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Abstract: In this work, the performance of two algorithms that allow a mobile robot to guide itself
as it explores its surroundings is studied. For that purpose, the performance of harmonic potential
fields and A* algorithms is considered. The algorithm offering the best service to a real mobile robot
in its future implementation is selected based on test results. Initially, the robot would not know in
which environment it is located, and would only obtain limited information about its surroundings
by means of its sensors, thus implying that the robot has to trace the route dynamically from the
motion starting point to the goal. To evaluate these algorithms, critical surroundings are assumed,
which are formed by the possible U- and T-shaped structures that the robot could detect in an
unknown environment. The evolution of the dynamic performance of these algorithms generates
solutions that represent local minima between the robot and the point objective. The selection
criterion of the best algorithm is mainly based on the ability to find the point objective in
environments with strong local minima, which need to be solved by means of the studied algorithms
to allow the robot to avoid and/or get out of complex structures. Finally, the efficiency of the
algorithms in the calculation process, i.e., the time taken by them to reach the point objective
satisfactorily, is analyzed and presented, considering that the shorter the time, the greater the
selection weighting.
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1. INTRODUCTION

The trajectory planning and obstacle avoidance of
autonomous are research topics currently in full
development (Alajlan & Koubéa, 2016; Fakoor, Kosari, &
Jafarzadeh, 2016; Medina, Camas, Vazquez, Hernandez, &
Mota, 2014; Varkonyi-Koczy & Bencsik, 2010). Numerous
algorithms have been produced; but initially these were
for mobile robots deployed in environments with well-
defined obstacles. Among these algorithms, roadmap, cell
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decomposition, Voroni diagrams, and Potential Fields
methods, can be highlighted (Li & Canny, 1993; Peng,
Tang, Xin, Wang, & Kim, 2014; Perez, Godoy, Villagra,
& Onieva, 2013; Voronoi, 1991). However, the growing
need for designing and implementing mobile robots
capable of orienting themselves while exploring their
surroundings (Alves, Marcharet, & Campos, 2009;
Goerzen, Kong, & Mettler, 2009; Rullan-Lara, Salazar, &
Lozano, 2011; Yang, Gan, & Sukkarieh, 2009) has led to
the advance of several techniques for the generation of
online trajectories. These techniques are based on
deterministic elements such as the A* Algorithm
(Valenzuela, 2009), and on random elements like the
Rapidly-exploring Random Trees (RRT) algorithm (Alves
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et al., 2009). The conditions of the problem determine the
technique to be used.

The need to generate automatic and dynamic routes
gives rise to techniques in which a robot perceives and
understands its surroundings, locating itself in its habitat
thanks to its
controllers. Accordingly, Simultaneous Localization and
(SLAM)
techniques for the correct handling of information. In
addition,

mapping of the surroundings approach provides the robot

sensors, localization algorithms, and

Mapping incorporates basic  probabilistic

the simultaneous automatic localization and

with the information required for using some method to
generate its route (Lemus, Diaz, Gutiérrez, Rodriguez, &
Escobar, 2014; Nuchter, Surmann, Lingemann, Hertzberg,
& Thrun, 2004; Thrun & Montemerlo, 2006); therefore,
the generation of efficient trajectories is a matter still
under study.

2. HARMONIC POTENTIAL FIELDS BY
MEANS OF THE METHOD OF PANELS

Although widely accepted in the community, the
potential fields method has problems with local minima;
therefore, different heuristic techniques are used to rescue
a vehicle after a local minimum has been identified (Julia,
Gil, Pay4, & Reinoso, 2008). A variant of this method is
known as harmonic potential fields (Daily & Bevly, 2008;
Masoud, Ahmed, & Al-Shaikhi, 2015; Padilla, Savage,
2008; Shi, Zhang, & Peng, 2007),
which uses a model of irrotational flow that lacks local

Hernandez, & Cosio,

minima, with the vector field velocity of this fluid denoted
by V. However, our interest is focused on this fluid's
gradient, as shown in (1):

V=VxV =0 (1)
where:
0 Py 6 s
x Tyt @

W)

V=

From (2) it is deduced that the fluid's velocity can be
written as:

V=-V¢ (3)
where ¢ is a scalar velocity potential. On the other hand,
when the fluid is incompressible, the velocities field must
satisfy (4):

V.V =0 (1)
Now, substituting (3) into (4) we obtain:

V=0 (5)

where V7 is the Laplacian operator. This equation is called
potential equation and its solution is a harmonic or
potential function.

