INTRODUCTION

Journal of Applied Research
and Technology

www.jart.ccadet.unam.mx
Journal of Applied Research and Technology 17 (2019) 28-43

Original
Bottom-up authoring of software engineering methods and practices

Miguel Ehécatl Morales-Trujillo ® *, Hanna Oktaba °, Mario Piattini ¢,
Boris Escalante-Ramirez ?

* Facultad de Ingenieria, Universidad Nacional Aulténoma de México, Mexico City, Mexico
b Facultad de Ciencias, Universidad Nacional Auténoma de México, Mexico City, Mexico
Av. Universidad 3000, Ciudad Universitaria, 04510, Mezico City, Mexico

¢ Alarcos Research Group, University of Castilla — La Mancha,
Paseo de la Universidad 4, 13071, Ciudad Real, Spain

Received dd mm aaaa; accepted dd mm aaaa
Auvailable online dd mm aaaa

Abstract: Software Engineering knowledge is obtained during software engineering efforts, such as
projects, experiments and case studies that represent a valuable source of knowledge with which to
enrich the discipline. This knowledge is manipulated by practitioners who are in charge of developing,
maintaining or integrating software; any practitioner, experienced or beginner, possesses his/her tacit
practices in order to carry out their work. However, these ways of working are frequently neither
expressed nor collected in order to reason about their characteristics and properties. Moreover, the
explicit ways of working, which are presented in process reference models and standards that follow
a prescriptive approach, are not suitable for small software development organizations. Small
organizations represent a major part of software development organizations, so it is important to
know and support how they actually work.

This paper describes KUALI-BEH, a bottom-up metamodel that offers software engineering
practitioners an authoring framework with which to express, adapt and share their ways of working
as a collection of methods and practices. Validating and applying the metamodel showed that a
bottom-up approach benefits small organizations and serves as a first step to reduce the gap between
software engineering theory and practice. KUALI-BEH permits small organizations to create an
organizational working method and to gradually introduce them to the adoption of standards and
reference models. Practitioners with different levels of competence, from inexperienced to senior,
adopt and use KUALI-BEH successfully with minimal training and without any consulting services.

Keywords: Practice, method, software engineering, bottom-up, OMG, KUALI-BEH, VSE.

work properly (Broy, 2011). However,

Software Engineering is part of an engineering
discipline and must be based on scientific practices and
theory in order to justify their approaches and to provide

scientific evidence as to why and where their methods
’ Corresponding author.
E-mail address: migmor@ciencias.unam.mx (Miguel Ehécatl Morales-Trujillo).
Peer Review under the responsibility of Universidad Nacional Auténoma de

Meéxico.

http://

Engineering is currently controlled and guided by the
practices used in industry and technological innovations
(Wang, 2008), while the theory and foundations of
Software Engineering, which are essential in supporting its
practices, are left aside (Jacobson, Johnson, & Ekstedt,
2012).

In an attempt to address these concerns, the software
engineering community has created and promoted a
considerable number of proposals. We can mention such

mailto:migmor@ciencias.unam.mx
http://creativecommons.org/licenses/by-nc-nd/4.0/
file:///C:/Users/KM/Desktop/REVISTA%20CCADET/dx.doi.org/10.1016/j.jart.2017.01.013
http://www.jart.ccadet.unam.mx/
http://www.jart.ccadet.unam.mx/

Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 28-43 | 29

metamodels as SPEM (OMG, 2008) or SEMDM (ISO,
2007); Method Engineering (Brinkkemper, 1996) and
Situational Method Engineering (Harmsen, Brinkkemper,
& Oei, 1994), which were conceived with the aim of
building methods from pre-existing pieces of methods; a
collection of ISO/IEC Software Engineering standards;
and efforts like Software Engineering Method and Theory!
(SEMAT), whose objective is to concentrate and define
the theory needed to re-found the discipline providing
mechanisms to express methods and practices using a
common language.

Nevertheless, the aforementioned proposals benefit
large organizations to a greater extend, becoming an
obstacle for smaller ones that do not follow models or
standards or have low levels of maturity. As reported by
(Oktaba & Piattini, 2008), 58% of organizations working
on significant software products are small organizations,
and according to (Basri & O'Connor, 2010) 85% of IT
organizations have 1 to 10 employees. When a very small
entitiy (VSE), less than 25 employees, adopts a new
standard, it simultaneously needs to change its structure,
culture, organizational climate and projects, which, in its
turn, leads to changes in its ways of working. In fact, small
organizations actually abandon what they were doing in
order to adapt new models, while the cost of the adoption
benefit
Rodriguez-Jacobo, & Fernéndez-Zepeda, 2016).

is disproportionate to its (Espinosa-Curiel,

Moreover, there is evidence that, although the existing
standards do contain good practices, the majority of small
software organizations do not adopt them because they
are perceived to be oriented towards large organizations
(Laporte, Alexandre, & O’Connor, 2008). For example, in
(Staples et al., 2007) the authors state that small
organizations consider themselves too small to adopt
CMMI (SEI, 2010). According to (Pino, Pardo, Garcia, &
Piattini, 2010), these standards per se are not suitable for
small organizations. In fact, size is one of the main reasons
to avoid the adoption of standards; the others are cost and
effort. In addition, Coleman & O’Connor (2008) establish
that, although commercial software process improvement
(SPI) models have been highly publicized and marketed,
they are not being widely adopted and their influence in
the software industry therefore remains more at a
theoretical than practical level. These concerns reinforce
the need for strategies for process improvement that are
tailored to small companies’ characteristics (Pino et al.,
2010).

In practice, small organizations predominantly acquire
knowledge through observations, which are obtained
during software engineering efforts. Practitioners then
apply these observations to their activities, therefore
constantly in need of an effective thinking framework that
will bridge the gap between their current ways of working
and any new ideas that they wish to adopt within their
organizations (Jacobson, Ng, McMahon, Spence, &
Lidman, 2012). Such framework should be able to help
them discover the hidden but valuable knowledge they
possess while respecting their work culture.

This paper presents a bottom-up metamodel, KUALI-
BEH (OMG, 2012), which was created specifically for
small organizations with the aim of responding to the
above-mentioned need. KUALI-BEH pursues the objective
of becoming a starting point between practice and theory
in Software Engineering, based on a bottom-up approach
with its focus being on practitioners; specifically, it guides
them in the task of expressing their ways of working in
the form of practices and methods. This authoring
framework allows practitioners to reason about inherent
characteristics and properties of their daily activities,
which is a first step towards both improvement and
into the

knowledge related to the Software Engineering discipline.

incorporation of practitioners theoretical

Additionally, it permits small organizations to create
an organizational repository comprising their knowledge
and to gradually introduce them to the adoption of
Once this
knowledge has been validated and approved by the

standards and reference models. stored
software engineering community, it is likely to become a
collection of useful material with educational purposes for

software engineering courses.

This paper is organized as follows: Section 2 presents
the related and prior work surrounding KUALI-BEH,
while Section 3 expands on the KUALI-BEH Software
Project Common Concepts metamodel. The bottom-up
authoring framework is presented in Section 4. The
conclusions and future work are provided in Section 5.

2. BACKGROUND: AN ANALYSIS OF THE
CURRENT SITUATION
This section shows state-of-the-art
surrounding KUALI-BEH.

the general

30 | Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

2.1 SOFTWARE PROCESS MODELS

The

descriptions with which to guide key software processes

importance of creating software process
was highlighted by Osterweil in the well-known paper
Software processes are software too (Osterweil, 1987) in
the late 80’s. Later, from the 90’s on, there has been an
increasing interest in developing proposals for process
modelling. Among the various proposals that exist, there
are several metamodels with similar purposes, such as
Process Interchange Format (PIF) (Lee et al., 1998) and
(PSL) (Schlenoff,

Knutilla, & Ray, 1996), whose objective is to provide a

Process Specification Language
standard exchange format in order to share process models
between organizations. Other existing metamodels are
Entry-Task-Validation-Exit method (ETVX) (Radice,
Harding, Munnis, & Phillips, 1985), Integration Definition
for Function Modelling (IDEF) (KBSI, 1993), Core Plan
Presentation (CPR) (Pease & Carrico, 1997), Shared
Planning and Activity Representation (SPAR) (Tate,
1998), PROMENADE (Franch & Rib6, 1999) and
SPEARMINT (Becker-Kornstaedt, Scott, & Zettel, 2000).

There are consequently many proposals with which to
model software processes, and this implies a high degree
of heterogeneity that requires greater standardization.
With that goal in mind, two proposals (described below)
can be highlighted.

The first proposal under consideration is the Software
and Systems Process Engineering Meta-model (SPEM)
(OMG, 2008), defined in 2008 by the Object Management
Group (OMG). SPEM is both a framework and an
engineering process metamodel with the objective to
provide necessary concepts and language for representing,
managing and sharing methods and processes.

Albeit its benefits, SPEM’s drawbacks are related to
the semiformal architecture that makes the verification of
the statement created extremely difficult (Krdzavac,
Gasevi¢, & Devedzié¢, 2009), and to SPEM’s primary focus
on the definition of a process, while aspects of its execution
such as sequence and the order of the method components
are sidelined.

The second proposal under consideration is the
ISO/IEC 24744 standard (ISO, 2007), aka the Software
Engineering — Metamodel for Development Methodologies
(SEMDM),
vocabulary and semantics for the definition and extension

which provides a framework based on

of methodologies in information-based domains, such as

The method
engineers in charge of methodologies definition are the

software development methodologies.
target audience of SEMDM, in an attempt to facilitate the
communication between them and practitioners. SEMDM
includes three main aspects: the process to follow, the
products used and generated and the people involved.

Despite the advantages of the formalism and structure of
the SEMDM metamodeling approach,

are not familiar to practitioners

the proposed
concepts and are
distanced from their context. For example, the term
clabject mixes the idea of class and object, leading to
confusion and a lack of use among practitioners.

Finally, SEMDM and SPEM are top-down approaches,
which are principally focused on method engineers and
prescribe practitioners concerning how to perform their
activities. In contrast, the bottom-up approach of KUALI-
BEH promotes the description of practitioners’ actual
synergy between

ways of working and encourages

practitioners and method engineers.

