Journal of Applied Research
and Technology

www.jart.ccadet.unam.mx
Journal of Applied Research and Technology 16 (2018) 357-372

o ——
LN ¥
CENTRO DE CIENCIAS APLICADAS
¥ DESARROLLO TECNOLOGICO

Original

On the solution of optimization problems. An interactive

graphical approach

Max Antonio Gonzalez-Palacios, Juan Emmanuel Ayala-Hernandez",
Luz Antonio Aguilera-Cortés

Departamento de Ingenieria Mecanica, Division de Ingenierias Campus Irapuato-Salamanca,

Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km. 3.5 + 1.8, Comunidad

Palo Blanco C.P. 36885, Salamanca, Guanajuato, México.

Abstract: This paper introduces and describes a novel software tool to analyze and solve
optimization problems. This tool allows the plotting of several functions simultaneously, navigates
through them, and finds the critical points with several numerical methods. Depending on the
problem the user can choose a context in two or three dimensions and can also select the more
convenient method to solve a specific problem. Moreover, the parameters modification in a particular
method is transparent and clear; the goal of this software is to simplify the work of students, engineers
and researchers, working on a graphical and interactive environment, on a completely intuitive user

interface.

Keywords: Optimization, interactive software, specific application software, plotter of functions,
mathematical programming techniques, object-oriented programming

1. INTRODUCTION

Nowadays it is almost required to obtain the best
results in any given situation in most areas of science. In
this sense, optimization is a way to obtain such results.

Through the years, several optimization methods have
been developed, which can provide better results in
comparison with others, depending of the characteristics
Most of these methods

implemented in digital computers, and due to the high

of each one. have been
capabilities to process and manipulate data, computers
have allowed a quick progress in the area of optimization.

Corresponding author.

E-mail address: juaneah@gmail.com (Juan Emmanuel Ayala-Herndndez).

Peer Review under the responsibility of Universidad Nacional Auténoma de

Meéxico.

http://

Several commercial software packages that implement
optimization methods are capable to plot a surface and
find optimal solutions, but they focus exclusively on
numerical solution without analyzing curves and surfaces
interactively, therefore, limiting the interpretation of
results. It is possible to find professional software with
characteristics related to those implemented in the
software described here, such as MatLab© (2017); Maple©
(2017) and Mathematica© (2017), but the acquisition of
those packages might not always be justified, and often,
the environment becomes complex due the wide set of
tools that are available.

Besides, some developers use the capabilities offered
by commercial software packages in order to build
optimization tools, such as TOMLAB (Holmstrom, 1999;
Rios & Nikolaos, 2013) and YAMLIP (Lofberg, 2004).

file:///C:/Users/KM/Desktop/REVISTA%20CCADET/dx.doi.org/10.1016/j.jart.2017.01.013
http://www.jart.ccadet.unam.mx/
http://www.jart.ccadet.unam.mx/
mailto:juaneah@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

358 |

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

These tools,
optimization algorithms

use MatLab to implement well-known
and also to develop new
algorithms, each one of these have their own approach and
scope. Another optimization tool, OPTI (Currie & Wilson,
2012), which provides support to MatLab users, has also
a collection of several solvers.

There are also public domain software packages that
replace, in part, those expensive software packages and
implement optimization technics, such as Octave (2017)
and Scilab (2017). Further options are optimization
libraries, but they represent unfriendly environments for
those users without programming training. Furthermore,
all these software packages and libraries, require a broad
knowledge related to a specific programming language or
in other cases, the knowledge of particular statements.
Thus, in some cases it is preferable to use a specific
application software.

A novel software package for optimization named
OPTIMPLOT is proposed to overcome the disadvantages
mentioned above. Furthermore, OPTIMPLOT is mainly
addressed to researchers without knowledge of
optimization algorithms and programming trends, who
require the solution of an optimization problem in a simple
way, and without the need of writing code lines.

The article reports the development of the new
software package OPTIMPLOT that includes the features of
two applications that work independently (Gonzalez-
Bernal-Martinez, & Aguilera-Cortés, 2009;
Gonzéalez-Palacios, Pena-Gallo, & Aguilera-Cortés, 2009).
Besides, OPTIMPLOT incorporates features that provide an

Palacios,

integrated and autonomous environment. Among them are
included, the possibility of plotting several functions
simultaneously in two and three dimensions; the
introduction of the concept to consider one variable as a
parameter that can be adjusted continuously to plot two-
variable functions in a 2D environment; as well as the
introduction of a pane control that allows the user to easily
handle the graphical interface.

The software package is developed on a robust
platform of software development, called ADEFID
(ADvanced Engineering platForm for Industrial
Development) which is a set of libraries. The ADEFID
platform simplifies and enhance software development,
since any application created with this platform contains
that facilitates the

construction of the graphical environment, as well as

by default a set of functions

functions that interact with the pointing device (Gonzalez-

Palacios, 2012). Thereby, OPTIMPLOT encompasses a
OpenGL and
mathematical algorithms written in Visual Studio® C++

graphical environment based on
and structured with the object-oriented programming
(OOP) concept (Horton, 2010; Lafore, 1999; Leinecker &
Archer, 1998; Stroustrup, 1997; Walnum, 1999). These
features allow the creation of a robust, efficient and
flexible software. Several software packages, with research
interest, have been developed on this platform, for
instance, ProCart (Pena-Gallo, 2011), which is focused to
perform both on-line and off-line graphical motion
simulations, as well as to control the motion of a cartesian
manipulator.

Thus, OPTIMPLOT is a specific application software
providing a helpful graphical tool to analyze and optimize
functions in two or three dimensions, with the advantage
of an interactive operation while keeping the function
plotted. The solution of an optimization problem can be
done selecting different methods. Moreover, the user can
navigate on the surface or curve to establish an initial
point and find the optimal or critical point, which can be
observed on the plotted function.

Another advantage of OPTIMPLOT is the clear and full
control on the algorithms involved in the main program.
The user can properly operate the software with only a
basic knowledge about the main optimization techniques.
This way, the more the user is familiar with optimization
techniques, the better OPTIMPLOT can be exploited.
Nevertheless, if the interest of the user resides exclusively
on the visualization of the plotted function, no knowledge
on optimization theories is required.