2.1 PROPERTIES OF HARMONIC
FUNCTIONS

The properties of any harmonic function are four:

i. Superposition. The total potential can be obtained
from the linear combination of different harmonic
potentials.

ii. Mean value. A potential function, which is harmonic

at the center of a circumference g(x_,x_,), will take a

mean value of the total potential defined by (6):
Pk %) =5 B0+ 00S(0), X, +TSINEY)  (6)

This property implies that the value of the potential
at the center of a circumference or located in an arbitrary
place within it equals the mean value of the integrated
potential around that circumference. Additionally, this
property is independent of the radius r and depends only
on the function being harmonic within the circumference.
In the three-dimensional case this property maintains and
is expressed by (7):

1
#(Xo1 %05 X05) =5 [ [ #(S)dS (7)

iii. Maximum Potential. The maximum of a harmonic
function occurs in the limits of the singularities when the
potential tends to infinity.

iv. Minimum Potential. The minimum of a harmonic
function occurs in the limits of the singularities when the
potential tends to infinity.

2.2 HARMONIC POTENTIAL IN TWO
DIMENSIONS

A symmetric harmonic function does not depend on
angular terms, but rather on the distance to the origin r,
i.e., p=¢(r). In general, for n-dimensions the expression

of Laplace's equation in spherical coordinates can be
written as:

n——¢+C
r

v'e :_¢ dr

8
o Q
where C is a constant. For two dimensions, the harmonic
function can be represented by means of (9), while for n-
dimensions the harmonic potential equation is (Fahimi,
2009):
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C
¢=rn_—32+C4 9)

¢=Cln(r)+C,

In hydrodynamics, a harmonic function with spherical

(10)

symmetry of type (8) and (9) is called a source or sink
depending on the sign of C, or C,. In this paper we will
consider a source/sink the equation defined in (11),
depending on the sign of A, which will be called source

when A <0 and sink when A > 0.
A
Preta =5 In(r) (11)
T

The distance to the goal r can be decomposed into
Cartesian coordinates, as described by (12) and Figure 1,

considering the position of the vehicle and the goal.

r= \/(Xl - Xmeta_l)2 + (X2 —X

(12)

meta_z)

Sink

0
¥ [m] 0 X [m]

Fig. 1. Sink or goal point of the potential harmonic field.

2.2.1 Panels

Figure 2a schematizes a point in space defined as an
obstacle, which implies that the constant of (11) is positive
(A1 >0). Generalizing that point obstacle into a panel of

the shape in which the obstacle is perceived by the vehicle,
(13) is obtained, which
models the behavior of the potential. In this way, any

as schematized by Figure 2b,

obstacle will be defined in the Cartesian plane as a panel
of length |.

L

jln(xf+(x2—|)2)d|

-L

A
¢panel (X7 y) = E (13)

Once the obstacle has been defined, the gradient
(¢panel) is determined to establish the potential flow that

the vehicle must follow in the Cartesian plane defined by
(14).

_I—ij—+(x —1)?
J X, -1
Lx? +(x —1)?
2.2.2 Uniform potential flow

Other function used to construct the harmonic field
potential is uniform flow potential, which varies linearly
toward the objective point. This potential is used to ensure
the convergence of the flow toward the goal by means of
the singularities presented in (11). The uniform potential
is defined by (15), where U represents the force constant
of the uniform flow, and is the angle formed by the initial
position of the vehicle and the goal, according to (16).

¢, =-U (% cos(a)+x,sin(a)) (15)
a = arctan [ Xneta_2 ~ Xincil _2 ] (16)
Xmeta_l - Xinicial_l

2.2.3 Multi-Panels

Any obstacle can be approached as an a-panel polygon
containing the obstacle inside (see Figure 3).
Under this premise the harmonic field potential is defined
as the linear combination of the attractive, repulsive
(panels), and uniform field potentials, so the resultant net
potential is represented by (17):

¢net0 = ¢meta + ¢u + i¢panel
~U (x,cos(a)+x,sin(a )Z I n(R; )dl

m2r

(17)

A

¢neto:Z|n(r) (18)

where Rij is the distance between the central point of

panel ¢ and a differential point dl j of panel j, and A j

corresponds to the repulsive force of panel j, whose value
is obtained in a way that is adaptive to the initial
conditions (Fahimi, 2009). Therefore, the net gradient of
the harmonic field potential will be deﬁned by:

6"5"9‘0 Ucos(a)——al() Z j In(R )dl

(19)
a¢net0 S i
- uSm(a)———2| (- ;2 La In(R, )l
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Fig. 2. (a) Point obstacle in the plane. (b) Panel representing an obstacle.
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Fig. 3. Graphical representation of the method.