2.2 PROCESS REFERENCE MODELS AND
STANDARDS

Process reference models or standards, such as CMMI,
ISO/IEC 12207 (ISO, 2008a), ISO/IEC 15504 (ISO, 2004),
and ISO/IEC 29110 (ISO, 2012); contain validated and
approved knowledge to be applied by practitioners.
However, this knowledge may undergo transformations
when in use. According to (Osterweil, 1987) a static
process description is constructed to specify a collection of
dynamic processes. A process may consequently be
performed in many ways, but not all of them correctly.
These models operate primarily at a theoretical level; and
in the words of (Coleman & O’Connor, 2007) are too
prescriptive and bureaucratic to implement in practice.
Besides they require a subscribing company to adapt to
the models rather than having the models easily adapt to
them.

There are other issues that need to be addressed.
According to (Clarke et al., 2016a), software process
domain suffers from an inconsistent use of terminology.
Homogeneity between standards has not yet been
achieved, and in (Rout, 1999) the need to align the large
number of definitions stated in standards is reinforced,
particularly in SC7 in which 198 of the 864 definitions
were duplicated or contained overlapping terms (Hen-
derson-Sellers, Gonzalez-Perez, McBride, & Low, 2014).

http://www.idef.com/idefo-function_modeling_method/
https://www.iso.org/standard/37462.html

Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

| 31

There is a large, complex and potentially very costly
problem concerning the present application of terminology
to both processes and roles involved in software
development (Clarke et al., 2016b). It is therefore crucial
to enclose and express the process instances in a
homogeneous manner, in order to analyze them and decide
which are valid and which are not.

All of the above makes the transition complex for both
practitioners and the organization, thus increasing the
effort required to understand, adopt and train into the
new model, which is a time- and cost-consuming task,
particularly for VSEs.

On the one hand, the top-down strategy of standard
adoption in organizations forces practitioners to adapt or
replace their actual ways of working in order to conform
to the standard or model correctly. The prescriptive
nature of process reference models and standards lessens
the expression of their acquired knowledge and halts their
actual practices. What is more, there is a growing concern
in the software engineering community that SEI and ISO
standards are not easily applicable to small firms because
they require a huge investment (in time, money, and
resources) (Pino, Garcia, & Piattini, 2008). Besides, even
if managers were familiar with CMMI or ISO 9000 they
were against introducing it to their new organizations
(Coleman & O’Connor, 2007).

On the other hand, (Staples et al., 2007) consider that
SPI approaches must target small software-developing
organizations and should require very little cost and time
to adopt. One of the ways to achieve this is to base SPI
on a bottom-up approach. Its wuse would enable
practitioners to author the way they actually carry out
activities, thus reducing the aforementioned difficulties.

This approach is discussed in more detail is section 4.1.

2.3 KNOWLEDGE MANAGEMENT IN VSEs

Human beings gain expertise and transform it into
knowledge through perception, intuition and experience,
rather than by following a predefined process (Dreyfus &
Dreyfus, 1986). As for Software Engineering, knowledge
and its management become particularly relevant since
intensive
knowledge exchanges and collaborations (Basri &
O’Connor, 2011). Therefore, knowledge needs to be
properly managed to ensure that the right knowledge gets
into the right place (O’Connor & Basri, 2014).

software development projects involve

In VSEs, adequate knowledge management can be one
of the factors to increase their innovation power
(O’Connor & Basri, 2014) and creativity (Edwards, 2003).
However, (Basri & O’Connor, 2011) raise concerns about
related
activities in VSEs; in fact, the authors found out that

the performance of knowledge management

knowledge management in VSEs gained less than satisfied
agreement level. Besides, there is an absence of published
material describing how process is initially formed in
software product companies (Coleman & O’Connor, 2007),
so even if organizations do want to take advantage of the
knowledge gained through experience, they lack published
references to guide themselves in this task.

On the other hand, companies who use tacit knowledge
extensively recognize that it has its limitations and may
ultimately carry its own cost (Coleman & O’Connor,
2008). O’Connor & Basri (2014) report that learning and
sharing processes in VSEs are weak due to informal
communication, informal documentation and autonomous
work habits, which, therefore, need to be improved.
Nevertheless, the same authors consider that well-
organized software engineering knowledge may assist
VSEs in maintaining their product relevancy in the
market, among other aspects. A first step towards this
improvement is to transform the tacit knowledge into
explicit in an organized and systematical manner.

A useful and effective alternative to achieve this is by
using a common terminology. Through the use of common
terms with clear-cut definitions to represent the tacit
knowledge of VSE will allow to bridge the gap from an
idea to its representation (Clarke et al., 2016a).

Besides, this transformation of knowledge should follow
well-defined steps in order to be productive. Edwards
(2000) proposes a model that describes what happens to a
particular element of knowledge from an organizational
viewpoint (see Figure 1). First, the organization creates or
acquires a new piece of knowledge, then it goes through
Retain, Use and Refine/Update cycle, where its goal is to
be wused and get improved. It may also be
Shared/Transferred to other organizations or entities; and
the activities of Retaining-Using-Refining and Sharing

may co-occur.

Based on this process, it is feasible to define a process
for managing software engineering knowledge in VSEs,
which will allow them to explicitly express the knowledge
they possess. The whole purpose of KUALI-BEH, which is

32 Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

Create/
Aquire

Refine/
Update

Share/
Transfer

Fig. 1. Knowledge management process proposed by Edwards, 2000.

presented in the next section, is to assist practitioners in
this task, and section 4.2 describes a set of states that take
in consideration the steps proposed in (Edwards, 2000).

3. KUALI-BEH SOFTWARE COMMON
CONCEPTS

In order to reduce the software development process
terminological challenge, the concept orientation and the
systematic terminology work approach are key (Clarke et
al., 2016a). KUALI-BEH, the
framework under consideration, describes concepts that

Following this idea,
are common for all software projects and are necessary in
order to express how the practitioners work, i.e. to define
their ways of working. Thus, being formally expressed as
practices and arranged into methods, they make an
organizational base of knowledge that can be applied by
The knowledge
produced by practitioners needs validation and approval

work teams during software projects.

before being accumulated and shared, both inside and
outside the organization.

The research method used to create KUALI-BEH was
a combination of Technical-Action-Research (TAR)
(Wieringa & Morali, 2012; Wieringa, 2014) and case
studies (Runeson, Host, Rainer, & Regnell, 2012). In TAR,
an artifact is designed to solve a particular problem and is
immersed in a real context where it is tailored and
improved. The immersion and improvement activities

constitute engineering cycles, through which the artefact

is moving until it becomes an effective solution for the
problem.

In particular, the first engineering cycle, which gave
birth to the initial version of KUALI-BEH, was a response
to an RFP for a Foundation for the Agile Creation and
Enactment of Software Engineering Models (FACESEM)
(OMG, 2011) launched by the OMG. KUALI-BEH
followed the requirements defined by FACESEM and
gathered the key concepts involved in software projects
and needed in order to collect practitioners’ knowledge in
terms of practices and methods.

To create the initial set of common concepts, we
started by collecting knowledge from recognized sources
(ISO, 2004; ISO, 2005; ISO, 2007; ISO, 2008a; ISO, 2008b;
ISO 2010; ISO, 2012; OMG, 2008; PMI, 2008; Rout, 1999;
SEIL, 2010; Schwaber & Sutherland, 2017) and taking
advantage of our experience in defining software
development standards (ISO, 2012; NYCE 2011; Oktaba,
et al., 2007; OMG, 2014).

The terms found in the above mentioned standards
were collected, compared and harmonized. In this cycle,
the number of common concepts was narrowed down to
20 and was represented as an ontology, which helped to
interrelate concepts and their definitions (see Table 1).
For the full representation, refer to (OMG, 2012).

According to (Wang, Wang, Zhuang, & Fei, 2015) an
ontology, as a shared conceptualization, expresses a
consensus among people; and an ontological framework
can help to ground the language usage in a field (Clarke

https://www.iso.org/standard/37462.html

Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 2843 | 33

et al., 2016a). For the definitions to be less formal and
more understandable for practitioners, dictionaries and
thesaurus of the English language were consulted, and a
better and more easily understandable set of concepts was
achieved.

Once the first version was developed, a proof of concept
was carried out where agile and traditional practices,
Scrum and ISO/IEC 29110, were expressed through
KUALI-BEH. Subsequently, the proposal went through
five engineering cycles, was validated in three case studies,
reviewed by experts from the OMG task forces, and,
finally, was formalized by means of Description Logics
(Morales-Trujillo, Oktaba,
Escalante-Ramirez, 2018). For graphic representation of

Hernandez-Quiroz, &

the whole process, see Figure 2. The validation process is

described in more detail in section 4.3.

Nowadays KUALI-BEH is part of the ESSENCE —
Kernel and Language for Software Engineering Methods
(OMG, 2014) standard. The
framework to the standard consists in providing an

contribution of the

improved and refined definition of method and practice
concepts, a formal definition of method properties,
operations of adaptation for method tailoring and a board-
based approach for project management in small
organizations.

KUALI-BEH is primarily oriented toward software
engineering practitioners. Its bottom-up approach relies on
the premise that practitioners have been developing their
work without process reference models, standards or

specifications with an acceptable rate of success.

Table. 1. Fragment of the KUALI-BEH common concepts ontology (OMG, 2012).

Name Definition Example
Activity An activity is a set of tasks that contributes to the achievement of a practice | SI.2.2 Document or update the
objective. Requirements Specification.

Condition A condition is a specific situation, circumstance or state of something or The team is working together and every
someone with regard to appearance, fitness or working order that have a member of the team is in context for the
bearing on the software project. coming day’s work.

Knowledge The knowledge and skills are a set of abilities, competences and attainments, | - Experience eliciting requirements .

and Skills acquired by the practitioner and needed to perform a practice. - Experience in designing user interfaces

- Knowledge of the revision techniques.
Practitioner A practitioner is a professional in Software Engineering that is actively Hanna, Miguel
engaged in the discipline. The practitioner should have the ability to make a
judgment based on his or her experience and knowledge.
Project The project conditions are the factors rulat}cd to the project that (i()lll(l affect KB-Project-Conditions

Conditions its realization. Complexity, size, time and financial restrictions, effort, cost
and other factors of the project environment are considered. It is a
specialization of a condition.

1. Proof of concept
LR B B B B & N N J

0. Identification of
common concepts

2011
011
6. Formalization
L L B B B B} -1-\
2015
S. Case study 3and 2014

OMG task force
reviews /
LB B B B B B N 1§ J

2. Collaborative

workshop

2012/——’----------

3. Case study 1 and
OMG task force

2012 reviews
T —---

2018 4 case study 2 and
OMG task force

reviews
LB R B B B N & N J

Fig. 2. KUALI-BEH engineering cycles.

