0 -
o
0
Airport Babble Car Subway Train
(b)
100 — — — T —— ——

*

§= S0~ —

0

Babble Car

(©)

Airport

Subway Train

‘ I v [ G [ conFETYV [ SG-TV [ TV-conFETY' [__]SG-conFETV" :TV—S(]—cnnFEI‘\"l

Fig. 2. Performance measures comparison for the feature

vectors considered averaged over five SNRs for 5

noises. (a) CORRECT (b) HRs (c) HRns.
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Class ¢ = sign ({w,x) + b), yields 1 or 0 respectively. The

mapping of the input training set into a higher

through a  kernel
function K (x; ,y;). In this work, the RBF kernel function

is used for its

dimensional space is  done
excellent generalization and low
computational cost (Hariharan, Fook, Sindhu, Adom, &

Yaacob, 2013). The RBF kernel function is given by (22),

—(x; — )’i)2>

K (x;,y:) = exp< 552 (22)

where, the parameter ois the width of the Gaussian
function. For this given kernel function, the error function
of the classifier is given by (23),

N
f(x) = sign (Z a;y; K(x, x;) + b) (23)

i=1
3. RESULTS AND DISCUSSION

The actual speech signals which is collected from
TIMIT database (Garofolo et al., 1993) is contaminated
by adding nonstationary noises collected from AURORA?2
database (Hirsch & Pearse, 2000) of different SNR levels
(-10 dB to 10 dB). TIMIT signals were preferred because
it provides transcriptions down to word and phoneme
levels. Each TIMIT sentence is almost around 3.5s long,
out of which 90% is the actual speech signal and 10%
contains silence (non-speech) regions. To change this ratio
of speech and non-speech regions to 40 % and 60 %
(Beritelli, Casale, Ruggeri, & Serrano, 2002) respectively,
silence is added to the original speech of the TIMIT
corpus. Five types of nonstationary noises such as airport,
babble, car, subway and train noises are considered for the
experiment which is resampled to 16 kHz depending on
the need.

3.1 PERFORMANCE EVALUATION

Performance evaluation of VAD algorithm can be
performed both subjectively and objectively. In subjective
evaluation, a human listener evaluates for VAD errors,
whereas, numerical computations are carried out for
objective evaluation. However, subjective evaluation alone
is insufficient to examine the VAD performance because
listening tests like ABC fail to consider the effects of false
(Beritelli et al., 2002; Ghosh, Tsiartas, &

Naravanan. 2011). Hence numerical computations through

alarm

the proposed VAD algorithm.
VAD performance is calculated using (24) and (25)

HRns = JWonsns. (24)
NSns,ref
and
HRs = s (25)
NSs,ref

where, HR,; and HR, non-speech frames and speech
frames correctly detected among non-speech and speech
frames respectively. NS, and NS, refers to the number of
non-speech and speech frames in the whole database,
respectively, while NS, ns and NS; , refers to the number
of frames classified correctly as non-speech and speech
frames. The overall accuracy rate is given by (26),

NSns,ns + NSs,s
NSns,ref + NSs,ref

CORRECT = (26)

The
parameters referred in the equations (24), (25) and (26)

best performance is achieved when three
become maximum.

Feature vector performance metrics:

The performance metrics (CORRECT, HRs, HRuns)
for the proposed TV — SG — conFETV' feature vector
averaged for overall noises considered (Airport, Babble,
Car, Subway and Train) for different SNR levels is shown
in Table 1. The table clearly shows that the feature
proposed conFETV' achieves better performance measures
except for HRns. It also detects speech regions (HRs) in
an effective way. But when combining all the three
features namely TV, SG and conFETV', the performance
increases for all three metrics giving better detection of
HRs and HRns of about 90% and above when compared
to that of features considered as a single one. Figure 2 (a)

(c) shows the performance evaluation metrics averaged
over the five SNRs (-10 to 10) for the five nonstationary
noises computed for the feature vectors TV, SG,
conFETV', TV - SG, TV — conFETV', SG — conFETV', TV
— SG — conFETV' (proposed feature vector) considered.
From the Figure 2, it is clear that the proposed TV — SG
— COnFETV' feature vector is the best for all the
performance metrics considered for CORRECT, HRs and

HRns. The sienificance of the feature vector formed is
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misclassification rate of classifying HRs and HRns. The
figure clearly shows that the error rate is minimal while
forming the feature vector (TV — SG — conFETV'), because
the proposed feature conFETV' detects speech regions
(HRs) well when compared to that of -the non-speech
regions (HRns) but when combining improves the overall
efficiency of detecting HRs and HRns effectively.