3. A* ALGORITHM

The A* algorithm is a search algorithm that allows
finding the lowest cost route between two points based on
a given evaluation function. It is classified as a search
algorithm in graphs, since it provides robotized vehicular
mechanisms (virtual or implemented) with an autonomous
navigation system (Rolf, 2004).

This algorithm is in charge of finding the route with
the lowest cost between a point A and a point B by using

a heuristic function which consists in an approximation
between the real distances of A and B.

The heuristic function f (x) is the result of the sum of two
other functions: one that indicates the cost of the route
that has been taken to a given node, which is represented
as g(x), and other that gives an estimation of the distance
between the point or node at which the robotized vehicular
mechanism is with respect to the goal, represented as
h(x). Therefore, the heuristic evaluation function is the

result of the linear combination of h(x) and g(x).
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3.1 DEFINITION OF THE HEURISTIC
EVALUATION FUNCTION

Considering the heuristic function f (x)=h(x)+ g(x),
it is found that:
h(x) = Cost -(|nodex —Objetivex| +‘nodey —Objetivey‘) (20)

where constant COSt represents the explicit value of
moving from the present point to the following node in
some given direction, which if not specified will be taken
as equal to one, because in this way a uniform distribution

is assumed; nodey y represents the Cartesian coordinates

of the current node and Objetivey y  represents the

coordinates of the goal or objective (Tariq, 2008). This

heuristic measurement is known as the Manhattan
distance (Jonsson, 1997).

On the other hand, we have that g(x) is defined as:

9(x), =1+a-(9(x),, 1)+ 9(x),,

where & corresponds to a constant whose value fluctuates

(21)

between 0 and 1, defined for the problem to be faced,
which will determine the branching degree of the

algorithm. In addition, g(x)_, represents the g(x) value

n-1
of the previous parent node. The pseudocode that defines
the A* algorithm is presented in Table 1 (Valenzuela,
2009).

Table 1. Pseudocode of the A* algorithm.

11]. Initialize OPEN list

12]. Initialize CLOSED list

13]. Create goal node; call it node goal

4]. Create start node; call it node start

15]. Add node_start to the OPEN list

16]. While the OPEN list is not empty

o

|8]. Get node n off de OPEN list with the lowest f(n)

19]. Add n to the CLOSED list

[10]. If n is the same as node goal we have found the solution; return Solution(n)
[11]. Generate each successor node n’ of n

[12]. For each successor node n’ of n

3.

[14]. Set the parent of n’ to n

[15]. Set h(n’) to be the heuristically estimate distance to node goal

|16]. Set g(n’) to be g(n) plus the cost to get to n’ from n

[17]. Set f(n’) to be g(n’) plus h(n’)

[18]. If n’ is on the OPEN list and the existing one is as good or better, then
[19]. discard n’ and continue

[20]. If n’ is on the CLOSED list and the existing one is as good or better, then
[21]. discard n’ and continue

122]. Remove occurrences of n” from OPEN and CLOSED

[23]. Add 1’ to the OPEN list

|24]. }

25 )

4. EVALUATION OF ALGORITHMS PERFOR-
MANCE IN COMPLEX SURROUNDINGS

The main objective of this work is to evaluate the
performance of the two algorithms presented (Harmonic
Potential Fields and A") and select the one with the best
performance for future implementation in a real mobile
robot. Initially, this robot will not know its surroundings
and will only get limited information about its
environment by means of its sensors, which implies that it

will have to trace the route dynamically from the starting

point of the movement to its goal. To evaluate these
algorithms, critical surroundings generated by the possible
that the
environments are assumed, namely:

structures robot can detect in unknown

i U-shaped
T-shaped
The selection criterion of the algorithm with the best

ii.

performance is based on the shortest possible time to
obtain the solution that allows the robot to reach its
destination and the goal successfully.
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4.1 EVALUATION OF HARMONIC FIELD
POTENTIALS USING THE METHOD
OF PANELS IN ENVIRONMENTS
WITH LOCAL MINIMA

4.1.1 U-shaped structural obstacle

When simulating a U-shaped obstacle —in the xz-y
plane—whose position is known by the robot, which starts
its path from point (25,45) to finish at coordinates (25,5),
the following trajectory is obtained:

Trajectory generated by the algorithm CPH under the panel method

y[m]

Fig. 4. Simulated trajectory of the robot faced with a U-

shaped obstacle with harmonic field potentials by the

method of panels.

