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ABSTRACT 
 
A nonlinear mathematical model of a vacuum-based continuous casting process and an implicit nonlinear 
controller are developed. The aim of the controller is the regulation of the mold and tundish molten steel levels.  In 
the proposed approach, the output error is designed to be asymptotically stable, and the current values of the 
control inputs are numerically determined using the Newton-Rapson iterative procedure. The dynamic performance 
of the closed-loop system is analyzed using computer simulations. 
 
RESUMEN 
 
En este  trabajo se desarrollan un modelo matemático de un proceso de colada continua de acero mediante vacío 
y un controlador implícito no lineal. El objetivo del controlador es regular los niveles de acero fundido en el molde 
y el distribuidor. En el enfoque propuesto, el error de salida se diseña de modo que el sistema a lazo cerrado sea 
asintóticamente estable y los valores actuales de las entradas de control se determinan mediante el método 
iterativo de Newton-Raphson. El desempeño dinámico del controlador se analiza mediante simulaciones 
numéricas.  
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1. INTRODUCTION 
 
Recently, a vacuum technique for handling the flow of molten steel in a continuous casting process has been 
proposed [1]. It uses a reduced pressure in the vacuum chamber of the tundish to regulate the inflow rate of molten 
steel to the mold. This technique improves the surface quality of the solid product, promotes the steel cleanliness due 
to an enhanced inclusion flotation in the tundish, and improves the flow patterns in the mold avoiding slag trapping 
and steel oxidizing [2]. During metal casting, the tundish and mold levels must be maintained constant to prevent 
molten steel overflows, mold emptying, or slag trapping. 
 
On the other hand, the above vacuum-based continuous casting process constitutes a class of non-affine nonlinear 
systems.  In these systems, the control inputs are not linear with respect to the time derivatives of states [3,4]. 
Therefore, conventional nonlinear control approaches, such as feedback linearization, can not be directly applied. 
Thus, it is important the development and implementation of novel control approaches and techniques to regulate 
this particular class of nonlinear systems. 
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A powerful nonlinear control theory has been developed since the eighties which uses feedback linearization to 
synthesize controllers for affine nonlinear systems, however there are few reports about the application of this 

approach in non-affine systems of the type x f x x u
•

= +( ) ( , )ψ , where ψ ( , )x u  is a nonlinear function. Among 

the above reports are the works of Ostojic [5] and Barron et al. [6]. Ostojic [5] employs recursive numerical 
approaches, such as Newton-Raphson and successive substitutions. Barron et al. [6] analyze the appropriateness of 
the control actions and correct those which are wrong by modifying the control law. 
 
In this work, first a mathematical model of a vacuum-based continuous casting process is developed. Then, an implicit 
controller is proposed. To regulate the tundish and mold levels, the position of a slide-gate valve of the ladle and the 
vacuum chamber pressure of the tundish are utilized as control inputs. The current values of the control inputs are 
determined through the Newton-Raphson iterative procedure [7]. Finally, the dynamic performance of the closed-loop 
system is illustrated by means of numerical simulations.   
 
2. MATHEMATICAL MODEL 
 
2.1 Liquid steel levels 
 
The mathematical model which describes the dynamic behavior of the liquid steel levels in a vacuum-based 
continuous casting process (see Figure 1) is developed in this section using mass balances. Molten steel flows by 
gravity from the ladle into the tundish through a slide-gate valve. The flow area of the ladle slide-gate valve is adjusted 
by moving a computerized hydraulic arm. The automated arm pushes a holed mobile plate on a holed fixed plate. 
Besides, a nozzle with constant flow area is located at the tundish bottom. The flow-rate of molten steel into the mold 
is regulated by manipulating the pressure in the vacuum chamber of the tundish. In the mold, whose water-cooled 
walls are made of copper plates, molten steel is frozen below its solidification temperature and, consequently, a thin 
shell of solid steel is formed. Then, extracting rolls pull down the partially solidified slab. Water sprays carry out the task 
of completely solidify the liquid core of the slab. The solid slab is extracted with a certain speed, namely casting speed. 
Finally, the slab is transferred to a cut-off machine which cuts the product into ordered lengths [8]. 
 