34 | Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

3.1 KUALI-BEH

According to KUALI-BEH (OMG, 2012), software
project common concepts (written in italics) can be
outlined as follows:

A software project is the effort of a group of software
engineering practitioners whose objective is to develop,
maintain or integrate software products. A software project
typically originates from the needs of an individual or an
organization: a stakeholder. The stakeholder needs are
expressed to a work team, composed of practitioners, under
certain restrictions called project conditions.

While work teams are developing software projects,
they are creating their own ways of working consisting of
methods and practices according to their own knowledge
and skills. A practice is, therefore, a set of activities and
tasks, which has been repeatedly used in software projects
and has proved to be useful. For a graphical representation
of the concepts, see Figure 3.

The methods and practices can be structured as a base
of knowledge aimed at collecting and concentrating the
existing ways of working in the form of units, so they can
be consulted and analyzed by the work team in order to
select the appropriate method responding to the particular
context of a software project. Another goal of collecting
method and practices is to foster the modification of
practices and methods in a controlled manner.

These 20 common concepts constitute the vocabulary
proposed by KUALI-BEH in order to represent the tacit
that KUALI-BEH
common concepts are intended to be the means of

knowledge practitioners possess.
description, analysis and reasoning about software projects
and the information related to them.

During the authoring of methods and practices, KUALI-
BEH with

attributes. The set of practices that form a method needs

advises practitioners regard to certain
to maintain the properties of coherency, consistency and
sufficiency. Coherency is preserved when the practices
that compose a method contribute actively towards
reaching the method’s purpose. In a consistent set of
practices, each practice produces a result that is consumed
as an input of another practice. Sufficiency is achieved
when the method is coherent, consistent and its purpose
is entirely fulfilled. Beside that, practices may undergo
adaptation operations of substitution, splitting,
combination and concatenation. For their full description

and graphic representation, see (OMG, 2014).

Altogether, KUALI-BEH
disposal all the necessary elements to formally express the

places at practitioners’
way they work. It offers templates to guide the description
of activities and helps to author practices and methods
through operations and properties. As a result, valuable
knowledge is collected and stored in a repository for
everybody to consult, personalize and use it.

4. BOTTOM-UP PRACTICE AND METHOD
AUTHORING

As it was mentioned before, every practitioner
possesses valuable knowledge that he or she resorts to
during software development efforts. This knowledge could
be acquired when an organization specifically adopted a
model to guide its projects. However, many small
organizations develop software without any renowned
model, still coping with their tasks at a high level of
performance. We consider that their tacit knowledge,
acquired through experience and captured in their ways of
working, is the source of successful fulfillment of projects,
and it needs to be preserved and shared among
organizations.

The objective of this section is to outline advantages of
the bottom-up as compared to the top-down approach,
especially in the context of VSEs. First, we present the
bottom-up approach and highlight its suitability to VSEs.
Further, we describe ALPHAs for Practice authoring and
for Method authoring, which are subordinate of the Way-
of-Working ALPHA as defined in (OMG, 2014), and show
how practitioners can carry out authoring processes using

the ALPHA concept.
4.1 BOTTOM-UP APPROACH

Traditionally, organizations opt for adopting a top-
down approach, where the head of the organization chooses
a model or standard to be implemented as a new and
routine way of working. Thus, actual activities and tasks
are changed or replaced for the ones prescribed by the
model until every member of the organization has adopted
the new way of work.
to the
organization, but require the organization to adapt to
them. In the words of (Staples et al., 2007), while CMMI
admits tailoring, the emphasis is on tailoring “down” by

Such models do not adapt themselves

demanding justification for excluding defined aspects of the

| 35

Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

MN .

snes -

10Npoid YIoM

B2

S

fsEL

s6Y

mnssy

2.}

uozpuey

E

3‘48.4

sBY

o

N0 S3WED

2

[0o1

SUIEJUOD

537

BUSLID UGIEORBN -
anpeloo -
sainsespy -

2080814

\

ulzzed

10 pasodwoo

j0 pasodwod

I‘

SUIEILCD

ssoding -

poLgBY

* 40 pasodwod

BIMONASEU]
sa0eld
pue spoyisiy

saunba

o} paubisss

R

sasn

S

pue abpayrouy

sassasscd

wes | YIom

|~

10 paULCJUCO

10 puz 3y

1NPOId 3IEMI0S

Ag psonpoid

I

palold alemyog

I|EULLEEP |

Epas) Japioysied

lauoield

dn sjas

[y,

pusai~_ |

suoEpu0D walold

|~

dn sjas

]

ISPIOYSHES

dn sjas

Fig. 3. Software project common concepts class diagram.

36 | Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

model, rather than on tailoring “up” by starting with
minimal practices and adding to them as necessary to
address specific issues. It is no surprise that a top-down
approach causes a partial loss of practitioners’ valuable
knowledge. In addition, smaller organizations believe that
adopting models incurs significant costs and may
negatively affect their creativity and flexibility (Coleman
& O’Connor, 2008).

When organizations choose a bottom-up approach, the
scenario is quite different. In the first place, practitioners
who are responsible for expressing and modifying their
activities direct it. In the second place, practitioners
themselves are in charge of evaluating what they have
expressed and of composing their own software engineering
method. Altogether, this approach promotes collaboration
and communication among members of work teams,
involves practitioners into the organization’s functioning
and reduces resistance to change. While a top-down
adoption requires expensive consulting services, a bottom-
up approach promotes internal leadership.

What is more, making the knowledge explicit allows
for constant improvement. Visibly expressed working
practices can be more easily discussed, analyzed and,
consequently, improved by the same practitioners.

BOTTOM - UP

METHOD
PRACTICES .

Finally, a bottom-up approach implies a minimal loss
all the
stays

knowledge possessed by the
Often the

knowledge within small organizations is situationally

of knowledge;
organization in the organization.
originated and context dependent so its loss becomes
undesirable and detriment for organizational well-being.
Going from the bottom helps to evaluate, share and
preserve it.

Considering these differences in approaching software
development endeavors, we chose a bottom-up design for
our metamodel (see Figure 4). KUALI-BEH takes into
account practitioners’ experience and know-how to bring
benefit to the organization.

4.2 PRACTICE AND METHOD
AUTHORING ALPHAS

In this subsection, we present how KUALI-BEH
extends and amplifies the endeavor area of concern with
the help of two new ALPHAs: Practice and Method
Authoring.

The ALPHA concept is an essential element of a
software endeavor. Each ALPHA consists of a set of states
that allow practitioners to track the progress of a particular
aspect of the endeavor. Each state is defined in terms of a

TOP - DOWN

STANDARDIZED
BEST PRACTICES

Lt

Fig. 4. Bottom-up and top-down approaches.

Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843 | 37

checklist that helps to understand what to address in order
to accomplish an objective. This concept is particularly
relevant for VSEs because ALPHAs allow practitioners to
transform their tacit knowledge into explicit, expressing
their ways of working in terms of practices and later on as
methods that emerge in the organizations and belong to
them.

The endeavor area of concern embraces the team and
its way of working; any method must describe a set of
practices to effectively plan, lead and monitor the efforts
of the team (OMG, 2014). The Practice Authoring ALPHA
is the first step that allows practitioners to express their
work units as practices, and the Method Authoring
ALPHA is a higher level where these practices are joined
to make up methods. The two ALPHAs work together
helping practitioners to articulate explicitly their work.

4.2.1 Practice Authoring

The Practice Authoring ALPHA
continuum of six states, and the entire authoring process

represents a

consists in going back and forth from one state to another,
i.e. following an iterative process, until the practice reaches
its final state: Consolidated. Figure 5 shows the whole set
of states for Practice Authoring ALPHA.

In order to determine the state of a practice during
authoring, a checklist is provided in (OMG, 2014).

For example, if a practice is Agreed, according to the
checklist, it implies that “the expressed practice has been
revised and accustomed by practitioners” and “the
expressed practice has been accepted by the practitioners
as their explicit way of working”.

Due to its simplicity and manageability, the checklist
gives the practitioner the necessary information to assess
the practice’s state and continue the authoring process
without additional sources of information or knowledge,
e.g. consulting services.

4.2.2 Method Authoring

Method Authoring is an articulation of a coherent,
consistent and sufficient set of practices (OMG, 2012).
Similar to the Practice Authoring ALPHA, the Method
Authoring ALPHA consists of six states, through which a
set of practices evolves into a method. Figure 6 displays
the Method Authoring ALPHA states with their related
definitions. It can be noticed that the second and the third
states, Integrated and Well-Formed, are different from
those of the Practice Authoring ALPHA. These two states
exploit largely the properties and operations mentioned in
3.1.

All the collected knowledge is stored in a knowledge
base and is recycled and taken advantage of in the future
software project endeavors.

(™
' ! N\
The way of working to be authored as a practice is identified b
. y ¢} p Y
|dentified the practitioners.
o Expressed The way of working is expressed as a practice using the
c P practice template.
f=p—m—
o - "
‘._C_‘ Agreed The practice is agreed on by the practitioners.
A — T—
< The practice is used in software projects by the practitioners as
8 In Use theirway of working.
—
O
E In The practice is adapted and/or improved by the practitioners based
o Optimization on their experience, knowledge and external influence.
. The practice is mature and adopted by the practitioners as a routine
Consolidated e o v
N\
- J

=
&

ig. 5. Practice Authoring ALPHA (OMG, 2014).

38 Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

f(~ ™
Identified Individual practices, needed to accomplish an endeavor, to be
entilie authored as a method are selected by the practitioners.
(o)) Integrated The method is integrated as a composition of agreed practices.
c
R — —
Q The method is agreed on by the practitioners and accomplishes
= Well-Formed ; ; .
= the properties of coherency, consistency and sufficiency.
L —
o In-Use The method is used in software projects by the practitioners.
o
Nl — 2—
o
O In- The method is adapted and/or improved by the practitioners based
E Optimization on their experience and external influence.
Consolidated The method is mature and adopted by practitioners as a routine
way of working.
. /
N J

Fig. 6. Method Authoring ALPHA, adapted from (OMG, 2014).

