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ABSTRACT 
 
In this work, we present the elimination of a saddle-node bifurcation in a basic power system using a PID 
controller. In addition, a stabil ity analysis of the rotor angle and its frequency, which are directly related to 
voltage collapse problem, is presented. 
 
RESUMEN 
 
En este trabajo se presenta la eliminación de una bifurcación de un nodo tipo “Saddle” en un sistema de 
potencia básica util izando un controlador PID.  Asimismo se presenta el análisis de estabilidad del ángulo del 
rotor y de su frecuencia que están directamente relacionadas con el problema de colapso del voltaje. 
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1. INTRODUCTION 
 
Voltage collapse in electric pow er systems has recently received signif icant attention in the literature. This 
has been attributed to increases in demand that result in operation of electric pow er system close to its 
stability limits. In several papers, for example [1, 2, 3, 4, 5], voltage collapse is related to a saddle-node 
bifurcation of an equilibrium point, w hich occurs w hen the real or reactive pow er demand is quasi-statically 
varied. Some other types of bifurcations present in a voltage collapse are Hopf, period-doubling, and cyclic 
bold types; furthermore, the system may display even chaotic behavior. Several previous w orks have 
proposed some procedures to control these bifurcations [1,7,9]; how ever, they have been focused on 
bifurcation control of periodic solutions. 
 
Voltage collapse is a system instability that involves many pow er system components and their variables. 
This phenomenon often involves the entire pow er system. Indeed, the rotor angle of the machine is the 
main variable involved in a voltage collapse. For this reason, there is not difference betw een a voltage 
collapse, angle collapse and classical instability. 
 
The main difference betw een a voltage collapse and classical transient stability is that the voltage collapse 
focuses on loads and voltage magnitudes, w hereas classical transient stability focuses on generators and 
angles. In addition, voltage collapse often includes longer time scale dynamics as w ell as the effects of 
discrete events such as line outages. 
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A voltage collapse can be seen as a saddle-node bifurcation of equilibrium points. A saddle-node 
bifurcation is a disappearance of equilibrium points as a parameter value changes slow ly. The saddle-node 
bifurcation of most interest occurs w hen the equilibrium point w here the pow er system operates 
disappears. As a saddle-node bifurcation can produce a voltage collapse, it is useful to study this 
phenomenon to understand and avoid it. 
 
In this w ay, the w ork reported in this paper presents the elimination of a saddle-node bifurcation in a basic 
pow er system proposed in [6] using a classical PID controller. We found the conditions that the system and 
the controller must satisf ied such that this elimination can be achieved. Also, w e analyze the stability of the 
rotor angle and its frequency, w hich are directly related to the voltage collapses. In this way one can expect 
that the results obtained here could be extended to more general systems displaying these undesirable 
phenomena. 
 
2. A POWER SYSTEM MODEL 
 
The equation that describes the rotor motion of a synchronous generator is  
 

,
..

mNTJ a ⋅=θ                          (1) 
 
w here J is the equivalent inertial momentum of all the loads attached to the rotor, θ is the mechanical angle 
of the shaft, measured w ith respect to a static framew ork, and Ta is the resultant torque driving the axis. 
The machine is a generator, so the driven torque Tm is mechanical and the reacting torque is an electric 
torque, so that 
 

.ema TTT −=  
 
A positive mechanical torque accelerates the rotor, w hile a positive reacting torque decelerates the 
machine. If  w e consider a synchronous rotating reference framew ork moving w ith a constant speed ωR, the 
angle θ can be expressed as 
 

( ) ,mtR δαωθ ++=  
 
w here α is a constant and δm is the angular difference betw een the mechanical angle and the moving 
frame. Hence, equation (1) is transformed to 
 

,
...

eTmTmJmJ −== ωδ         (2) 
 
w here ωR is the derivative of δm. By multiplying both sides of (2) by ωR w e obtain a description in terms of 
pow er, that is  
 

,
..

ePmPeTmmTmaTmmJm −=−−= ωωωδω         (3) 
 
w here JωR, denoted by M, is called the inertia constant, and Pm and Pe are the mechanical and electrical 
pow er, respectively. 
 
Let us consider a system composed by tw o simple generators connected as show n in figure (1), the power 
supplied by the source E∠δm is given by  
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mX
EV

eP δsin= , 

 
w here X is the load. 

 
 

Figure 1. A basic power system. 
 