 
 

Figure 1. The vacuum-based continuous casting process 
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A mass balance in the ladle yields outin QQxA 1111 −=
•

, where A1 is the cross sectional area of the ladle, x1 is the ladle 

molten steel level, 
•

1x is the time derivative of x1, and Q1in and Q1out are the inflow and outflow rate of molten steel, 

respectively. In the ladle there is no inflow of molten steel, so that Q1in = 0. For molten steel contained in an open 

vessel such as the ladle, the outflow rate through the nozzle is determined in this way9: 1111 2)( gxsACQ nDout = , 

where A1n is the current flow area of the ladle slide-gate valve, which depends on the arm position, s. Besides, CD1 is 
the discharge coefficient of the valve, and g is the gravity constant. Manipulating the above equations, the following 
expression for the rate of change of the ladle level is obtained:  
 

111
1

1 g2)(1 xsAC
A

x nD⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

•

.                     (1) 

On the other hand, a trigonometric analysis yields this expression, which relates the current flow area of the slide-gate 
valve with the arm position:  
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where D is hole diameter of the slide-gate valve.  
 
From the last expression one can corroborate that when s = 0 the slide-gate valve is fully closed, i.e. A1n(0) = 0, and 
therefore the current flow area is null. On the other hand, when s = D the slide-gate is fully open, i.e. A1n(D) = πD2/4, 
which corresponds to the maximum flow area. Commonly, the values of the arm position of the slide-gate valve are 
bounded by a minimum value, smin, and a maximum value, smax, therefore s ∈ [smin, smax].  

A mass balance in the tundish yields: outin QQxA 222 −=
•

, where A2 is the tundish cross sectional area, x2  is the 

tundish steel level, 
•

2x  is the time derivative of 2x , inQ2  is the inflow rate of molten steel to the tundish, and Q2out is 

the outflow rate of steel from the tundish. In Figure 1 it is observed that the inflow rate to the tundish  is equal to the 
outflow rate from the ladle, i.e. Q2in = Q1out . Besides,  Q2out depends on the pressure in the vacuum chamber as 
follows9 [9]:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

g
ppxgACQ a

nDout ρ2222 2 , 

where CD2 is the discharge coefficient of the tundish nozzle, A2n is the flow area of the tundish nozzle, p is the 
pressure in the tundish vacuum chamber, pa is the atmospheric pressure, and ρ is the density of molten steel.  
 
In practice, the permissible values of the pressure in the vacuum chamber are bounded by the minimum pressure 
achievable through the vacuum pump, pmin , and the atmospheric pressure, pa, therefore p ∈ [pmin, pa]. In accordance 
with the these remarks, the expression for the rate of change of the tundish level is: 
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In the mold a mass balance yields: outin QQxA 3333 −=
•

, where A3 is the cross sectional area of the mold, x3 is the 

mold steel level,
•

3x is the time derivative of x3 , Q3in and Q3out are the inlet and outlet flow rates of the mold, 

respectively. On the other hand, Q3out depends on the casting speed vc in this way: Q3out = A3vc. Manipulating the 
above expressions, the rate of change of the mold level is given by: 
 

c
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In the last mathematical model, the molten steel levels are, by definition, non-negative. On the other hand, it can be 
easily verified that the arguments of the square root functions become always non-negative. Besides, the positive 
value of the square roots is considered. 
 

2.2 Effect of temperature on the liquid steel density 
 
In Eqs. (3)-(4) the density of liquid steel is involved, which depends on temperature. Given that the temperature of 
steel is continuously decreasing due to heat losses in the ladle and tundish, the density of steel is continuously 
changing too. This phenomenon must be considered in order to test the ability of the proposed controller to cope 
with it. In accordance with Chakraborty and Sahai [10], the density of steel (in kg m-3) changes linearly with 
temperature in this way: 
 

)(883.07010)( mpTTT −−=ρ ,                               (5) 

where Tmp = 1538 °C is the melting point of iron.  
 
These authors [10] also report that at industry the temperature of the tundish incoming stream decreases at a rate of 
0.00833 °C s-1 over the teeming period, and that the steel temperature drops by about 3 °C as it reaches the tundish 
outlet. Then, average steel temperature in the tundish and mold changes along the teeming period as follows: 
 

300833.0)( 0 −−= tTtT ,      (6) 

where T0 is the temperature of the liquid steel stream at the beginning of the teeming, and t is the time in seconds.  
 