Performance metrics comparison with other VADs
(G.729B, VAD-SOHN, VAD-RAMIREZ)

The efficiency of the proposed smFESVM based VAD
is examined by comparing the performance metrics with
existing VAD algorithms which is explained below:

- G.729B VAD (ITU, 1995) is a standard VAD
method which utilizes several traditional features and is
used in speech communication systems to improve the
bandwidth.

-VAD-SOHN (Sohn, 1999) is based on statistical
modelling which estimates spectral SNR and Gaussian
model distribution for speech and noise assuming that the
Gaussian distribution for speech and noise in Fourier
domain are independent.

- VAD-RAMIREZ (Ramirez, Segura, Benitez, De
la Torre, & Rubio, 2004) combines multiple-observation
technique and statistical models VAD and the False
Alarm Rate (FAR) is controlled by the use of contextual
global hypothesis.

Figure 4 show the comparison of CORRECT rate
performance metrics of the proposed smFESVM based
VAD with G.729B, VAD-SOHN and VAD-RAMIREZ for
different SNR levels (—10,-5, 0, 5 and 10 dB) for airport
noise, babble noise, car noise, subway noise, and train
noise. It is inferred from the figure that the smFESVM

based VAD outperforms the rest of the VAD algorithms
by obtaining best performance in CORRECT rate
especially under low SNR levels (< 0 dB). There is a
noticeable lag in car noise scenario, because a complex
event has been encountered in the car noise scenario which
is treated as valuable speech thereby increasing
misclassification error.

Figure 5 and Figure 6 show hit rate performance
evaluation metrics (HRs and HRns) with five SNRs for
different kinds of noises computed for G.729B, VAD-
SOHN, VAD-RAMIREZ, and the smFESVM based VAD.
It is clear that the VAD methods used in comparison
yields very high speech detection rates (HRs) for different
SNR levels and for various noises, especially G.729B and
VAD-RAMIREZ. But this

degrades in non-speech detection (HRns) rates when the

performance behaviour
noise level increases which makes it less conservative in
practical speech processing schemes. This is due to the
effect of hangover scheme (Aneeja & Yegnanarayana,
2015; Davis et al., 2006) used in these methods. As the
energy towards the end of speech is relatively low, to
control the risk of false alarm rates (FAR), hangover
schemes are used. On the other hand, the proposed
smFESVM based VAD yields better detection rates for
speech (HRs) and non-speech (HRmns) regions when
compared to that of the other VAD algorithms. Its
detection rate for non-speech regions is relatively higher
and exhibits a very low marginal decay in performance
while detection speech regions for certain noisy conditions.
Table 2 shows the performance metrics averaged for all
the noises with various SNR levels. The table clearly
illustrates the consistency of the smFESVM based VAD

T I SG [ conFETY' [ SG-TV [ TV-conFETV' [_]8G-conFETV' [__] TV-8G-conFETV"

30~

Error %

{1

H

Airport

Babble

Car Subway Train

Fig. 3. Misclassification Error % for various feature vectors considered.
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in detecting HRs and HRns with different SNR levels. The
challenge of VAD is to detect speech under low SNR levels
(<0dB) and from the table it is clear that the smFESVM
based VAD algorithm outperforms the rest of the VAD
algorithms in detecting speech as well as non-speech
regions under low SNR levels.

Table 3 shows the comparison of performance metrics
under clean conditions, averaged for all noisy scenarios
and averaged over both clean and noisy conditions with
different SNR levels. It is clearly observed from the table
that the smFESVM based VAD excels rest of VAD in

every performance metrics especially for non-stationary

noisy scenarios. There is a noticeable lag in speech
detection rate when compared with other VADs, but the
proportion of non-speech detection rate confirms that the
proposed smFESVM based VAD is well suited in detecting
both speech and non-speech regions effectively. Also, the
detection of non-speech regions is very much higher for the
smFESVM based VAD which is very useful in major
speech applications like speech compression, VoIP, speech
enhancement, etc. Therefore, based on these performance
metrics, the smFESVM based VAD detects speech and
non-speech regions effectively especially under low SNR
conditions.

Table 1. Feature vector performance metrics averaged for overall noises.