In summary, within engineering activities, scientists
and students require graphical tools to be able to interact
with plots of mathematical functions (in two or three
dimensions). This interaction has different goals, for
instance, visualize the behavior of a function, analyze its
critical points, or in other cases the application of
optimization techniques. OPTIMPLOT was born then, to
provide the support of performing these tasks in a simple
and intuitive environment, thanks to the combination of
the optimization theory with novel graphical user interface
concepts introduced in this paper.

In Section 2, the software structure and the relation
between the implementation of several -classes are
discussed. Section 3 is dedicated to present the main
characteristics of OPTIMPLOT. The description of the
implemented methods to find critical points is carried out

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372 | 359

in Section 4. In Section 5 some examples are analyzed and
solved with the application of OPTIMPLOT.

2. THE SOFTWARE STRUCTURE

In order to simplify the use of the software, the

required tools are encapsulated in two specific
environments to analyze the given function: to analyze a
single-variable function the 2D environment (2DE) is
provided, and in the same way there is a 3D environment
(3DE) to analyze a two-variable function, having each one
its own characteristics.

The software developed is supported by the Microsoft
Foundation Class (MFC). MFC is a standard library that
provides an object-oriented wrapper to develop user
interfaces with multiple controls and Office-style user
interfaces. The principal MFC classes used in OPTIMPLOT
are CDocument, CView, CFormView and CDialog, the
former with the Multiple Document option to improve the
user interface flexibility. Therefore, the software is
compatible with Microsoft Windows® operating system.

Some classes afforded by ADEFID libraries have been
used to build the graphical structure of OPTIMPLOT.
Nevertheless, specific classes to manage OPTIMPLOT were
developed. In Fig. 1, the class diagram is shown,
representing the general structure of OPTIMPLOT, where
the arrow symbol means “derived from”.

Referring to the Fig. 1, in the level of ADEFID classes
there is a group, enclosed by a dashed box that supports
the graphical interface, namely, CIpiGLDoc, CIpiGLView
and CAdefidRender. Is possible to see that CIpiGLDoc
and CIpiGLView are derived classes from MFC libraries.

Within the same ADEFID classes level, there is a set
of classes specifically developed to support OPTIMPLOT.
This set, mainly contains algorithms to plot functions in
two or three dimensions, as well as those algorithms
required to optimize mathematical functions.

The purpose of the derived classes located at the
OPTIMPLOT classes level, is to create and manage the

interface between the user and the software application.

2.1 ABOUT THE MAIN LIBRARIES AND
CLASSES

CAdefidMDView and CAdefidMDDoc are
classes in any ADEFID project because they are derived
classes from CDocument and CView. The OPTIMPLOT’s

basic

CAdefidMDDoc,
CSimulationForm class manages the user operations pane.
The main task of the CFunGenMachine class, is to

interpret the function entered as string of characters by

main process resides in whereas

the user.

The CIpiGLView class is devoted to manage all
window messages required to interact with the mouse and
to perform the setup and initialization of OpenGL.

The IpiGUI library contains classes to support the
graphical interface. This library is used as a base class to
create the C3DPlot and CPlanarPlot classes, which were
specifically developed to suit OPTIMPLOT’s needs. The
former is applied to plot two-variable functions f(X,Y),

while the latter, to plot single-variable functions.
To provide an idea on the content on the above-
mentioned classes, a piece of code of a function member is
listed in Fig. 2. With the aid of the OpenGL capabilities,
such as generating a surface applying linked strips of
quadrilaterals to an ordered
C3dPlot::Draw3DFunction()
surface of a three-dimension function. The pseudocode
starts from the knowledge of the X and Y

cloud of points, the
function generates the

range
[Xmin,XmaX, Yiin s ymax], and the distance between points

[AX,Ay] of a given f(X,y) function. Results on the

application of this function are appreciated along the
manuscript (see Figs. 3, 7, and 10-13).

The purpose of CAdefidRender class is to render all
the objects seen on the screen. It contains two virtual
functions, namely, SetupScene() and RenderUScene().
The SetupScene() function creates the components of the
scene, and RenderUScene() update the scene if any
transformation take place. In this way, when the user
manipulates the function (rotate, move, translate, zoom-
in or zoom-out the scene) the function is not calculated, it
is only called as a scene object, but only when the user
makes a change on the function expression, SetupScene()
is called to perform the corresponding calculations to
update the object representing the function.

IpiOptim is an OPTIMPLOT’s library with several
classes implemented to analyze mathematical functions.
These classes are described in Table 1.

OPTIMPLOT has the property to read and to interpret
the symbolic definition (as string of characters) of a
mathematical expression. It is the CIpiMath class which
provides this feature. This class analyzes the string of
characters to build a graph without any more statements.

360

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

OrTiMPLOT {

CAdefidMDDoc CAdefidMDView | | CSi rm | [CFunG CFunctions
Class. Class Class Class Class
—» ClpiGLDoc —» CIpiGLView | | —p CFormView | [—#CFunGen —» COptimFunctions

lass

= C3DPlot

COptim2DPlots COptim3DPlots
Class
—# CPlanarPlot

|

CRenderDlg
Class
—» CDialog

e TV Tyl '
 [ClpiGLDoc ClpiGLView CAdefidRender | | lf TpiMath H(‘Fun(‘-cn] COptimFunctions | [CPlanarPlot | [C3DPlot
o | Class Class Class | Class Class Class Class Class
' 1| = CDocument || = CView ! —ClpiOptim || = ClpiGUI | | — ClpiGUI
|)
‘ [CDucumcm l [CVicw] [CDialog] CFormView ‘
Class Class Class Class

Fig. 1. Class diagram of OPTIMPLOT.

Table 1. IpiOptim library classes.

Class Name

Description

CBisection
CFalsePosition
CFixedPoint
CNewtonRaphson
CSecant

Classes to obtain roots of a single-variable function, f(z).

CGoldenSection

Dedicated class to the obtaining of critical points of a single-variable function.

CDavFlePow
CDirCon
CModMar
CSteepestDescent

Methods applied to get minimum values of a n-variable function.

COptimFunctions

A base class with virtual functions required to analyze critical points.