4.3 VALIDATION AND USE IN REAL
LIFE CONTEXTS

The KUALI-BEH framework went through a long
validation process (approximately four years), which is
divided into 3 phases. The first feedback was obtained
through a proof of concept, during which we applied the
common concepts to express traditional, i.e. ISO/IEC
29110 Basic profile, and agile, i.e. Scrum, practices. The
second feedback and improvements came after conducting
a collaborative workshop held with 16 practitioners from
software development organizations and academy. The
purpose of the workshop was to evaluate pertinence,
appropriateness and proficiency of the KUALI-BEH
concepts through discussions, task solving and on-line
surveys. During eight workshop sessions, the principal
aspects of the framework were examined and applied in
The feedback
appropriateness of the common concepts and led to

made-up situations. confirmed the

improving terminology, adding new definitions and
operations and changing operational rules.

The most substantial feedback and improvements were
obtained during three case studies where KUALI-BEH was
introduced into real-life projects and five OMG Task Force
in the ESSENCE

Meetings standardization context.

KUALI-BEH was

implemented to integrate and document a game-based

During one of the case studies,

method related to the Inception phase of software projects.
The method was developed in a Mexican organization in
response to the time- and money-consuming task of
requirements specification and difficulties related to
stakeholders’ involvement in projects. They found that the
helps the

stakeholders as well as the team, the former define what

inclusion of games and ludic materials
they actually want, and the latter elicit all the necessary
information from the stakeholders. However, this effort was
not formalized nor was it possible to replicate it by other
or new members of the organization. The value brought by
KUALI-BEH consisted in converting it into a well-defined,
congruent and replicable method (Morales-Trujillo,
Oktaba, & Gonzalez, 2014). Using the framework’s
terminology, the ALPHA Practice Authoring reached the
Well-formed state, and, when the case study concluded, it
reached the In-use and In-optimization states. This work
was followed by a design and construction of a KUALI-
BEH software tool (Medina-Diaz, Morales-Trujillo, &
Oktaba, 2016).

Also, a formalization through description logics is
proposed in (Morales-Trujillo et al., 2018). The objective

Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 28-43 | 39

pursued by the formalization was to foster communication,

computational inference and reuse of practitioners’
knowledge, which is achieved using domain ontologies as a
means to represent and share common SE knowledge,
Situational Method Engineering (SME) principles for
defining method properties and operations, and
Description Logics as a knowledge description language.
The effectiveness of ontologies in addressing terminology
concerns has been demonstrated in many fields (Guizzardi,
Falbo, & Pereira Filho, 2002), therefore the formalization,
based on an ontology, KB-O,
definitions of the KUALI-BEH common concepts.

One of the latest applications of KUALI-BEH was
related to defining practices and methods in a project at
the Coordination of University Digital Collections (CCUD

for its initials in Spanish) at the National Autonomous

collects harmonized

University of Mexico (Zavala-Correa, Morales-Trujillo, &
Oktaba, 2016). The CCUD started to use KUALI-BEH
after the standard was published, and no training or
intervention from the researchers was requested.

The project’s objective was to create a platform and a
website portal to manage numerous University collections
so they would be easily visualized and accessed by anyone.
KUALI-BEH was introduced when the project had already
started, and there was an urgent need to make explicit the
CCUD development and
management areas carry out their activities. Apart from

way the people from the

defining their methods without interrupting the usual way

of working, the practitioners followed an ordered

development process and generated customized
documentation according to the framework. A recent
informal chart with a practitioner from CCUD revealed
that they adopted KUALI-BEH for other projects since
they find particularly useful its flexibility and “non-
imposing” approach.

In November 2014, the CCUD software engineering
team identified the practices to be authored and started
their expression using backtracking techniques and
interviews with the rest of the CCUD members. The
expressed practices reflected the real way of working, not
hidden anymore, and were “In-use” during the next
months. In August 2015, all the authored practices reached
the “Agreed” state. Since then, the organizational method
has been “In-optimization”. During this period, the
authored practices experienced addition of tasks and

application of adaptation operations to certain practices.

They created a global requirements specification method
for wide contexts by fusing six practices related to
they
architecture definition practice by splitting it into simpler

requirements. Besides, modularized the system
and more specialized practices. The project involved 17
people and the defined practices and methods are still in
use.

In April 2016, the method reached the “Consolidated”
state. The following are the benefits of having developed a
solid organizational way of working as reported by the
members of CCUD: (i) better work distribution was
achieved; (ii) the CCUD envisioned the whole project,
which made them aware of its complexity and importance;
(iii) the team’s reports to the project manager and the
CCUD directors were improved and simplified; (iv)
training of new members joining the CCUD was reduced
in time and effort by 40%.

More information on the case studies, the OMG
standardization process and the post-standard experience
can be found in (Morales-Trujillo, Oktaba, & Gonzlez,
2015; Morales-Trujillo, Oktaba, & Piattini, 2015a, 2015b).

4.4 THREATS TO VALIDITY

This section discusses various threats to validity that
were taken into account and counteracted during the
development of KUALI-BEH. They concern the construct
validity, internal and external validity and reliability.

On the one hand, the artifact’s construct validity was
ensured since KUALI-BEH was created following the
mandatory requirements requested by the OMG in the
FACESEM RFP; in addition, it was validated several
times by the OMG Analysis and Design Task Force. On
the other hand, multiple data sources were used in order
to provide evidence and respond to the research objective.
Those sources were interviews, direct observations, surveys
and work artifacts, thus covering direct, indirect and third-
degree methods defined by Runeson et al., 2012.

As for the internal validity, the results of the case
studies proved that the objective for which KUALI-BEH
was created was achieved, thus allowing us to accomplish
our goals and the participants’ needs. Several factors need
to be mentioned. First, the participants of the workshop
and case studies have a representative profile of
practitioners working in VSEs. They possess different

degrees of experience, going from juniors to seniors, as well

40 | Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

as their age and educational background are diverse. These
factors account for the trustworthiness of the collected
surveys and the lack of bias towards KUALI-BEH.
Although the number of participants is not large, the
sample was representative.

The external validity was also addressed. In spite of the
limited number of participant organizations, each of them
is as a typical software developer entity and share the main
characteristics of VSEs who are the target audience of
KUALI-BEH. Moreover, the selection of participants was
not intentional; the participant organizations themselves
expressed their interest in taking part. Finally, thanks to
the OMG and SEMAT, the obtained results were shared
with researchers and practitioners from other countries.

The reliability was ensured by constantly triangulating
the results to third parties, such as colleagues and members
of the research group. The participants were also informed
of the results and lessons learned, which were extensively
disseminated in case study reports. Besides, we provide a
detailed plan that guided the case studies activities for
anyone who wishes to replicate them.

Returning to (Runeson et al., 2012), we found the
following arguments to counteract the threats to this
proposal’s validity: (i) prolonged involvement, especially in
(3 and 6 months
respectively); (ii) involvement of assistants and different

second and third case studies
data sources; (iii) involvement of two researchers and peer
debriefing all case studies; (iv) sharing of work products
and documents with the participants of case studies; and
(v) defining a version control strategy so the audit trail
mechanism was easy to follow and successful.

5. CONCLUSIONS AND FUTURE WORK

Situating software engineering practices on universal

4

elements “will give solidity and soundness to things built
with them. Formally defining practices will identify the
commonalities between them, leading to a better way to
collect and share knowledge” (Jacobson, Ng, & Spence,
2007).

The knowledge collected in process reference models,
standards and models implements a top-down approach
that overlooks the way practitioners actually work and is
The

contribution of KUALI-BEH consists in placing focus on

not helpful for expressing their own practices.

practitioners’ ways of working. Its bottom-up approach,

contrary to renowned standards and models, supports
practitioners in formalizing their tacit knowledge and
building up a solid organizational modus operandi, which
is expressed and stored as a collection of methods and
practices. It promotes collaboration and communication
among members of work teams, opens space for rethinking
and improvement of practices, and minimizes the loss of
knowledge. These benefits are particularly important for
VSEs.

The and Method Authoring ALPHAs
represent a smooth transition from one state to another,

Practice

totalizing six states. Starting with the Practice Authoring
ALPHA and then moving to the Method Authoring
ALPHA, practitioners authorize their tacit ways of
working, making them explicit and tangible. The ALPHAs
guide practitioners on the path of reaching a well-formed
method of their own that will be suitable in any project of
a particular organization and, at the same time, can be
customized according to new needs.

After validating the bottom-up approach of KUALI-
BEH we can conclude that it is a valuable alternative for
practitioners and small organizations since it provides a
first step to bridge the gap between software engineering
KUALI-BEH permits
create an

small
method
repository of their own knowledge, to foster their maturity

theory and practice.

organizations to organizational
and to gradually introduce them to the adoption of
standards and reference models. On the other hand,
adoption and usage of KUALI-BEH requires little effort
from practitioners and no financial investment from the
organization. Moreover, with the organizational way of
VSE can establish
organizational collaborations through the execution of

working expressed, the inter-
business processes between heterogeneous and autonomous
organizations (Tello-Leal, Chiotti, & Villarreal, 2014).

In addition, a deeper reasoning about ways of working
is possible, which provides solutions within reach for
practitioners and helps organizations to effectively achieve
their goals in the industrial context.

The potential impact of KUALI-BEH can be traced on
two fronts: within academia and outside it. On the one
hand, collecting and clearly defining the software project
common concepts contributes to the body of theoretical
knowledge of Software Engineering. On the other hand,
improving VSE’s knowledge management process and
helping them to formalize their way of working through the

Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 2843 | 41

KUALI-BEH’s bottom-up approach gives them a greater
potential on the industry market. In fact, the organizations
that participated in the case studies achieved tangible
benefits. Since VSEs account for more than a half of all
software developing organizations, the potential effect of
adopting through bottom-up may have considerable
positive consequences on the industry as a whole.

Finally, KUALI-BEH contributed actively to the
SEMAT initiative and to the OMG specification process in
the identification of the theoretical and practical universal
elements (Morales-Trujillo, Oktaba, & Piattini, 2015c¢).

As future work, two lines are pursued: to develop a fully
functional software that will automate the use of the
framework and to continue spreading KUALI-BEH among
organizations, especially VSEs. Both of them are meant to
motivate practitioners to use KUALI-BEH and take
advantage of their own expertise and knowledge.

ACKNOWLEDGMENTS

This work has been funded by the GEMA (Generation
and Evaluation of Models for dAta Quality) supported by
JCCM Consejeria de Educaciéon y Cultura y Deportes, y
FEDER (SBPLY/17/180501/000293), the
Graduate Science and Engineering Computing (UNAM),
the grant scholarship program of CONACYT and the
Postdoctoral Fellowships Program of DGAPA (UNAM).