Figure 5 shows that the panel method is unable to
solve the trajectory problem when faced with spatial
configurations that generate a local minimum as strong as
those formed by the U-shaped structures. In a more
detailed way, Figure 6 shows the gradient of the generated
harmonic potential.

To solve this problem, the authors (Wijs, 1995) and
(Saudi & Sulaiman, 2012) propose using the Laplace limit
conditions, i.e., the highest potential would exist in the
map's edges, and mathematical operations will be
performed to decimate the effect of local minima shown in
Figure 6. However, conditions based on harmonic
potential fields have a high computational cost and, in
general, are carried out off-line; therefore, the method is

not adequate for use in future applications.

4.1.2 T-shaped structural obstacle

When developing a T-shaped structure, the harmonic
potential field algorithm is capable of reaching the goal by
evading part of the structure. Nevertheless, when having
a look at the field flow, it is observed that the algorithm
does not recognize the panel placed in a vertical position
with respect to the x axis, creating the possibility of
circulating and crossing that panel, i.e., the behavior of
this algorithm with this kind of structures is not optimum.
different

attempted, the algorithm diverges, thus confirming the

Furthermore, when starting points are

previous idea, as schematized in Figure. 7.
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Fig. 5. Time per iteration.
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Fig. 6. Harmonic potential field gradient.
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T-shaped obstacle and algorithm behavior

y[m]

o

o

x[m]

0 5 10 15 20 25 30 35 40 45 50

Fig. 7. Trajectory of the vehicle.

4.2 EVALUATION OF THE A* ALGORITHM
IN STRUCTURAL ENVIRONMENTS
WITH LOCAL MINIMA

4.2.1 U-shaped Structural Obstacle

When the A* algorithm is exposed to a U-shaped
structural obstacle, an absolute convergence from the
starting point to the goal is seen, i.e., it is capable of
recognizing the local minimum generated by the structure
and developing a route that involves the smallest distance
cost according to the stated heuristic. Figure 8 shows the
evolution of the algorithm and the time that it takes to
find the goal while the vehicle is in motion. In the
following simulation it is seen that the maximum time
taken by the algorithm to detect the goal is 0.16 seconds,

Horseshoe-shaped obstacle
50

P S—

40

35

30 [

20

Position [m]

S

H 5

o 10 20 30 40 50
Position [m]

4.2.2 T-shaped structural obstacle

which is achieved in the first iteration. After this, the
required time drops sharply as the vehicle moves toward
the goal.

When faced with a T-shaped structural obstacle, the
algorithm again converges with the goal when a structure
is detected and a route is generated that allows the vehicle
to evade the obstacle. Also, when the starting point is
modified the algorithm exhibits no problems and once
again it finds the destination point.

The maximum time taken by the algorithm to
generate the route toward the objective is 0.180 seconds
in the first iteration. Then, as the vehicle approaches the
goal, the algorithm decreases its process time linearly, as
shown in Figure 9.

Time of A* algorithm

Time [s]

o 20 40 80 80 100 120
Iterations

Fig. 8. Trajectory and evolution of the A* algorithm faced with a U-shaped obstacle.
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T-shaped obstacle
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Fig. 9. Trajectory of the A*algorithm when faced with a T-shaped obstacle.

5. SELECTION OF THE ALGORITHM

The results from the algorithms performance obtained
in Section 4 are shown in Table 2.