10:
11:

12:
13:

15:
16:

begin function C3pPLOT::DRAW3DFUNCTION()

for y <y, t0 Y, do
GLBEGIN(GL_QUAD_STRIP)
for x «x,, to X . do

X
Vi<—| Yy
f(x,y)
N, < C3pPLOT::GETNORMAL (X, Y,f(X,Y), AX,Ay)
X
y +Ay
f(xy +4y)
N, < C3pPLOT::GETNORMAL (X, Y + Ay, f(X,Y + Ay),AX,Ay)

V, <

GLNORMAL3DV (N,)
GLVERTEX3DV (V,)
GLNORMAL3DV (N,)

GLVERTEX3DV (V)
X < X+ AX
end for
y <y +Ay
GLEND()
end for

18: end function

Fig. 2. Pseudocode of the function that creates a surface.

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

| 361

3. MAIN CHARACTERISTICS OF OPTIMPLOT

The OPTIMPLOT philosophy is to provide an intuitive
environment with easy handling, therefore, releasing the
user from writing code lines. This way, the user focuses on
the solution of the problem and not on how to operate the
software.

Based on the statement above, the expression of a
function is input as a symbolic form, using the
conventional arithmetic operators, listed in order of

priority: (),” */,+, -; and the default literals to be used
as variables are X and Y.

The user can input up to five functions simultaneously
and decides whether to plot a single one of them or all by
clicking on the corresponding Check Box Control. With
the same idea, by means of a Radio Button Control, the
user decides which of the displayed functions will be
selected for evaluation on critical points. Furthermore, if
any of the functions is edited, it is modified on the screen
by pressing the corresponding Update button.

Although 2DE is devoted to single-variable functions

f(X), it is possible to input functions of two variables

f(X,y), in which Y is considered as a parameter with a

given value specified by the motion of a Slide Control.

This feature allows the user to interactively visualize the
function's behavior while the parameter y changes from
one value to another within a given range of X.

In order to make the use of OPTIMPLOT more user-
friendly, the graphical environment was developed so that
it could be easily customized. The user can manipulate
some graphical properties such as the function color, the
the
(orthogonal or perspective) among others. In Fig. 3, a 3DE

background color and surface representation

screenshot is shown, in which two surfaces are
simultaneously plotted. Furthermore, in the same figure,
the tools to handle the objects and the scene are visualized.
The change of the color function can be performed by
means of the Color Button Controls, located next to the
edit box. Other options are clustered in the GUI Group
Bozx, as shown in Fig. 3. Some of these options are useful
to change the objects color involved in the graph, such as
Back Ground (BG), Mesh, Reference Lines (Ref. L.), Text
and Block Plate (B. Plate). Other functions, are check box
items that modify components of the graphical interface,
as described below:
e B. Plate: display/hide a block behind the function to
have a reference when the function plotted is rotated

(only in 2DE).

IBEE

Active Eva Sold/Wire Optim Gption

Method: GUL
W 8Bex ¥ Grid [T wles

v [[ceart

4 r [teart| | ¥ urtopersoectve [M <]Mesh
I r [ceamt I~ NavigateSuf. [~] wlRef.L.
I o[e ¥ Move scere [] rext

| L I selfmoton [wleox |

< Corfiguration GUI Optmizstion Help
f1069) [A 24y-100~ 2404y 2-7) 72 [l w| UpcateFunction | M
f20x,¥) | 300*cosiyie) +100 0 v| upcateruncton | ¥
1360,¥) [300%n (/9 [l v| UpcateFunction | ™
fapy) [sn: 0 w| UpcateFunction | ™
150 [snxes 0 v| upcateFunction | ™
-

szex 7‘ 1o

SzeY J 10

5227 | [fo0

o« ——}——F

o ——F——F

- b F

- God Sascng — £

x | v [r z i

Xonin % I—\‘.-_'

o —————— | F

Von ‘ E

Ymax J 3

- Mesh Densty

XPoist: J [100

¥ Fomts J [0

Update Resoution
Resat T

Fig. 3. The 3DE to analyze three-dimension surfaces. The plotted function in blue is given by (Xf +X, _1]_)2 +(X1 +x2 _7)2

and the other plotted surface is given by 300cos(xy/5)+100 -

362 |

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

e Snap: allows the motion of the reference point on the
function in specific locations defined by the mesh.

o Self Motion: perpetual motion when the user releases
mouse buttons while interacting with the render
window.

e Navigate: the user can navigate through the function.
A point on the plot depicts the position of the cursor.
In 2DE horizontal line and a vertical line are also
visible to better locate the point.

e Move Scene: when this option is active, the user can
rotate or translate the plot, and zoom in and out the
object.

e Reset Scene: this button allows the user to set the
render scene to a preset configuration.

There are other options to interact with the objects
and the scene, such as Dialog Windows to manipulate the
environment parameters, moreover, the changes in these
dialogs, affect instantaneously the plot environment.
These dialogs can be accessed through the Menu Bar,
which has three options, Configuration, GUI and Evaluate
or Optimization depending if the application is 2DE or
3DE, respectively:

o Configuration: The Set Plot Environment option
opens a dialog dedicated to the definition of the plot
setting, such as domain and range, among others.

o GUIL The Scene Set Up option pops up a dialog in
which the user can interact with the render window,
to set the projection type and the aspect ratio, among
others.

o Fwaluate: The Critical points option, displays a dialog
window Min-Mazx Dialog, through which the user can
select a method to find roots and to calculate the
maximum or minimum of the function, moreover, the
parameters to find numerically the optimum point
can be modified.

o Optimization: displays a list of optimization methods,
each one opens a dialog window in order to set the

corresponding parameters.

4. THE OPTIMIZATION PROBLEM

The

programming techniques are useful to find the minimum

optimum seeking methods or mathematical
of a function of several variables under a prescribed set of
constraints; however, it is possible to find a maximum
with the same techniques that were used to find a

minimum performing some changes. The minimization of

functions without constraints is obtained by the
applications of these techniques.

The optimization methods implemented so far in
OPTIMPLOT,

reported in the literature for unconstrained optimization

are the classical techniques commonly

problems, and they fall into the branch of mathematical
programming techniques (Arora, 2004; Fletcher, 1987;
Rao, 2009).