Fondos

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

REFERENCES

Basri, S., & O’Connor, R. V. (2010). Understanding the
perception of very small software companies towards the
adoption of process standards. In European Conference on
Software Process Improvement (pp. 153-164). Springer,
Berlin, Heidelberg.

Basri, S., & O’Connor, R. V. (2011). Towards an understanding
of software development process knowledge in very small
companies. In International Conference on Informatics
Engineering and Information Science (pp. 62-71). Springer,
Berlin, Heidelberg.

Becker-Kornstaedt, U., Scott, L., & Zettel, J. (2000, June).

with Spearmint/sup TM//EPG.

Process engineering

In Software Engineering, 2000. Proceedings of the 2000
International Conference on (p. 791). IEEE.
Brinkkemper, S. (1996). Method engineering: engineering of

information development methods and
tools. Information and software technology, 38(4), 275-280.

Broy, M. (2011). Can
theoreticians neglect practice?. Computer, (10), 19-24.

Clarke, P. M., Calafat, A. L. M., Ekert, D., Ekstrom, J. J.,
Gornostaja, T., Jovanovic, M., ... & O’Connor, A. (2016a).

Refactoring software development process terminology

systems

practitioners neglect theory and

through the use of ontology. In European Conference on
Software Process Improvement, 47-57. Springer, Cham.

Clarke, P., Mesquida, A. L., Ekert, D., Ekstrom, J. J., Gornosta-
ja, T., Jovanovic, M., ... & O’Connor, A. (2016b). An inves-
tigation of software development process terminology.
In International Conference on Software Process Improve-
ment and Capability Determination,351-361.Springer,Cham

Coleman, G., & O’Connor, R. (2007). Using grounded theory to
understand software process improvement: A study of Irish
software product companies. Information and Software
Technology, 49(6), 654-667.

Coleman, G., & O’Connor, R. (2008). Investigating software
process in practice: A grounded theory perspective. Journal
of Systems and Software, 81(5), T72-784.

Dreyfus, H., & Dreyfus, S. (1986). Mind over machine: The
power of human intuition and expertise in the era of the
computer New York.

Edwards, J. S. (2000). Artificial intelligence and knowledge
management: how much difference can it really
make. Proceedings of KMAC2000, Knowledge Management
Beyond The Hype: Looking Towards The New Millennium,
Operational Research Society,
mingham, UK, 136-147.

Edwards, J. S. (2003). Managing software engineers and their

Aston University, Bir-

knowledge. In Managing software engineering knowledge, 5-
27. Springer, Berlin, Heidelberg.

Espinosa-Curiel, 1. E., Rodriguez-Jacobo, J., & Fernindez-
Zepeda, J. A. (2016). Understanding SPI in small orga-
nizations: a study of Mexican software enterprises. Journal
of Software: Evolution and Process, 28(5), 372-390.

Franch, X., & Ribs, J. M. (1999, October). Using UML for
modelling the software process.

Unified Modeling
Language (pp. 292-307). Springer, Berlin, Heidelberg.

Guizzardi, G., Falbo, R. D. A., & Pereira Filho, J. G. (2002).

Using objects and Patterns to implement domain ontolo-

static part of a

In International Conference on the

gies. Journal of the Brazilian Computer Society, 8(1),43-56.
A F, N, & Oei, J. H.

(1994). Situational method engineering for information

Harmsen, Brinkkemper, J.

system project approaches (pp. 169-194). University of
Twente, Department of Computer Science.

https://www.scopus.com/record/display.uri?eid=2-s2.0-0030124382&origin=resultslist&sort=plf-f&src=s&st1=Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=92&s=TITLE%28Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.%29&relpos=0&citeCnt=521&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030124382&origin=resultslist&sort=plf-f&src=s&st1=Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=92&s=TITLE%28Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.%29&relpos=0&citeCnt=521&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030124382&origin=resultslist&sort=plf-f&src=s&st1=Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=92&s=TITLE%28Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.%29&relpos=0&citeCnt=521&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-80054004176&origin=resultslist&sort=plf-f&src=s&st1=Can+practitioners+neglect+theory+and+theoreticians+neglect+practice&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=74&s=TITLE%28Can+practitioners+neglect+theory+and+theoreticians+neglect+practice%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-80054004176&origin=resultslist&sort=plf-f&src=s&st1=Can+practitioners+neglect+theory+and+theoreticians+neglect+practice&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=74&s=TITLE%28Can+practitioners+neglect+theory+and+theoreticians+neglect+practice%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987986864&origin=resultslist&sort=plf-f&src=s&st1=Refactoring+software+development+process+terminology+through+the+use+of+ontology.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=88&s=TITLE%28Refactoring+software+development+process+terminology+through+the+use+of+ontology.%29&relpos=0&citeCnt=6&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987986864&origin=resultslist&sort=plf-f&src=s&st1=Refactoring+software+development+process+terminology+through+the+use+of+ontology.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=88&s=TITLE%28Refactoring+software+development+process+terminology+through+the+use+of+ontology.%29&relpos=0&citeCnt=6&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84987986864&origin=resultslist&sort=plf-f&src=s&st1=Refactoring+software+development+process+terminology+through+the+use+of+ontology.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=88&s=TITLE%28Refactoring+software+development+process+terminology+through+the+use+of+ontology.%29&relpos=0&citeCnt=6&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84994005738&origin=resultslist&sort=plf-f&src=s&st1=+An+investigation+of+software+development+process+terminology&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=68&s=TITLE%28+An+investigation+of+software+development+process+terminology%29&relpos=0&citeCnt=7&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84994005738&origin=resultslist&sort=plf-f&src=s&st1=+An+investigation+of+software+development+process+terminology&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=68&s=TITLE%28+An+investigation+of+software+development+process+terminology%29&relpos=0&citeCnt=7&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-34247156698&origin=resultslist&sort=plf-f&src=s&st1=Using+grounded+theory+to+understand+software+process+improvement%3a+A+study+of+Irish+software+product+companies.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=117&s=TITLE%28Using+grounded+theory+to+understand+software+process+improvement%3a+A+study+of+Irish+software+product+companies.%29&relpos=0&citeCnt=99&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-34247156698&origin=resultslist&sort=plf-f&src=s&st1=Using+grounded+theory+to+understand+software+process+improvement%3a+A+study+of+Irish+software+product+companies.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=117&s=TITLE%28Using+grounded+theory+to+understand+software+process+improvement%3a+A+study+of+Irish+software+product+companies.%29&relpos=0&citeCnt=99&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-34247156698&origin=resultslist&sort=plf-f&src=s&st1=Using+grounded+theory+to+understand+software+process+improvement%3a+A+study+of+Irish+software+product+companies.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=117&s=TITLE%28Using+grounded+theory+to+understand+software+process+improvement%3a+A+study+of+Irish+software+product+companies.%29&relpos=0&citeCnt=99&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-40749110575&origin=resultslist&sort=plf-f&src=s&st1=+Investigating+software+process+in+practice%3a+A+grounded+theory+perspective.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=82&s=TITLE%28+Investigating+software+process+in+practice%3a+A+grounded+theory+perspective.%29&relpos=0&citeCnt=115&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-40749110575&origin=resultslist&sort=plf-f&src=s&st1=+Investigating+software+process+in+practice%3a+A+grounded+theory+perspective.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=82&s=TITLE%28+Investigating+software+process+in+practice%3a+A+grounded+theory+perspective.%29&relpos=0&citeCnt=115&searchTerm=
https://ieeexplore.ieee.org/abstract/document/4307079
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Artificial+intelligence+and+knowledge+management%3A+how+much+difference+can+it+really+make.+Proceedings+of+KMAC2000%2C+Knowledge+Management+Beyond+The+Hype%3A+Looking+Towards+The+New+Millennium%2C+Operational+Research+Society%2C+Aston+University%2C+Birmingham%2C&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Artificial+intelligence+and+knowledge+management%3A+how+much+difference+can+it+really+make.+Proceedings+of+KMAC2000%2C+Knowledge+Management+Beyond+The+Hype%3A+Looking+Towards+The+New+Millennium%2C+Operational+Research+Society%2C+Aston+University%2C+Birmingham%2C&btnG=
https://link.springer.com/chapter/10.1007/978-3-662-05129-0_1
https://link.springer.com/chapter/10.1007/978-3-662-05129-0_1
https://www.scopus.com/record/display.uri?eid=2-s2.0-84979488287&origin=resultslist&sort=plf-f&src=s&st1=Understanding+SPI+in+small+organizations%3a+a+study+of+Mexican+software+enterprises.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=89&s=TITLE%28Understanding+SPI+in+small+organizations%3a+a+study+of+Mexican+software+enterprises.%29&relpos=0&citeCnt=2&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84979488287&origin=resultslist&sort=plf-f&src=s&st1=Understanding+SPI+in+small+organizations%3a+a+study+of+Mexican+software+enterprises.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=89&s=TITLE%28Understanding+SPI+in+small+organizations%3a+a+study+of+Mexican+software+enterprises.%29&relpos=0&citeCnt=2&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84937574698&origin=resultslist&sort=plf-f&src=s&st1=Using+UML+for+modelling+the+static+part+of+a+software+process.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=69&s=TITLE%28Using+UML+for+modelling+the+static+part+of+a+software+process.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84937574698&origin=resultslist&sort=plf-f&src=s&st1=Using+UML+for+modelling+the+static+part+of+a+software+process.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=69&s=TITLE%28Using+UML+for+modelling+the+static+part+of+a+software+process.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-18444400875&origin=resultslist&sort=plf-f&src=s&st1=Using+objects+and+Patterns+to+implement+domain+ontologies&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=64&s=TITLE%28Using+objects+and+Patterns+to+implement+domain+ontologies%29&relpos=0&citeCnt=15&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-18444400875&origin=resultslist&sort=plf-f&src=s&st1=Using+objects+and+Patterns+to+implement+domain+ontologies&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=64&s=TITLE%28Using+objects+and+Patterns+to+implement+domain+ontologies%29&relpos=0&citeCnt=15&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0028580996&origin=resultslist&sort=plf-f&src=s&st1=Situational+method+engineering+for+information+system+project+approaches+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=80&s=TITLE%28Situational+method+engineering+for+information+system+project+approaches+%29&relpos=0&citeCnt=146&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0028580996&origin=resultslist&sort=plf-f&src=s&st1=Situational+method+engineering+for+information+system+project+approaches+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=80&s=TITLE%28Situational+method+engineering+for+information+system+project+approaches+%29&relpos=0&citeCnt=146&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-77957592799&origin=resultslist&sort=plf-f&src=s&st1=Understanding+the+perception+of+very+small+software+companies+towards+the+adoption+of+process+standards&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=110&s=TITLE%28Understanding+the+perception+of+very+small+software+companies+towards+the+adoption+of+process+standards%29&relpos=0&citeCnt=29&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-77957592799&origin=resultslist&sort=plf-f&src=s&st1=Understanding+the+perception+of+very+small+software+companies+towards+the+adoption+of+process+standards&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=110&s=TITLE%28Understanding+the+perception+of+very+small+software+companies+towards+the+adoption+of+process+standards%29&relpos=0&citeCnt=29&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-77957592799&origin=resultslist&sort=plf-f&src=s&st1=Understanding+the+perception+of+very+small+software+companies+towards+the+adoption+of+process+standards&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=110&s=TITLE%28Understanding+the+perception+of+very+small+software+companies+towards+the+adoption+of+process+standards%29&relpos=0&citeCnt=29&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-82955205945&origin=resultslist&sort=plf-f&src=s&st1=Towards+an+understanding+of+software+development+process+knowledge+in+very+small+companies&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=97&s=TITLE%28Towards+an+understanding+of+software+development+process+knowledge+in+very+small+companies%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-82955205945&origin=resultslist&sort=plf-f&src=s&st1=Towards+an+understanding+of+software+development+process+knowledge+in+very+small+companies&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=97&s=TITLE%28Towards+an+understanding+of+software+development+process+knowledge+in+very+small+companies%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-82955205945&origin=resultslist&sort=plf-f&src=s&st1=Towards+an+understanding+of+software+development+process+knowledge+in+very+small+companies&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=97&s=TITLE%28Towards+an+understanding+of+software+development+process+knowledge+in+very+small+companies%29&relpos=0&citeCnt=8&searchTerm=
https://ieeexplore.ieee.org/abstract/document/870511
https://ieeexplore.ieee.org/abstract/document/870511
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030124382&origin=resultslist&sort=plf-f&src=s&st1=Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=92&s=TITLE%28Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.%29&relpos=0&citeCnt=521&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030124382&origin=resultslist&sort=plf-f&src=s&st1=Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=92&s=TITLE%28Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.%29&relpos=0&citeCnt=521&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030124382&origin=resultslist&sort=plf-f&src=s&st1=Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.&st2=&sid=cadb9e8688d1adcdd19963d11d9835b3&sot=b&sdt=b&sl=92&s=TITLE%28Method+engineering%3a+engineering+of+information+systems+development+methods+and+tools.%29&relpos=0&citeCnt=521&searchTerm=