Although the calculation process of the A* algorithm
is much longer compared to that of the harmonic potential
fields algorithm under the method of panels, it ensures the
total convergence of the vehicle to the goal. However, the
calculation process time increases exponentially depending
on the size of the map. In view of these results, the A*
the one that will the
implementation of a real exploring vehicle.

algorithm is be wused for

When complex surroundings with multiple structures

that generate local minima are simulated to trace the
virtual route that the vehicle must follow emulating the
robot's perspective, i.e., it is able to see the changing
environment as it moves over the Cartesian plane, the A*
algorithm is capable of finding the goal in a satisfactory
way, regardless environment complexity, e.g., dynamic or
static, as presented in Figure 10. The time taken by the
algorithm to recalculate the new route after detecting new
obstacles in the robot’s field of view is shown in Figure 11.
In this figure, the maximum time it takes the algorithm to
calculate the route is 0.09 seconds for the first iteration in
a map of 50 by 50 cells; then, as the robot moves and its
vision of the environment changes, the process time varies
dynamically.

Complex and dynamic environment

Position [m]

Position [m]

Fig. 10. Evolution of the vehicle's trajectory when faced with dynamic changes of the perceived environment.

Table 2. Results of the performance of the algorithms.

Local minima

Reaches the Maximum

Goes over

Algorithm present goal calculation time
the obstacle
U T U T (seconds)
A*Algorithm No No Yes Yes 0.18 No
Harmonic Potential Fields with method of 6
es Yes Yes Yes 5.5 x 10° Yes

panels
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Time taken by the algorithm
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0.07 |-

Time [s]
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[terations

Fig. 11. Time taken by the algorithm to find the

goal vs iterations.

CONCLUSIONS

This paper presented and evaluated the performance
of two algorithms that allow a mobile robot to orient itself
as it explores its environment, namely harmonic potential
fields, by means of the method of panels and A". In a
previous study, the authors evaluated various methods for
Voroni

generating routes, such as visibility graphs,

diagrams, cell decomposition, genetic algorithms,
probabilistic padmaps, harmonic potential fields by the
method of panels, A", among others, finding that the last
two algorithms yielded the best results due to their degree
of convergence and robustness when faced with changes in
the environment. To assess their performance, we assumed
critical surroundings generated by the possible structures
that a mobile robot could detect in an unknown
environment (U- and T-shaped), considering the ability of
the algorithms to find the objective point in settings with
strong local minima as well as process efficiency, i.e., the
time taken to find that point.

In Section 4 it was established that the harmonic
potential field algorithm did not have a good behavior
when faced with complex structures and non-point
obstacles identified by the method of panels. In the U-
shaped obstacle, the potential gradient crossed the
structure and provided the bottom part of the obstacle
points to the objective, as shown in Figure 4. This

algorithm was not able to distinguish clearly a structure

orthogonal to the x axis, as it did not perform optimally
when faced with non-point structures, as can be seen in
Figure 7. However, the algorithm exhibited excellent
performance in point obstacles located in an open space,
i.e., without well-defined boundaries, completely
converging with the goal. It must be pointed out that the
time required by the harmonic potential field algorithm to
generate the route is considerably shorter than that of its
counterpart discussed in this paper.

It was determined that to solve the problem of

divergence of the harmonic potential fields algorithm it
was necessary to use Laplace limit conditions. However,
this process must be carried out off-line, so it is not
applicable to our problem because our robot initially will
not recognize its surroundings and will only obtain limited
information about the environment through its sensors,
which means that the robot must trace the route
dynamically from the motion starting point to the goal.
The A* algorithm proved capable of supporting complex
environments with strong local minima generated by
dynamic and/or static structures. This statement is
confirmed by Figure 10, in which the algorithm is tested
in dynamic surroundings under constant change, as the
robot can perceive its surroundings but limited to a few
meters around, with A* determining the optimum route
for the robot at each step.
Nevertheless, the A*algorithm has a high computational
cost compared to the harmonic potential field algorithm
using the method of panels. Moreover, when the size of the
map increases, so does the algorithm's computing time.
However, A* is capable of finding the goal as long as the
environment conditions allow the transfer of the vehicle,
making it possible to generate optimum dynamic routes
across unknown surroundings according to the information
obtained from the environment.

The criteria for selecting the best algorithm was based
on the ability to find the point objective in environments
with strong local minima. These local minima were solved
by the two algorithms discussed, thus enabling the robot
to overcome and/or get out of complex structures.
Furthermore, the efficiency of the algorithms in the
calculation process, i.e., the time needed by them to reach
the objective point satisfactorily, was analyzed and
presented, considering that the shorter the time, the
greater the weighting for selection. In conclusion, the
selected algorithm is A*.
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