The general mathematical programming problem can
be expressed as: find the design vector X which minimize
or maximize the function f(X):

min f (X) (1)
max f (x) (2)
where f(X): is the objective function and it is constrained
by:

9(x)<0 (3)
h(x)=0 (4)

moreover, the values of the design variables (design vector
components) are limited by:
Xim S X <Xy ()

im —

where X;, and Xjy represent the minimum and

maximum value that the design variable can take, and
these are called design constraints. The design vector
which minimize or maximize the objective function is

commonly called the optimal solution and is expressed as

*

X .

An extensive amount of options is available to solve
the optimization problem. In many cases, the main
limitation, is determining the adequate optimization
techniques to solve the given optimization problem,
several optimization methods are implemented for this

reason.

4.1 THE TWO-DIMENSION OPTIMIZA -
TION PROBLEM

The problem is concentrated in a single-variable
function, Yy = f(X). Thus, the function to be analyzed

has critical points, in OPTIMPLOT these are divided in two
groups, namely: Mazimum and Minimum Points and
Roots. In order to find extremal points, the software
provides four methods: (4) Equal Intervals, (i) Golden
Section, (¢if) Semi-Intervals and (iv) Polynomial approach.

The golden section method is a popular technique,
which is applicable to unimodal functions. This technic is
classified as elimination method and is one of the best of

M. A. Gonzilez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

| 363

these methods (Rao, 2009). The golden section method,
compared to others, has an advantage since its rate of
convergence is known, it has a good response for those
poorly conditioned problems, and it is easily programmed
2001). The golden
pseudocode is shown in Fig. 4, where N and ¢, are the

(Vanderplaats, section method

maximum number of iterations and the convergence
parameter, respectively; their values are set by default,
but the user can update them any time. The search

interval is defined by X, and X; ; such interval is retrieved
named

with the aid of the function

CGoldenSection::SetLimits () .

When the CGoldenSection::Optimize () function is applied
to obtain optimal points of 2D functions, X; is provided
by the user and CGoldenSection::SetLimits() function
applies this value to search for X;. The procedure
converges if the condition of line 10 is satisfied, thereafter,

the solution is stored in (Xyins frmin) -

The
becomes apparent in cases in which there are several

advantage of having graphical interaction

minima for a given range, such is the case of the function:
f(x,y) = 200(y —cos x) —120sin x° (6)
Equation (6) is plotted in the range (-7, 7) with y=1/25

With the motion of the mouse' the
user can navigate the function and observe its value for

as shown in Fig. 5.

any x point; in the snapshot, the mouse is locating a point
at (2.5176, 163.6754). At this position if the left button is

pressed, the CGoldenSection::Optimize() function is

called considering that X, =2.5176, and, once the line
10 of Fig. 4 is reached, a point is plotted at the closest
minimum, and the solution is displayed at the bottom left

(2.78371, 75.98826). A similar procedure is
followed to find a maximum, but in this case, the right

corner,

mouse should be pressed.

4.2 THE ROOTS OF A SINGLE-VARIABLFE
FUNCTION

In order to calculate the roots of a function with
OPTIMPLOT, one of the following five methods can be
chosen: (¢) Bisection, (#) False position, (i) Fized Point,
(iv) Newton-Raphson and (v) Secant.

! In two-dimension functions, only the horizontal motion of the
mouse is considered to navigate on the function.

4.3 THE OPTIMIZATION PROBLEM IN 3D

The solution of this problem has been widely studied
(Rao, 2009), providing various solution methods. The
software has implemented the next algorithms, where
z=f(x)=f(X,y):
= Powell.
= Steepest Descent.
= Marquardt.
= Davidon-Fletcher-Powell.

The pseudocode of the steepest descent method is
shown in Fig. 6. As in Fig. 4, the iterations allowed, N,
and the convergence parameter, ¢, are set by default. The

initial search vector X;, is gathered from the pointing
device; in this case the user can navigate on the surface by

moving the mouse. The search direction Sk, is obtained

with the aid of the gradient evaluated at X, . The new
searching point is obtained with the aid of the optimal
step length &, , which in turn is obtained with the aid of
the function provided in Fig. 4. When the condition of line
6 is satisfied, the solution is stored in (Xpins frin) -

Furthermore, three convergence criteria are

established for each of the
mentioned above. The value of these criteria is compared

implemented methods

with a tolerance value, commonly defined by &. The latter

is independent of the convergence criterium, and it is

controlled by the user according to the required precision

on the solution. Thus, the user can choose the same or

different & value for each criterion for comparison

purposes. For example, selecting the same value will

provide information on which of the criteria converge

faster. The three convergence criteria implemented in

OPTIMPLOT are described next:

* Grad. Norm.: the norm of the objective function
gradient.

= Func. Diff the absolute difference of the objective
function.

= Vec. Norm.: the norm of the difference of the solution
vector.

As in the case of two-dimension functions, the
snapshot shown in Fig. 7, presents a sample with multiple
The
snapshot indicates the instant the mouse is locating the
point (2.7327, 1.9016, -0.0329). In this case the right
mouse was pressed and the program converged in four

critical points for a three-dimension function.

364 | M. A. Gonzilez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

iterations at the closest maximum point (1.5717,3.4015, graphically, which point was reached. Complementary
4.2594), while popping up the green point, to indicate information of this sample is given in Table 2.

1 begin function CGoLpENSECTION::OPTIMIZE (f (X))
2 N <« CGOLDENSECTION:: N

3 & <« CGOLDENSECTION:: &

4: Xg X; < CGoOLDENSECTION::SETLIMITS (f(X))
5: X, «—(@A-7)x, +7%, 7=0.38196
6 X, — X +(1-7)%

7 T «—f(x,)

8 A <« f(x,)

9 fork<1 to Ndo

10: if abs(f, -f,) <& then

11: fon <1,

12 X <— X, /I Optimal point found
13: return

14: else

15: if f, >f, then

16: Xg < X,

17: f, <1,

18: X, <X,

19: f, <1,

20: X, <= 7% +(1=1)X

21 f, «f(x,)

22: else

23: X =X,

24: f «f,

25: X, <= X

26: f, «f,

27: X, «— (A-7)X, +7X

28: f, «f(x)

29: end if

30: end if

31: end for

32: end function

Fig. 4. Obtaining Pseudocode of Golden Section algorithm.