42 | Miguel Ehécatl Morales-Trugillo et al. / Journal of Applied Research and Technology 17 (2019) 2843

Henderson-Sellers, B., Gonzalez-Perez, C., Mcbride, T., & Low,
G. (2014). An ontology for ISO software engineering
standards: 1) Creating the infrastructure. Computer
Standards €& Interfaces, 36(3), 563-576.

Knowledge Based Systems, Inc., D. (1993). IDEFO: Integration
definition for function modeling.

International Organization for Standardization. (2004). ISO/IEC
15504: Information technology — Process assessment.
International Organization for Standardization. (2005). ISO
9000: Quality management systems — Fundamentals and

vocabulary.

International Organization for Standardization. (2007). ISO/IEC
24744: Software Engineering — Metamodel for Development
Methodologies.

International ~Organization for Standardization. (2008a).
ISO/IEC 12207: Systems and soltware engineering -
Software life cycle processes.

International Organization for Standardization. (2008b).
ISO/IEC 15288: Systems and software engineering -
System life cycle processes.

International Organization for Standardization. (2010). ISO/IEC
TR 24774: Systems and software engineering — Life cycle
management — Guidelines for process description.

International Organization for Standardization. (2012). ISO/IEC
29110-5-1-2: Software engineering — Lifecycle profiles for

Small Entities (VSEs) -
Engineering Guide: Generic profile group: Basic Profile.

Jacobson, 1., Ng, P. W. & Spence, . (2007). Enough of

Object

Very Management and

Processes-Lets do Practices. Journal of
Technology, 6(6), 41-66.

Jacobson, 1., Ng, P. W., McMahon, P. E., Spence, 1., & Lidman,
S. (2012). The essence of software engineering: the SEMAT
kernel. Communications of the ACM, 55(12), 42-49.

Johnson, P., Ekstedt, M., & Jacobson, 1. (2012).Where's the
theory for software engineering? IEEE software, 29 (5), 96-
96.

Krdzavac, N., Gagevié, D., & Devedzi¢, V. (2009). Model driven
engineering of a tableau algorithm for description logics.
Computer Science and Information Systems, 6 (1), 23-43.

Laporte, C. Y., Alexandre, S.; & O’Connor, R. V. (2008). A
software engineering lifecycle standard for very small
enterprises. In Furopean Conference on Software Process
Improvement (pp. 129-141). Springer, Berlin, Heidel-
berg.

Lee, J., Gruninger, M., Jin, Y., Malone, T., Tate, A., Yost, G.,
& PIF Working Group. (1998). The process interchange
format and framework. The
review, 13(1), 91-120.

Medina-Diaz, R., Morales-Trujillo, M. & Oktaba, H. (2016).
Computer Schema for Semi-automated Verification of
Methods EUSICS’16

knowledge engineering

and Practices. in International

Symposium on Intelligent Computing Systems. Mérida,
Yucatan, México, pp. 103-109.

Morales-Trujillo, M. E., Oktaba, H., & Gonzalez, J. C. (2014).
Improving software projects inception phase using games
ActiveAction workshop. In 2014 International Conference
on Evaluation of Novel Approaches to
Engineering (ENASE). (pp. 1-8). IEEE.

Morales-Trujillo, M. E., Oktaba, H., & Gonzalez, J. C. (2015).
Taking Seriously Software Projects Inception Through

Software

Games. In International Conference on Evaluation of Novel
Approaches to Software Engineering, 109-124.

Morales-Trujillo, M., Oktaba, H., & Piattini, M. (2015a). Using
technical-action-research to validate a framework for
authoring software engineering methods. In Proceedings of
the 17th
Information Systems, 2, pp. 15-27.

Morales-Trujillo, M., Oktaba, H., & Piattini, M. (2015b).

Validating a Software Engineering Framework Through

International Conference on Enterprise

Technical-Action-Research in Union with Case Studies.
In International Conference on Enterprise Information
Systems, pp. 303-327. Springer.

Morales-Trujillo, M. E.; Oktaba, H., & Piattini, M. (2015¢). The
making of an OMG standard. Computer Standards &
Interfaces, 42, 84-94.

Morales-Trujillo, M., Oktaba, H., Hernandez-Quiroz, F., &
Escalante-Ramirez, B. (2018). Towards a Formalization of
a Framework to Express and Reason about Software Engi-
neering MethodS. Computing & Informatics,37(1),109-141.

NYCE. (2011). NMX-I-059-NYCE-2011: Modelo de Procesos
para la Industria del Software (MoProSoft).

Object (2008). Software and
Systems Process Engineering Meta-Model. Version 2.0,
formal/2008-04-01, Needham, MA, USA. Retrieved
September 2017, from: http://www.omg.org/

Object Management Group. (2011). A Foundation for the Agile
Creation and Enactment of Software Engineering Methods
RFP. Technical report. Needham, MA, USA.

Object Management Group. (2012). KUALI-BEH Software
Project Common Concepts. Technical draft. Needham,
MA, USA.

Object Management Group. (2014). ESSENCE - Kernel and
Language for Software Engineering Methods. Needham,
MA, USA.

O'Connor, R. V., & Basri, S. (2014). Understanding the role of
knowledge management in software development: a case

Management Group. OMG.

study in very small companies. International Journal of
Systems and Service-Oriented Engineering (IJSSOE), 4(1),
39-52.

Oktaba, H., Piattini, M. (2008). Software Process Improvement
for Small and Medium Enterprises: Techniques and Case
Studies, 1-376.