SNR TV SG conFETV'  SG - TV TV — SG — TV - SG -
conFETV'  conFETV' conFETV'

» -10 71.07 74.14 91.03 84.42 92.85 91.42 94.55
8 -5 70.10 75.91 92.47 81.33 90.27 92.59 93.49
g 0 72.83 74.49 89.54 83.66 89.45 91.75 92.88
o 5 72.40 76.89 89.56 83.04 88.31 91.59 94.26
© 10 78.96 79.16 88.96 86.65 89.69 90.86 94.24
-10 66.61 71.54 93.57 81.03 96.41 95.04 97.24

-5 61.61 74.30 95.64 79.25 92.91 93.08 96.42

é 0 61.69 71.54 91.46 81.25 90..62 93.37 95.07
5 55.62 68.97 91.87 75.70 91.73 94.69 95.14

10 62.99 69.72 93.01 77.28 91.99 93.87 94.68

-10 75.54 76.74 88.49 87.81 89.28 87.80 91.95

” -5 78.60 77.52 89.31 83.41 87.63 92.10 92.63
é 0 83.97 77.44 87.63 86.06 88.28 89.53 92.27
2 5 89.18 84.81 87.26 90.38 84.89 88.50 92.16
10 94.92 88.60 84.91 96.03 87.39 87.85 94.66

Table 2. Performance metrics comparison for VAD-SOHN (Sohn, 1999), VAD-RAMIREZ (Ramirez et al., 2004),
G.729B (ITU, 1995) and smFESVM averaged over 5 noises for 5 SNR levels.

SNR SOHN RAMIREZ G.729B smFESVM
COR HRs HRns COR HRs HRns COR HRs HRns COR HRs HRns
-10 80.56  93.77  67.00 79.31  99.00  59.28 65.79  98.80  36.85 94.55  97.24  91.95
-5 82.20  96.97  67.25 80.03  99.00  60.30 66.07  99.40  37.07 93.49 9642  92.63
0 82.78 9817  67.20 80.88  99.00  61.88 66.04  99.40  37.05 92.88  95.07  92.27
5 82.92  98.57  67.00 81.49  99.00  63.08 65.85  99.20  36.65 94.26  95.14  92.16
10 82.92  98.77  67.00 81.87  99.00  63.88 65.67  99.20  36.45 94.24  94.68  94.66
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Fig. 4. CORRECT comparisons for G.729B (ITU, 1995), VAD-SOHN (Sohn, 1999), VAD-
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Table 3. Overall VAD performance comparison for VAD-SOHN (Sohn, 1999), VAD-RAMIREZ

(Ramirez et al., 2004), G.729B (ITU, 1995) and smFESVM averaged for all noises over 5 SNR levels

[-10, -5, 0, 5 and 10 dB].

VAD SOHN RAMIREZ G.729B smFESVM
NOISES
CORRECT 78.99 80.09 58.69 93.88
HR; 96.85 99 99.25 95.71
HRus 61.1 60.5 17.78 92.73
CLEAN
CORRECT 95.75 83.74 94.98 98.28
HRs 99.78 100 100 97.84
HRus 91.7 67.49 89.97 100
OVERALL
CORRECT 87.37 81.92 76.84 96.08
HRs 98.32 99.5 99.63 96.78
HRus 76.4 63.99 53.88 96.37
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Fig. 6. HRns comparisons for G.729 (ITU, 1995), VAD-SOHN (Sohn, 1999), VAD-RAMIREZ
(Ramirez et al., 2004) and smFESVM based VAD for SNR values ranging between -10 and 10 dB
(a) Airport (b) Babble (¢) Car (d) Subway and (e) Train noises.

4. CONCLUSIONS

In this paper, the smFESVM based VAD is presented.
The significance of the feature conFETV' is discussed
experimentally under various non-stationary noises at
different SNR levels. The efficacy of the conFETV' feature
is compared against the smoothing features considered and
the feature vector formed was also analysed, which proved
to be efficient in distinguishing HRs and HRns. The

performance of the classifier is analyzed by 10-fold cross
validation scheme. The results show that the proposed
smFESVM based VAD outperforms the other VAD
algorithms considered based on performance metrics.
Similarly, for babble noises and for other non-stationary
noises at lower SNRs around -5 dB and -10 dB, the
proposed algorithm proves its robustness under noisy
conditions.
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