If  a dissipation component Dω inherent to the machine is added, then the model of this basic power system 
is given by  
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3. A SADDLE-NODE BIFURCATION 
 
From equation (4), w e see that the equilibrium point is given by 
 

                    
EV

XmP
oo arcsin,0 == δω                          (5) 

 
If  w e take as parameter the reactance X, it can seen directly from this expression that the system has a 
saddle-node bifurcation at the points (X,δ)=(±1, ±π/2). 
The Jacobian matrix of (4), evaluated at the equilibrium point (5) is  
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w hich has the eigenvalues 
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From Eq. (7) it can be seen that a zero eigenvalue exist w hen X=±EV/Pm; these values are candidates to 
be bifurcation points. 
 
The existence of the saddle-node bifurcation can be proved analytically w ith Sotomayor’s theorem [8]. This 
theorem establishes  the follow ing conditions to have this kind of bifurcation, 
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w here υ and ω are egenvectors corresponding to the zero eigenvalue of matrix A (equation (6) and AT, 
respectively), and the subindex 0 denotes the evaluation at the equilibrium point.  They are given by 
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Therefore, the conditions established by Sotomayor’s theorem are satisf ied, and the system displays a 
saddle-node bifurcation at the point 
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4. CONTROL OF A SADDLE-NODE BIFURCATION USING A PID CONTROLLER 
 
Let us consider that the mechanical pow er is given by Pm=P0+v, w here P0 is a nominal input and v is an 
adjustment w ith control purposes that can be expressed as v=Mu, therefore the system (4) transforms to 
 

                  
uDmX

VP
M

m

+



 −−=

=

ωδω

ωδ

sin0
1.

.

              (8) 

 
The controller proposed has the structure show n in f igure 2, w here the input control u is given by 
 

∫++=
t
edtedkepku

0

.
                         (9) 

 
w here e=δref -δ m is the error and  δref is a constant reference angle. 
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Figure 2. A block diagram of the closed-loop system. 
 

The system (8) can be reduced to a differential equation given by 
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Now , the system (11) has the new  state space form given by 
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w here x1=δm, x2=ω and x3=
.
ω . 

 
4.1 Equilibrium points 
 
From equation (12) w e see that the equilibrium points are given by  
 
           .03,02,1 === xxrefx δ  

 
From this expression and using the implicit function theorem, it is possible to see that this is the only 
equilibrium point; therefore, a saddle-node bifurcation cannot be presented anymore. 
 
5. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM 
 
The Jacobian matrix of the system (12) is given by 
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w hich, evaluated at equilibrium point x1=δref, x2=0, x3=0, results in 
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This matrix has the characteristic polynomial 
 
       .0cos23 =+
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Let us consider a numerical example given by the values V=1, D=M=0.5 proposed in [6], and kp=kd=ki=1. 
This leads to the characteristic polynomial 
 

        .01cos21223 =+





 +++ ZrefX

ZZ δ  

 
Using the Routh-Hurw itz criteria and, considering that δref is limited to 0 ≤ δref ≤ π/2, the follow ing stability 
conditions are obtained 
 

             ,2&00cos21 −>≠⇒>





 + XXrefX

δ         (13) 

 

             .4&005.0cos2 −>≠⇒>+ XXrefX
δ          (14) 

 
Because X is positive, then the conditions (13) and (14) are alw ays satisf ied by the closed-loop system. 
 
Figures (3) and (4) show  the behavior of the last tw o expressions, show ing that the stability of the closed-
loop system does not depend on the parameter values. 
 

     
 

Figure 3. Graph of f = 1 +2/X cosδref (condition (13)). 
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Figure 4. Graph of f = 0.5 +2/X cosδref (condition (14)). 
 
Figures (5) and (6) show  tw o numerical simulations, for δref=0 and δref=π/2. We can see that the angle δm 
follow s the reference δref  and ω→0 as t→∞. 
 

 
 

Figure 5. Response of the controlled system for δref=0 and X=2. 
 

 
 

Figure 6. Response of the controlled system for δref=π/2 and X=2. 
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6. CONCLUSIONS 
 
In this paper  w e have analytically proved the existence of saddle-node bifurcations in a simplified model of 
a pow er system. This dynamical phenomenon is related to voltage collapses.  
 
We have also proved that the introduction of a simple classical PID controller can eliminate this type of   
bifurcation, eliminating at least partially the possibility of having collapses in the system. 
 
A pow er system is very complicated, so w e can expect  that a real process w ill present many more 
complex phenomena, as is indeed the case. The preliminary analysis presented here could be useful, 
how ever, to define a systematic w ay to analyze the conditions to have dangerous behaviors of these 
important processes, and to envisage some possible form to avoid, or at least to delay these high-risk 
situations.  
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