Active Eval [-Critcal Points Vmin ¥ Yomx Y
£ [2007(y<oe) 12078 (~2) [| updete [P G | & MO CRoos ([———————— [5003 [oow | Bfate [_:] =] e
2= [t a2 [] update|[I™ € | Gopone | |[0000 ——F———— [Too [0 | swp gh
3= [x5amer [| update [© ey [Fo0 ————4—— [ow [105% | seffvoson [@ =] rext
400~ [72/8+2 S7cozler)12 [o <] update [€ we] [=am b—— [500 [2000 | @ Navigate [T w] BPlate
(9= [t ta>e2 B] update|[I™ |0 50 d——— [550 [0380 | € MoveScens ResetScere |

Critical Point (2.78371, 75.98826)

Fig. 5. Finding a minimum by navigating a function with multiple critical points.

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

365

S99 &5 @ G @ F

begin function ~ CSTEEPESTDESCENT::OPTIMIZE (f(X))

N < CSTEEPESTDESCENT:: N
Xy < CSTEEPESTDESCENT:: X,
& < CSTEEPESTDESCENT:: ¢

for k<0 to N do
it [Vf(x,)|< & then
T < T(X,)
Xmin < X /I Optimal point found
return
else

S, «-Vi(x,)
o, < CGoLDENSECTION::OPTIMIZE (f (X, + &S,))
X <X, +, S,

end if

end for
end function

Fig. 6. Pseudocode of Steepest Descent algorithm.

L

tlmum Point [1.5717, 3.4015, 4.2694) with 4 Iterations
ovmg Point: [.7327,1.9016, -0.0329 \

Fig. 7. Plot of f(X)=ysinXx+cos(2y)

Table 2. Complementary information of Fig. 7.

Yy Xy X max
range Red point Green point

max

-5 5 2.7327 1.9016 1.5717 3.4015

4.2694

366 |

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

5. EXAMPLES OF ANALYSIS

The property of plotting several functions on the same
environment extends OPTIMPLOT's scope. For instance,
with this feature, the user can plot not only the objective
function but also the constraints, therefore, the usable-
feasible region, can be defined by visual inspection (when
the complexity of the problem allows it), or an initial point
to start the search can be defined.

5.1 FUNCTION ANALYSIS ON THE 2D
ENVIRONMENT

In order to show the OPTIMPLOT functionality, Fig. 8
shows the plotted responses of a typical second-order
control system to a unit step input, thus the underdamped
case is given by (Ogata, 2010):

ot h_ 2
& sin codt+tan‘li (7)
N 4

where, {is the damping ratio (0<{ <1), o

f(t)=1-

is the

n

undamped natural frequency and @, is called the damped

natural frequency, @y =, 1-¢?% . From eq. (7), the
free parameter is ¢, thus taking @t as the z variable
and ¢ as y, different cases are plotted by changing the y

value.
The first three functions plotted in Fig. 8 represent
responses when ¢ takes the values 0, 0.3 and 0.6. The

fourth function represents the critical damped case,
namely, ¢ =1. The overdamped case occurs when ¢ >1

and is represented by the last function where { =2 . The

correspondent graph for each case can be identified by
means of the relating color.

Once the functions are plotted, finding a maximum
point is simple. Going back to Fig. 8, a maximum point is
found applying the golden section method as the dialog
window shows. The critical point that is found is
represented by a green point over the function that is
selected for evaluation. The access to the dialog window is
through the element FEwaluate on the menu bar, which
Critical

corresponding dialog window.

opens the Points option, displaying the

The option to find roots is illustrated in Fig. 9, thus,
the roots of the function are calculated by a numerical

method managed through the Min-Maz dialog. In the
same figure, the minimum value of the function is shown
(in the interval displayed) by means of visual inspection
(lower precision).

It is noteworthy to mention that in navigation mode
and with the radio button Min-Maz active, the user can
set the initial point to search for a minimum or a
maximum point, by clicking the left button or the right
button, respectively, while the cursor is pointing close to
the critical point. If the Root radio button is active, the
user can search for a root by clicking the left button on
each side of the critical point (only in 2DE).

5.2 FUNCTION ANALYSIS ON THE 3D
ENVIRONMENT

The unit-step response curves of a second-order
control system can be implicitly plotted in the 3DE. In
order to accomplish this task, it is necessary to consider
again eq. (7) by taking @t as the z variable and ¢ as
the y variable (thereby, the { variation is visualized in
the y direction). The resulting surface plot is shown in Fig.
10. The z axis is identified by the red arrow (bottom-
right), in the same manner, the y and z axis are
represented by the green (left) and blue (middle),
respectively. To demonstrate the capability of the
OPTIMPLOT in the 3DE, the Himmelblau function is
plotted, which is shown in Fig. 11. This surface is given
by the mathematical expression:

f(x)= (xf +X, —11)2 + (xl +X5 — 7)2 (8)

The Himmelblau function has four optimum points,
one of them is (3, 2) with f(X')=0. To find one of the
optimum points, the Steepest Descent method is selected.
The dialog window for this method is accessed through the
optimization option in the menu bar. To find the
minimum, the initial point X, was established (0,0).
Moreover, the Func. Diff. criterion was fixed. The results
are shown in Fig. 11, where the dialog window shows the
optimal point as (2.99607934,2.00458522), and the
function value evaluated in this point, which is
0.00056663; thus, the precision of the solution is
determined for the value of the selected convergence

parameter, which ins this case was set as & =1x10"* To

M. A. Gonzilez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

| 367

find an optimum, the use of the numerical method is not
always necessary; this can be done by visual inspection if
the accuracy is not relevant, as is shown in Fig. 11, where
the Moving Point is manually positioned closed to the
local minimum.

Because the Himmelblau function has exact optimum
points and the corresponding values of f (X*) are

integers, it is considered a classical test function in

optimization problems. Including the Himmelblau
function, in Table 3 are listed five classical test functions
(Momin & Yang, 2013); for each function, one optimum
point and the corresponding function value are indicated.
In Figs. 12 and 13 are shown the optimization results
performed in OPTIMPLOT.