3.  IMPLICIT CONTROLLER 
 
3.1 Theoretical issues 
 
Feedback linearization is an approach for nonlinear control design which has caught the attention of researchers 
during the last two decades. However, it has been mostly applied to nonlinear systems described by a set of 

equations of the form [3,4] ∑
=

•

+=
m

i
ii uxbxfx

1
)()( ,where nx∈ℜ  is the vector of states, f(x) = [f1,…,fn]T and 

bi(x)= [b1 ,…,bn ]T are vectors of nonlinear functions, and u = [u1,…,um]T is the control input vector.  
 
In the above nonlinear systems, commonly named affine systems, there is a linear dependence between the control 
inputs and the state derivatives. However, there is a class of nonlinear systems, named non-affine systems, whose 
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control inputs are not linear with respect to the state derivatives, i.e. ),()( uxxfx ψ+=
•

, where nux ∈ℜ),(ψ  is a 

vector of nonlinear functions. The control output vector my∈ℜ  for this system is given by Cxy = , where 
nmC ×∈ℜ  is a constant matrix. In this work an implicit control approach is proposed. The dynamic behavior of the 

outputs errors is established, and then an implicit controller is synthesized. The values of the control inputs are 
numerically determined using an iterative procedure. 
  
To establish the error dynamics for the nonlinear non-affine system described above, let us define an output error 
vector m∈ℜe  as e(t)=y(t)–ysp(t), where ysp(t) is the setpoint vector. The error dynamics is given by 

( ) .),()( spspsp yuxxfCyxCyye −+=−=−= ψ  Given that this work deals with a regulation problem, then 

0=
•
spy . Now, let us assume that the desired output error dynamics is linear asymptotically stable, i.e. 0=+

•

Gee , 

where mmG ×∈ℜ  is the control gain matrix. If the control gain matrix G is diagonal, then a decoupled control scheme 
results. 
 
On the other hand, by combining the error dynamics expression with the desired output error dynamics, this 
expression is obtained: ( )),()( uxxfCGe ψ+=− . Considering an implicit form of the last equation, namely 

( ) 0),()(),,,( =++= uxxfCGeyuxtF sp ψ , the current value of the control input vector u(t) can be numerically 

determined by solving 0)),(,,( =spytuxtF . In this work the Newton-Raphson method [7]  is employed to obtain the 

control input vector: 
 

( ) llll ,1,,,1 kkkk FJuu −+ −=   ,                     (7) 

where l,ku  is the vector of control inputs at time lt  and iteration k, ),,,( ,, spkk yuxtFF llll = , and l,kJ  is the 

Jacobian of l,kF : 
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This controller provides discrete values of the control inputs, then it is discrete in nature. A zero order hold is assumed 

for the control inputs, i.e. the control inputs remain constant in the time interval [ lt , 1+lt ]. If l,kJ  is diagonal, then Eq. 

(7) yields a decoupled controller. On the contrary, if l,kJ  is not diagonal, then at least one of the multivariable 
interactions must be addressed.  
 
The controller given by Eq. (7) is realizable if and only if l,kJ is invertible. Besides, the controller is convergent 
whenever the following two conditions are verified:  
 

i) 0lim ,,1 =−+

∞→ q

kk
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uu ll  where 

q
•  is the associated q-norm of •. The above condition is equivalent to[7]: 
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where, I, is the identity matrix.  
 
(ii) The control inputs must remain bounded [5]. In this way the input constraint issue is addressed in a natural way in 
the controller synthesis. 
 
Inequality given by Eq. (9) is the multivariable representation of the well-known fixed-point convergence condition [7]. 
For the sake of simplicity, the closed-loop stability proof can be found in Ostojic [5]. 
 

3.2 IMPLICIT CONTROLLER OF THE MOLD AND TUNDISH LEVELS  

The pressure in the vacuum chamber of the tundish and the arm position of the ladle slide-gate valve are employed to 
regulate the mold and tundish levels. Thus, a coupled two-input two-output nonlinear system arises where y = [x2  x3]T is 
the control output vector and u = [u1 u2]T = [s p]T is the control input vector. Since Eqs. (3) and (4) exhibit nonlinear 
dependences between the mold level time derivative and the pressure in the vacuum chamber, and between the 
tundish level time derivative and the arm position of the slide-gate valve, an implicit approach is required to 
synthesize the controller.  