https://www.scopus.com/record/display.uri?eid=2-s2.0-84902357078&origin=resultslist&sort=plf-f&src=s&st1=+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=86&s=TITLE%28+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84902357078&origin=resultslist&sort=plf-f&src=s&st1=+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=86&s=TITLE%28+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84902357078&origin=resultslist&sort=plf-f&src=s&st1=+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=86&s=TITLE%28+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84951960474&origin=resultslist&sort=plf-f&src=s&st1=Taking+Seriously+Software+Projects+Inception+Through+Games.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=66&s=TITLE%28Taking+Seriously+Software+Projects+Inception+Through+Games.%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84951960474&origin=resultslist&sort=plf-f&src=s&st1=Taking+Seriously+Software+Projects+Inception+Through+Games.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=66&s=TITLE%28Taking+Seriously+Software+Projects+Inception+Through+Games.%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84939487633&origin=resultslist&sort=plf-f&src=s&st1=Using+technical-action-research+to+validate+a+framework+for+authoring+software+engineering+methods.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=107&s=TITLE%28Using+technical-action-research+to+validate+a+framework+for+authoring+software+engineering+methods.+%29&relpos=0&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84939487633&origin=resultslist&sort=plf-f&src=s&st1=Using+technical-action-research+to+validate+a+framework+for+authoring+software+engineering+methods.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=107&s=TITLE%28Using+technical-action-research+to+validate+a+framework+for+authoring+software+engineering+methods.+%29&relpos=0&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84939487633&origin=resultslist&sort=plf-f&src=s&st1=Using+technical-action-research+to+validate+a+framework+for+authoring+software+engineering+methods.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=107&s=TITLE%28Using+technical-action-research+to+validate+a+framework+for+authoring+software+engineering+methods.+%29&relpos=0&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84958972888&origin=resultslist&sort=plf-f&src=s&st1=Validating+a+Software+Engineering+Framework+Through+Technical-Action-Research+in+Union+with+Case+Studies&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=111&s=TITLE%28Validating+a+Software+Engineering+Framework+Through+Technical-Action-Research+in+Union+with+Case+Studies%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84958972888&origin=resultslist&sort=plf-f&src=s&st1=Validating+a+Software+Engineering+Framework+Through+Technical-Action-Research+in+Union+with+Case+Studies&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=111&s=TITLE%28Validating+a+Software+Engineering+Framework+Through+Technical-Action-Research+in+Union+with+Case+Studies%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84937540473&origin=resultslist&sort=plf-f&src=s&st1=The+making+of+an+OMG+standard.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=37&s=TITLE%28The+making+of+an+OMG+standard.%29&relpos=0&citeCnt=7&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84937540473&origin=resultslist&sort=plf-f&src=s&st1=The+making+of+an+OMG+standard.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=37&s=TITLE%28The+making+of+an+OMG+standard.%29&relpos=0&citeCnt=7&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047756210&origin=resultslist&sort=plf-f&src=s&st1=TOWARDS+A+FORMALIZATION+OF+A+FRAMEWORK+TO+EXPRESS+AND+REASON+ABOUT+SOFTWARE+ENGINEERING+METHODS&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=102&s=TITLE%28TOWARDS+A+FORMALIZATION+OF+A+FRAMEWORK+TO+EXPRESS+AND+REASON+ABOUT+SOFTWARE+ENGINEERING+METHODS%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047756210&origin=resultslist&sort=plf-f&src=s&st1=TOWARDS+A+FORMALIZATION+OF+A+FRAMEWORK+TO+EXPRESS+AND+REASON+ABOUT+SOFTWARE+ENGINEERING+METHODS&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=102&s=TITLE%28TOWARDS+A+FORMALIZATION+OF+A+FRAMEWORK+TO+EXPRESS+AND+REASON+ABOUT+SOFTWARE+ENGINEERING+METHODS%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047756210&origin=resultslist&sort=plf-f&src=s&st1=TOWARDS+A+FORMALIZATION+OF+A+FRAMEWORK+TO+EXPRESS+AND+REASON+ABOUT+SOFTWARE+ENGINEERING+METHODS&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=102&s=TITLE%28TOWARDS+A+FORMALIZATION+OF+A+FRAMEWORK+TO+EXPRESS+AND+REASON+ABOUT+SOFTWARE+ENGINEERING+METHODS%29&relpos=0&citeCnt=1&searchTerm=
http://www.omg.org/
https://semat.org/documents/20181/27952/SEMAT_submission_v11.pdf/8d819915-7dfe-4173-9209-42396c7ece18
https://semat.org/documents/20181/27952/SEMAT_submission_v11.pdf/8d819915-7dfe-4173-9209-42396c7ece18
https://www.scopus.com/record/display.uri?eid=2-s2.0-85041568852&origin=resultslist&sort=plf-f&src=s&st1=+Understanding+the+role+of+knowledge+management+in+software+development%3a+a+case+study+in+very+small+companies&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=116&s=TITLE%28+Understanding+the+role+of+knowledge+management+in+software+development%3a+a+case+study+in+very+small+companies%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85041568852&origin=resultslist&sort=plf-f&src=s&st1=+Understanding+the+role+of+knowledge+management+in+software+development%3a+a+case+study+in+very+small+companies&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=116&s=TITLE%28+Understanding+the+role+of+knowledge+management+in+software+development%3a+a+case+study+in+very+small+companies%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85041568852&origin=resultslist&sort=plf-f&src=s&st1=+Understanding+the+role+of+knowledge+management+in+software+development%3a+a+case+study+in+very+small+companies&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=116&s=TITLE%28+Understanding+the+role+of+knowledge+management+in+software+development%3a+a+case+study+in+very+small+companies%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901513696&doi=10.4018%2f978-1-59904-906-9&partnerID=40&md5=59a09fd502f31743d2961dac119a6f70
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901513696&doi=10.4018%2f978-1-59904-906-9&partnerID=40&md5=59a09fd502f31743d2961dac119a6f70
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901513696&doi=10.4018%2f978-1-59904-906-9&partnerID=40&md5=59a09fd502f31743d2961dac119a6f70
https://ieeexplore.ieee.org/abstract/document/4343684
https://ieeexplore.ieee.org/abstract/document/4343684
https://www.sciencedirect.com/science/article/pii/S0920548913001335
https://www.sciencedirect.com/science/article/pii/S0920548913001335
https://www.iso.org/standard/42180.html
https://www.iso.org/standard/42180.html
https://www.iso.org/standard/38854.html
https://www.iso.org/standard/38854.html
https://www.iso.org/standard/43447.html
https://www.iso.org/standard/43447.html
https://www.iso.org/standard/43564.html
https://www.iso.org/standard/43564.html
https://www.iso.org/standard/53815.html
https://www.iso.org/standard/53815.html
https://www.iso.org/standard/63371.html
https://www.iso.org/standard/63371.html
https://www.iso.org/standard/63371.html
https://www.scopus.com/record/display.uri?eid=2-s2.0-34248572593&origin=resultslist&sort=plf-f&src=s&st1=+Enough+of+Processes-Lets+do+Practices.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=47&s=TITLE%28+Enough+of+Processes-Lets+do+Practices.+%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-34248572593&origin=resultslist&sort=plf-f&src=s&st1=+Enough+of+Processes-Lets+do+Practices.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=47&s=TITLE%28+Enough+of+Processes-Lets+do+Practices.+%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84870498692&origin=resultslist&sort=plf-f&src=s&st1=The+essence+of+software+engineering%3a+the+SEMAT+kernel&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=60&s=TITLE%28The+essence+of+software+engineering%3a+the+SEMAT+kernel%29&relpos=1&citeCnt=20&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84870498692&origin=resultslist&sort=plf-f&src=s&st1=The+essence+of+software+engineering%3a+the+SEMAT+kernel&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=60&s=TITLE%28The+essence+of+software+engineering%3a+the+SEMAT+kernel%29&relpos=1&citeCnt=20&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84865585179&origin=resultslist&sort=plf-f&src=s&st1=Where%27s+the+theory+for+software+engineering&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=50&s=TITLE%28Where%27s+the+theory+for+software+engineering%29&relpos=0&citeCnt=52&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84865585179&origin=resultslist&sort=plf-f&src=s&st1=Where%27s+the+theory+for+software+engineering&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=50&s=TITLE%28Where%27s+the+theory+for+software+engineering%29&relpos=0&citeCnt=52&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349571332&origin=resultslist&sort=plf-f&src=s&st1=Model+driven+engineering+of+a+tableau+algorithm+for+description+logics.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=78&s=TITLE%28Model+driven+engineering+of+a+tableau+algorithm+for+description+logics.%29&relpos=0&citeCnt=4&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349571332&origin=resultslist&sort=plf-f&src=s&st1=Model+driven+engineering+of+a+tableau+algorithm+for+description+logics.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=78&s=TITLE%28Model+driven+engineering+of+a+tableau+algorithm+for+description+logics.%29&relpos=0&citeCnt=4&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84991890461&origin=resultslist&sort=plf-f&src=s&st1=A+software+engineering+lifecycle+standard+for+very+small+enterprises.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=76&s=TITLE%28A+software+engineering+lifecycle+standard+for+very+small+enterprises.%29&relpos=0&citeCnt=92&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84991890461&origin=resultslist&sort=plf-f&src=s&st1=A+software+engineering+lifecycle+standard+for+very+small+enterprises.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=76&s=TITLE%28A+software+engineering+lifecycle+standard+for+very+small+enterprises.%29&relpos=0&citeCnt=92&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84991890461&origin=resultslist&sort=plf-f&src=s&st1=A+software+engineering+lifecycle+standard+for+very+small+enterprises.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=76&s=TITLE%28A+software+engineering+lifecycle+standard+for+very+small+enterprises.%29&relpos=0&citeCnt=92&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0032024432&origin=resultslist&sort=plf-f&src=s&st1=The+process+interchange+format+and+framework.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=52&s=TITLE%28The+process+interchange+format+and+framework.%29&relpos=0&citeCnt=36&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0032024432&origin=resultslist&sort=plf-f&src=s&st1=The+process+interchange+format+and+framework.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=52&s=TITLE%28The+process+interchange+format+and+framework.%29&relpos=0&citeCnt=36&searchTerm=
https://www.springer.com/gp/book/9783319762609
https://www.springer.com/gp/book/9783319762609
https://www.scopus.com/record/display.uri?eid=2-s2.0-84902357078&origin=resultslist&sort=plf-f&src=s&st1=+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=86&s=TITLE%28+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84902357078&origin=resultslist&sort=plf-f&src=s&st1=+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=86&s=TITLE%28+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.%29&relpos=0&citeCnt=8&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84902357078&origin=resultslist&sort=plf-f&src=s&st1=+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=86&s=TITLE%28+Improving+software+projects+inception+phase+using+games+ActiveAction+workshop.%29&relpos=0&citeCnt=8&searchTerm=

Miguel Ehécatl Morales-Trujillo et al. / Journal of Applied Research and Technology 17 (2019) 2843 | 43

Oktaba, H., Garcia, F., Piattini, M., Ruiz, F., Pino, F. J., &
Alquicira, C. (2007). Software process improvement: The
COMPETISOFT project. Computer, 40(10), 21-28.

Object Management Group. OMG. (2008). Software & systems
process engineering meta-model specification. OMG Std.,
Rev, 2, 18-71. Retrieved September 2017, from: http://
www.omg.org/

Osterweil, L.
In Proceedings of the 9th international conference on Soft-

(1987). Software processes are software too.

ware Engineering (pp.2-13). IEEE Computer Society Press.

Pease, A., & Carrico, T. M. (1997). Object Model Working
Group (OMEG) Core Plan Representation—Request for
Comment, version 2. Defense Advanced Research Projects
Agency.

Pino, F. J., Garcia, F., & Piattini, M. (2008). Software process
improvement in small and medium software enterprises: a
systematic review. Software Quality Journal,16(2),237-261.

Pino, F. J., Pardo, C., Garcia, F., & Piattini, M. (2010).
Assessment methodology for software process improvement
in small organizations. Information and Software Tech-
nology, 52(10), 1044-1061.

Project Management Institute. (2008). A Guide to the Project
Management Body of Knowledge: PMBOK Guide. Global
Standart, Fourth Edition.

Radice, R. A., Harding, J. T., Munnis, P. E., & Phillips, R. W.
(1985). A programming process study. IBM Systems
Journal, 24(2), 91-101.

Rout, T. (1999). Consistency and conflict in terminology in
software engineering standards. In ésess (p. 67). IEEE.
Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case
study research in software engineering: Guidelines and

examples. John Wiley & Sons.

Schlenoff, C., Schlenoff, C., & Ray, S. (1996). Unified process
specification language: Requirements for modeling process.

US Department of Commerce, National Institute of
Standards and Technology.