Figure 12 contains three stills of the Goldstein-Price
test function solution. In each case, a different solution
method was applied; the settings to find the optimum
point can be observed in the dialog window aside of the

graph function, in the same dialog window the user can

Report section with the optimum point (Best point) and
the function value in this point. Note that the best
solution was obtained with the Davidon-Fletcher-Powell
method. Moreover, Fig. 13 shows the results of the
remaining test functions where the solution was reach
applying the Steepest Descent method. In all cases, the
initial point X, , was selected while navigating with the
moving point. It is also possible to input X, with the aid
of the edit boxes X ini and Y ini shown in the dialog box.
It is well known that sometimes a given numerical method
or a given X, might fail in finding a solution. Thanks to
the interactivity of OPTIMPLOT, the user can quickly
select a different X, or switch for any of the four the
optimization methods until the convergence is found. For
example, in Fig. 12¢, X, was initially chosen close to (0.5,
-0.5) as in Figs. 12a and 12b, but the report was “no

convergence found”; now, with the point (0.354, -0.090),
the solution was obtained in five iterations.

Configuration GUI Evaluate Help

f200= [T-expley ™)y =) ~(0.5)) senlx=((1-y) ~(0.5) +atan(] w] Update [¥ &
£360= | 1-{exp(y™)/{(1-y ™) 0. 5)) *sen(x*((1-y*y)*(0.5)) +atan(Il v| Update [
fa(x)= [1exp()(1+x)

Active Eval [~ Critical Points

1= [1-fexpl-y=)/((1-y =) ~0.5))) *sen(x*((1-y*y)~(0.5)) +aten(Ml v Updste [V " | & m’x C Roots | [0.000 +———————— [1000 [0000 | B.Pate

Clear Point ;I 0.000
Single Point Eval.
e

£5(x)= | LH1/@((*y-1"0.5) "y +(y=y-D~0.5))) "exp(-ly+{(yy- B w| Update [V | g109_ 1 35545

Ymin X Ymax ¥ ~Gur

T vl 86
| = IME§|
p—————— | 1000 | 0.300 |V Snap |—_]_: Ref. L.

——— [1000 [0.600 |I” SelfMotion [] Text
1 [1000 [1000 | & Navigate T] BPlate
1 [2000 [2000 | ¢ MoveScene ResetScene

0.000
0.000
1.010

+(4.0000, 1.2944)

Roots 1 Max Min
" Bisection [(5]

/ " False Position [Golden Section
/ " Fixed Point € Semi-Inter
" NewtonR.

/ \ =

€ Palygonal
Root Min Max
~Second Point Search

\\ Nsteps: | 100 Step Size: | 0.00010

A— Definitions
Niter. Epsion Xa Xb

200 |0.000100 4.035 I

~Results
Iterations, error, Maximum (x,y)
5,0.000077795, (3.3179, 1.3722)

ﬂl Close

Critical Paint (3.31789, 1.37221)

i

Fig. 8. Unit-step response curves of the second-order control system.

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

Configuration GUI Evaluate’ - Help

Active Eval ~Critical Ponts ——

Ymin

Y
£169= [y a7~ 0 5D senGraan((y =)~ 0.5)1v)) [l <] Update [~ € | € NP & Roots [D036 +—————— [Tooo [cowo | 8Pate l'__]zfl:;h
£200)= [1-(eap-y =) N(1-y*) 0. 5))) senix+atan(((1-y=y)~0.5)/ B8 _w] Update |~ Clear Point I oo ——fp—m—— 1.000 [0.300 | Snap [] Ref L.
£3(x)= [T{exp i Ly 1) ~(0. 5))) senicratan(((1-y 1) (0. 5))/ | Il _w] Update [~ € Single Point Eval, 0,000 -t 1000 [0,500 |7 selffvotior [] Text
fa(x)= [x 2B +2.5%0s(x* y)-1.2 B v|lpdate |V & =3 0.000 1 [1co0 “ 1 | EPlate
£ = [THUE (71705 "7 +H(r"y-D0.5)) "exp(y +{(y~v- [] Udate [~ € F1()- 165364 1010 4 [2000 [2000 | movescene ResetScene

5
]

Y GUI

~Roots

tax Min
% Bisaction € Equsl Intery
¢ False Position | | € Golden Section
€ Fixed 2oint € Semi-Iverv,
€ NewtenR. € fFelygona
€ secant
Root Min Max

~Second Peint Search
Nstepe: [100 StepSze: [0.00010

~Defintons

Niter. Epson Xe

[200 [oooor [33 [497
= |3 es01, -2.5792) fee

12, 0.000052280, 4.25712

_Cer | com

95

Fig. 9. The analysis to find function roots in the 2DE. The plotted function is given by X2/8+5/ 2cos(xy)—6/5.

Critical Point (4.26712, 0.00000)

Fig. 10. Unit-step response of the second-order control system with wire option in the 3DE.

M. A. Gonzdlez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372 369

= Configuation GUI_ Optimization Help [~ [l=]l xﬂl
Active Fval SalidWira Optim Optior Method: L —

A1) [zt zsxay 2~z [B~] wdaeruncten | F & & F [ceam ¥ 88ox ¥ Gid |1 wlse

P20} [F007costoy/+ 00 [Iy] udaeruncion | T ¢ T o Clear 21 ¥ O toPeroecive [0 wfMesh

£3boy) [200%n 6=/ [@] pdacrunctor | I T Ts Clear 2t, W Navigae surf. [ET vlRefiL.

Fboy) [re s [O=] edseFuncter [~ € I r[T cewnt| | M thesew Wl

f6oy) [Fnes [B=] wdamfuncten | ™ T r [cemst| | [sefvomn [E ~losox |

Settings Sindle Dir. Seerch
Criterium
No. Itor. Epslon NStp St

10 ooocor [0 [caoi0

Settings

Mo, Lter. Epsicr xn o
m ocoan [0oon [c.oo0

Cowergence Criterig———————————————
 Grad Norm @ Func. Diff. € Vec. Norm
L

[Best point (x, ¥, 2) obtared

200607934 200458522 0,00055663
[~HaDort: Lrerations, Error - -
Converg=nze = ©.000004558
Corvergence ariterium applied: Furection Diff

Fig. 11. The steepest descent method application to solve an optimization problem in OPTIMPLOT. The plotted function
is given by f(x)= (xiz +X, —11)2 +(x1 +x2 —7)2

Mowag Pows (179012..:0 9023, 149 0227)

o e s
CECE [[esome
[oms oo
e itV
S erer
- 2 e S & 90000 1%
Corvegmror oo mused odet o Lurar gy o sk P D
8wy v | | o | o
RV R T e ey
a) Optimum point with Davidon-Fletcher-Powell . . .
) Op P b) Optimum point with Marquadt method
method
Moveg Foue (0 3554, -0 0902, 902 431 Setigs S O Sty
S
o D . e :9— X o
[- [(s
e
N D owlor " AL
[[ooomi [ome [amm
Camverguacs Ouwa

Comt i S RO e
st ot b, v, of sbberat

COMBIM -LONOKNS L00o0ee
St st trem

Covargeer s 000008275
Carvagmee somar avbed Puamoe O

towm | bum] e | o |

(pmm T

0] weh S Toeratices
oog Pows (1 0

¢) Optimum point with Steepest Decent method

Fig. 12. Goldstein-Price test function and its results with three different algorithms.

370 | M. A. Gonzilez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

Momng Tous 2547, X080, 04 520

Mg ot (£ 583, ST, & 1855 | N awes Souss

0 Fowst (1 0000, 0 4000, 4 00000 wek 115 Dnctint
\IwnL- [} T N o .

b) Rosenbrock test function and its Optimum

a) Baele test function and its Optimum point point

- Tonte . -
i“ JEoomti ian ‘X

| Comerganer b

T ot vrn ¥ recof. T e

Bt et (3, 4, o] oAt
SHCMI00 RN -Lo0me

St s
.] = coomeces
Comoncs . S N (.

c) Easom test function and its Optimum point

Fig. 13. Test functions and their optimum point applying the Steepest descent method.

Table 3. Test functions and their well-known solution.

Function Expression, f(x) Exact f(x)
name Optimal

point:

o
Himmelblau f(x) = (Xf +X, _11)2 +(X1 +X _7)2 (3, 2) 0
Goldstein- f(x) = f,() f,(x), where: (0, -1) 3
Price f(x)= [1+ (% +% +1)° (19 —14%, +3X2 14X, +6X X, +3%])]

f,(x) =[30+ (2, —3%,)" (18— 32, +12)¢ +48x, ~36%%, +27%}) |.

Bacle £ =(L5-% +%%)" +(2.25-% + %) +(2.625-% +%3¢)’ (3,05) 0
Rosenbrock f(x) = (= Xl)z +100(X2 —X)2 (1, 1) 0

Easom f(x)=—cos(x1)cos(x2)exp(—(x1—7r)2—(xz—ﬂ)z) (m, m) -1

M. A. Gonzilez-Palacios el al. / Journal of Applied Research and Technology 16 (2018) 357-372 371

CONCLUSIONS

This paper is a comprehensive presentation about an
optimization software development named OPTIMPLOT.
Its structure was explained with the necessary details to
show how to create a specific application software on the
basis of ADEFID libraries. By using the OOP techniques,
it was possible to build a robust and flexible software.

The
optimization which releases the user from writing code

creation of an interactive software for
lines or programming languages was the main aim of this
research work. Thus, the user only needs to type the
symbolic function expression to see the plotted function,
becoming an intuitive handling software. Furthermore, the
user can navigate through the function graph to evaluate
any point and to establish the initial point to start the
search for the optimal value, or the function roots, in the
2DE case.

Some optimization methods were implemented to
provide a wide range of options to solve a specific problem.
It is possible to include additional optimization methods
to improve the software performance.

Several parameters can be changed in-line, in this way
the user can immediately observe configuration changes.
The full control in the optimization algorithm is another
important characteristic, specifically the possibility to set
the solution tolerance, setting the convergence criterium
to end the algorithm process or fix the maximum iteration
numbers.

Finally, once software features have been defined, it is
that OPTIMPLOT is a
possibilities in education and applied research. Currently,

clear software with broad
the software is under development, in order to include
additional features and solution methods.

ACKNOWLEDGMENTS

The first and third authors acknowledge the support
from SNI, (Sistema Nacional de Investigadores), México.
The second author is grateful to the CONACYT (Consejo
Nacional de Ciencia y Tecnologia), México, for the support
provided to realize this research work. Besides, the second
author thanks the Department of Robotics Engineering of
the Polytechnic University of Guanajuato for the support
provided, particularly the head of the Department Rogelio

Campos-Lopez.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare.

REFERENCES

Arora, J. S. (2004). Introduction to optimum design. Elsevier.

Currie, J., & Wilson, D. I. (2012). OPTI: lowering the barrier

between open source optimizers and the industrial
MATLAB user. Foundations of computer-aided process

operations, 24, 32.

Fletcher, R. (1987). Practical methods of optimization. John
Wiley & Sons.

Gonzélez-Palacios, M. A. (2012). Advanced engineering platform
for industrial development. Journal of applied research and
technology, 10(3), 309-326.

Gonzalez-Palacios, M. A., Bernal-Martinez, C. A., & Aguilera-
Cortés, L. A. (2009). Optimplot3d: A novel and interactive
software package for analysis of three dimensional surfaces.
In Electronics, Robotics and Automotive Mechanics
Conference, 2009. CERMA'09. (pp. 137-142). IEEE.

Gonzélez-Palacios, M. A., Pena-Gallo, R., & Aguilera-Cortés, L.
A. (2009). OptimPlot2D: a novel and interactive software

CERMA

Mechanics

package to analyze single variable functions.

Electronics, Robotics and Automotive
Conference. Cuernavaca, Morelos México.

Holmstrém, K. (1999). The TOMLAB optimization environment
in Matlab.

Horton, I. (2010). Beginning visual C++ 2010. Wrox Press.

Momin, J. A. M. I. L., & Yang, X. S. (2013). A literature survey
of benchmark functions for global optimization
problems. Journal —of Mathematical —Modelling — and
Numerical Optimisation, 4(2), 150-194.

Lafore, R.
Pearson Education.

Leinecker, R. C., Muelver, J., & Farmer, M. (1997). Visual J++
Bible with Cdrom. IDG Books Worldwide, Inc..

Lofberg, J. (2004, September). YALMIP: A toolbox for modeling
and optimization in MATLAB. In Computer Aided Control
Systems Design, 2004 IEEE International Symposium
on (pp. 284-289). IEEE.

Maple. (2017). www.maplesoft.com/products/maple

(1999). Object-oriented programming in C++.