Schwaber, K. & Sutherland, J. (2017). The Scrum Guide — The
Definitive Guide to Scrum: The Rules of the Game.

(2010). CMMI: Capability

Integration,

Software Engineering Institute.
Maturity Model
Institute.

Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., &

(2007). An
organizations do not adopt CMMI. Journal of systems and
software, 80(6), 883-895.

Tate, A. (1998). Roots of SPAR—shared planning and activity
representation. The Knowledge Engineering Review, 13(1),

Software Engineering

Murphy, R. exploratory study of why

121-128.
Tello-Leal, E., Chiotti, O., & Villarreal, P. D. (2014). Software
agent architecture for managing inter-organizational

collaborations. Journal — of research and
technology, 12(3), 514-526.

Wang, S., Wang, W., Zhuang, Y., & Fei, X. (2015). An ontology
evolution method based on folksonomy. Journal of applied
research and technology, 13(2), 177-187.

Wang, Y. (2007). Software engineering foundations: A software

applied

science perspective. Auerbach Publications.

Wieringa, R. (2014). Empirical research methods for technology
validation: Scaling up to practice. Journal of systems and
software, 95, 19-31.

Wieringa, R., & Morali, A. (2012). Technical action research as
a validation method in information systems design science.
In International Conference on Design Science Research in
Information Systems. Springer, Berlin, Heidelberg,220-238.

Zavala-Correa, K., Morales-Trujillo, M. & Oktaba, H. (2016).
Customized Methodology for Development of an Open
Data Portal.
Engineering Research and Innovation, pp. 67-75.

International Conference on Software

https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scopus.com/record/display.uri?eid=2-s2.0-33947433928&origin=resultslist&sort=plf-f&src=s&st1=An+exploratory+study+of+why+organizations+do+not+adopt+CMMI&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=66&s=TITLE%28An+exploratory+study+of+why+organizations+do+not+adopt+CMMI%29&relpos=0&citeCnt=151&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-33947433928&origin=resultslist&sort=plf-f&src=s&st1=An+exploratory+study+of+why+organizations+do+not+adopt+CMMI&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=66&s=TITLE%28An+exploratory+study+of+why+organizations+do+not+adopt+CMMI%29&relpos=0&citeCnt=151&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0032025128&origin=resultslist&sort=plf-f&src=s&st1=Roots+of+SPAR--shared+planning+and+activity+representation&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=65&s=TITLE%28Roots+of+SPAR--shared+planning+and+activity+representation%29&relpos=0&citeCnt=21&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0032025128&origin=resultslist&sort=plf-f&src=s&st1=Roots+of+SPAR--shared+planning+and+activity+representation&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=65&s=TITLE%28Roots+of+SPAR--shared+planning+and+activity+representation%29&relpos=0&citeCnt=21&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84919640019&origin=resultslist&sort=plf-f&src=s&st1=+Software+agent+architecture+for+managing+inter-organizational+collaborations&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=84&s=TITLE%28+Software+agent+architecture+for+managing+inter-organizational+collaborations%29&relpos=0&citeCnt=5&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84919640019&origin=resultslist&sort=plf-f&src=s&st1=+Software+agent+architecture+for+managing+inter-organizational+collaborations&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=84&s=TITLE%28+Software+agent+architecture+for+managing+inter-organizational+collaborations%29&relpos=0&citeCnt=5&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84919640019&origin=resultslist&sort=plf-f&src=s&st1=+Software+agent+architecture+for+managing+inter-organizational+collaborations&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=84&s=TITLE%28+Software+agent+architecture+for+managing+inter-organizational+collaborations%29&relpos=0&citeCnt=5&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84936775005&origin=resultslist&sort=plf-f&src=s&st1=+An+ontology+evolution+method+based+on+folksonomy.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=57&s=TITLE%28+An+ontology+evolution+method+based+on+folksonomy.%29&relpos=0&citeCnt=6&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84936775005&origin=resultslist&sort=plf-f&src=s&st1=+An+ontology+evolution+method+based+on+folksonomy.&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=57&s=TITLE%28+An+ontology+evolution+method+based+on+folksonomy.%29&relpos=0&citeCnt=6&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84903168303&origin=resultslist&sort=plf-f&src=s&st1=Software+engineering+foundations%3a+A+software+science+perspective&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=71&s=TITLE%28Software+engineering+foundations%3a+A+software+science+perspective%29&relpos=0&citeCnt=56&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84903168303&origin=resultslist&sort=plf-f&src=s&st1=Software+engineering+foundations%3a+A+software+science+perspective&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=71&s=TITLE%28Software+engineering+foundations%3a+A+software+science+perspective%29&relpos=0&citeCnt=56&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84905825625&origin=resultslist&sort=plf-f&src=s&st1=Empirical+research+methods+for+technology+validation%3a+Scaling+up+to+practice.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=85&s=TITLE%28Empirical+research+methods+for+technology+validation%3a+Scaling+up+to+practice.+%29&relpos=0&citeCnt=28&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84905825625&origin=resultslist&sort=plf-f&src=s&st1=Empirical+research+methods+for+technology+validation%3a+Scaling+up+to+practice.+&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=85&s=TITLE%28Empirical+research+methods+for+technology+validation%3a+Scaling+up+to+practice.+%29&relpos=0&citeCnt=28&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84861208061&origin=resultslist&sort=plf-f&src=s&st1=Technical+action+research+as+a+validation+method+in+information+systems+design+science&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=93&s=TITLE%28Technical+action+research+as+a+validation+method+in+information+systems+design+science%29&relpos=0&citeCnt=47&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84861208061&origin=resultslist&sort=plf-f&src=s&st1=Technical+action+research+as+a+validation+method+in+information+systems+design+science&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=93&s=TITLE%28Technical+action+research+as+a+validation+method+in+information+systems+design+science%29&relpos=0&citeCnt=47&searchTerm=
https://www.scimagojr.com/journalsearch.php?q=21100467854&tip=sid&clean=0
https://www.scimagojr.com/journalsearch.php?q=21100467854&tip=sid&clean=0
https://ieeexplore.ieee.org/abstract/document/4343684
https://ieeexplore.ieee.org/abstract/document/4343684
http://www.omg.org/
http://www.omg.org/
https://dl.acm.org/citation.cfm?id=41766
https://dl.acm.org/citation.cfm?id=41766
https://dl.acm.org/citation.cfm?id=41766
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Object+Model+Working+Group+%28OMEG%29+Core+Plan+Representation%E2%80%93Request+for+Comment%2C+version+2&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Object+Model+Working+Group+%28OMEG%29+Core+Plan+Representation%E2%80%93Request+for+Comment%2C+version+2&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Object+Model+Working+Group+%28OMEG%29+Core+Plan+Representation%E2%80%93Request+for+Comment%2C+version+2&btnG=
https://www.scopus.com/record/display.uri?eid=2-s2.0-42149144165&origin=resultslist&sort=plf-f&src=s&st1=+Software+process+improvement+in+small+and+medium+software+enterprises%3a+a+systematic+review&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=98&s=TITLE%28+Software+process+improvement+in+small+and+medium+software+enterprises%3a+a+systematic+review%29&relpos=1&citeCnt=170&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-42149144165&origin=resultslist&sort=plf-f&src=s&st1=+Software+process+improvement+in+small+and+medium+software+enterprises%3a+a+systematic+review&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=98&s=TITLE%28+Software+process+improvement+in+small+and+medium+software+enterprises%3a+a+systematic+review%29&relpos=1&citeCnt=170&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-42149144165&origin=resultslist&sort=plf-f&src=s&st1=+Software+process+improvement+in+small+and+medium+software+enterprises%3a+a+systematic+review&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=98&s=TITLE%28+Software+process+improvement+in+small+and+medium+software+enterprises%3a+a+systematic+review%29&relpos=1&citeCnt=170&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-77955429530&origin=resultslist&sort=plf-f&src=s&st1=Assessment+methodology+for+software+process+improvement+in+small+organizations&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=85&s=TITLE%28Assessment+methodology+for+software+process+improvement+in+small+organizations%29&relpos=0&citeCnt=40&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-77955429530&origin=resultslist&sort=plf-f&src=s&st1=Assessment+methodology+for+software+process+improvement+in+small+organizations&st2=&sid=cf11848dade33762ccb70fed56a14fcc&sot=b&sdt=b&sl=85&s=TITLE%28Assessment+methodology+for+software+process+improvement+in+small+organizations%29&relpos=0&citeCnt=40&searchTerm=
https://www.works.gov.bh/English/ourstrategy/Project%20Management/Documents/Other%20PM%20Resources/PMBOKGuideFourthEdition_protected.pdf
https://www.works.gov.bh/English/ourstrategy/Project%20Management/Documents/Other%20PM%20Resources/PMBOKGuideFourthEdition_protected.pdf
https://ieeexplore.ieee.org/abstract/document/5387724
file:///C:/Users/KM/Desktop/REVISTA%20CCADET/2019/FEBRERO%202019/4_JART-D-16-00293R1_EDITAR/).%20Consistency%20and%20conflict%20in%20terminology%20in%20software%20engineering%20standards
file:///C:/Users/KM/Desktop/REVISTA%20CCADET/2019/FEBRERO%202019/4_JART-D-16-00293R1_EDITAR/).%20Consistency%20and%20conflict%20in%20terminology%20in%20software%20engineering%20standards
http://www.egov.ee/media/1267/case-study-research-in-software-engineering.pdf
http://www.egov.ee/media/1267/case-study-research-in-software-engineering.pdf
http://www.egov.ee/media/1267/case-study-research-in-software-engineering.pdf
https://s3.amazonaws.com/academia.edu.documents/41868778/download.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1548428966&Signature=o4fx59jE%2BwD3UIjnj4D58jIQY3o%3D&response-content-disposition=inline%3B%20filename%3DUnified_process_specification_language_R.pdf
https://s3.amazonaws.com/academia.edu.documents/41868778/download.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1548428966&Signature=o4fx59jE%2BwD3UIjnj4D58jIQY3o%3D&response-content-disposition=inline%3B%20filename%3DUnified_process_specification_language_R.pdf

	Bottom-up authoring of software engineering methods and practices
	1. INTRODUCTION
	2. BACKGROUND: AN ANALYSIS OF THE CURRENT SITUATION
	3. KUALI-BEH SOFTWARE COMMON CONCEPTS
	4. BOTTOM-UP PRACTICE AND METHOD AUTHORING
	5. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	REFERENCES