Mathematica. (2017). www.wolfram.com/mathematica

MatLab. (2017). www.mathworks.com/products/matlab

Octave, G. (2017). www.gnu.org/software/octave

Ogata, K., & Yang, Y. (2002). Modern control engineering (Vol.
4). India: Prentice hall.

Pefia-Gallo, R. (2011). Design and construction of a cartesian
manipulator of two degree of freedom for industrial
processes tests (Master dissertation, in spanish). México:

University of Guanajuato.

https://www.scopus.com/record/display.uri?eid=2-s2.0-84903660256&origin=resultslist&sort=plf-f&src=s&st1=Arora%2c+J.+S.++Introduction+to+optimum+design&nlo=&nlr=&nls=&sid=f35230895a3a217c47bfefa2226daca6&sot=b&sdt=cl&cluster=scoprefnameauid%2c%22Arora%2c+J.S.%237102236165%22%2ct&sl=49&s=ALL%28Arora%2c+J.+S.++Introduction+to+optimum+design%29&relpos=19&citeCnt=612&searchTerm=
http://focapo.cheme.cmu.edu/2012/proceedings/data/papers/024.pdf
http://focapo.cheme.cmu.edu/2012/proceedings/data/papers/024.pdf
http://focapo.cheme.cmu.edu/2012/proceedings/data/papers/024.pdf
https://books.google.com.mx/books?hl=es&lr=&id=_WuAvIx0EE4C&oi=fnd&pg=PT7&dq=Practical+methods+of+optimization.+&ots=PU9FAutA6N&sig=oY1NiED-8sPul5Q2WzkHNvu07Ik#v=onepage&q=Practical%20methods%20of%20optimization.&f=false
http://www.scielo.org.mx/scielo.php?pid=S1665-64232012000300002&script=sci_arttext
http://www.scielo.org.mx/scielo.php?pid=S1665-64232012000300002&script=sci_arttext
https://ieeexplore.ieee.org/abstract/document/5342000
https://ieeexplore.ieee.org/abstract/document/5342000
https://ieeexplore.ieee.org/abstract/document/5342000
https://ieeexplore.ieee.org/abstract/document/5342000
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-64232012000300002
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-64232012000300002
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.5714
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.5714
https://arxiv.org/abs/1308.4008
https://arxiv.org/abs/1308.4008
https://arxiv.org/abs/1308.4008
https://books.google.com.mx/books?hl=es&lr=&id=rbU_es5hUT8C&oi=fnd&pg=PT22&dq=Object-oriented+programming+in+C%2B%2B.+&ots=liqq_I2fUO&sig=TQBWm54WwgLhuA2GTHXjnD3aZoE#v=onepage&q=Object-oriented%20programming%20in%20C%2B%2B.&f=false
https://dl.acm.org/citation.cfm?id=549231
https://dl.acm.org/citation.cfm?id=549231
https://ieeexplore.ieee.org/abstract/document/1393890
https://ieeexplore.ieee.org/abstract/document/1393890
https://ieeexplore.ieee.org/abstract/document/1393890
http://www.maplesoft.com/products/maple
http://www.wolfram.com/mathematica
http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave
https://www.uvic.ca/engineering/ece/assets/docs/current/undergraduate/201709/ELEC360.pdf
https://books.google.com.mx/books?hl=es&lr=&id=YNt34dvnQLEC&oi=fnd&pg=PA63&dq=Engineering+optimization:+theory+and+practice&ots=FwHwUQCWQN&sig=sX2ZB9SGGKE9nX8OIuBdUjVoiKI#v=onepage&q=Engineering%20optimization%3A%20theory%20and%20practice&f=false
https://link.springer.com/article/10.1007/s10898-012-9951-y
https://link.springer.com/article/10.1007/s10898-012-9951-y
https://link.springer.com/article/10.1007/s10898-012-9951-y

M. A. Gonzilez-Palacios et al. / Journal of Applied Research and Technology 16 (2018) 357-372

372 |

Rao, S. S. (2009). Engineering optimization: theory and practice.
John Wiley & Sons.
L. M., & Sahinidis, N. V.

optimization: a review of algorithms and comparison of

of Global

Rios, (2013). Derivative-free

software implementations. Journal

zation, 56(3), 1247-1293.

Scilab. (2017). www.scilab.org .

Optimi-

Stroustrup, B. The C++ programming language Addison-
Wesley (1997). Das Werk des Meisters, muss man kennen,
wenn auch nicht unbedingt als erstes C++—-Lehrbuch lesen.

Vanderplaats, G. N. (2001). Numerical optimization techniques

for engineering design.
Vanderplaats Research and Development, Incorporated.

Walnum, C. (1999). C++ Master Reference (p. 1517). IDG

Books Worldwide.

https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Stroustrup%2C+B.+The+C%2B%2B+programming+language+Addison-Wesley+%281997%29.+Das+Werk+des+Meisters%2C+muss+man+kennen%2C+wenn+auch+nicht+unbedingt+als+erstes+C%2B%2B%E2%80%93Lehrbuch+lesen.&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Numerical+optimization+techniques+for+engineering+design&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Numerical+optimization+techniques+for+engineering+design&btnG=
http://pdfilgodor.com/c-master-reference-categories-to-find-your-favorite-literature-genres.pdf
https://books.google.com.mx/books?hl=es&lr=&id=YNt34dvnQLEC&oi=fnd&pg=PA63&dq=Engineering+optimization:+theory+and+practice&ots=FwHwUQCWQN&sig=sX2ZB9SGGKE9nX8OIuBdUjVoiKI#v=onepage&q=Engineering%20optimization%3A%20theory%20and%20practice&f=false
https://link.springer.com/article/10.1007/s10898-012-9951-y
https://link.springer.com/article/10.1007/s10898-012-9951-y
https://link.springer.com/article/10.1007/s10898-012-9951-y
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Stroustrup%2C+B.+The+C%2B%2B+programming+language+Addison-Wesley+%281997%29.+Das+Werk+des+Meisters%2C+muss+man+kennen%2C+wenn+auch+nicht+unbedingt+als+erstes+C%2B%2B%E2%80%93Lehrbuch+lesen.&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Numerical+optimization+techniques+for+engineering+design&btnG=
https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=Numerical+optimization+techniques+for+engineering+design&btnG=
http://pdfilgodor.com/c-master-reference-categories-to-find-your-favorite-literature-genres.pdf