The continuous casting mathematical model can be expressed in this way: ),()( uxxfx ψ+=
•

, where 
nux ∈ℜ),(ψ  is a vector of nonlinear functions.  
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Due to the control gain. matrix G is forced to be diagonal, the following multivariable implicit controller results: 
 

( ) ),(,,, 2111 uxegyuxtF sp ψ+=  and ( ) ),(,,, 3222 uxegyuxtF sp ψ+= . 
 

A multivariable approach is needed despite the difference in the characteristic times of the mold and the tundish, 
given that an approach of this kind guarantees good disturbances rejection. The above continuous implicit controller 
is used to obtain a discrete implicit controller. The values of the discrete control inputs are numerically determined by 

solving the previous equations for 0),,,( ,,
1 =spkk yuxtF llll  and 0),,,( ,,

2 =spkk yuxtF llll  by employing the 

Newton-Raphson iterative procedure. In accordance with Eq. (7), the resulting iterative controller is expressed in this 
way: 
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The controller defined by Eqs. (11) and (12) is realizable if and only if 0
2

3

1

2 ≠
∂
∂

∂
∂

uu
ψψ

 and 0
2

3 ≠
∂
∂

u
ψ

. It can be 

verified that these conditions holds whenever u1>0   and  
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 .  

4. NUMERICAL SIMULATIONS 
 
In order to test the dynamic performance of the proposed controller, computer simulations were carried out using the 
following parameter values:  A1 = 6.0 m2, A2 = 3.0 m2, A3 = 0.20 m2, A2n = 0.00280 m2, CD1 = 0.96 (dimensionless), CD2 = 0.96, 
D = 0.080 m, vc = 0.0333 ms-1, pmax = 0.10 MPa,   pmin = 0.040 MPa, smax = 0.080 m, smin = 0.010 m. The considered initial 
conditions were x1 (0) = 2.0 m, x2 (0) = 1.2 m, x3 (0) = 0.1 m, T0 = 1565 °C. In the computer simulations the steel density was 
continuously updated using Eqs. (5) and (6). The chosen values of the control gains were g1 = 0.1 and g2 = 1.0. These 
values come from the fact that the characteristic time of the tundish is considerably greater than that of the mold, 

then 12 gg >> . Besides, the setpoints values were my sp 0.11 =  and my sp 6.02 = . 

 
(a) Molten steel levels 

 
 

(b) Corresponding control inputs. _____Proposed controller, …..PID controller. 
 

Figure 2. Closed-loop dynamic performance for a typical regulation problem 
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The proposed controller was compared with a conventional proportional-integral-derivative (PID) controller. The PID 
controller was tuned in accordance with the tuning rules recently proposed by Visioli11 in order to obtain an optimal 
load disturbance rejection. Figures 2(a) and 2(b) show the simulation results for a typical regulation problem. In Figure 
2(a) one can see that the proposed controller drives the mold level to the set point in approximately 15 s, while the 
tundish level reaches the set point in 90 s. Figure 2(b) shows the corresponding control inputs. Since the control 
inputs are bounded, they exhibit transient saturation. Because at time t = 0 the mold level is below the setpoint, the 
controller rises the pressure in the vacuum chamber up to the atmospheric pressure, i.e. the pressure upper bound. 
This action allows more molten steel flows into the mold. On the other hand, since at time t = 0  the tundish level is 
above the set point, the controller closes the ladle slide-valve to prevent that molten steel flows into the tundish. The 
controller opens the slide-gate valve once the setpoint has been reached. The dynamic performance of the 
aforementioned PID controller is also shown in Figures 2(a) and 2(b) for the same regulation problem. PID controller 
exhibits significant overshoots for short times, which are unacceptable in industrial practice given that a catastrophic 
spilling out of the mold may arise. Nevertheless, for long times the dynamic behaviors of both controllers are 
identical.  
 

 
(a) Molten steel levels 

 

 
 

 (b) Corresponding control inputs. _____Proposed controller, …..PID controller. 
 

Figure 3.  Closed-loop dynamic performance for a step disturbance in casting speed,  
from 0.033 ms-1 to 0.020 ms-1 at  t=400 s  

 
In Figures 3(a) and 3(b), the casting speed is suddenly decreased from  0.033 ms-1 to 0.020 ms-1 at time t = 400 s.  It is 
observed the complete rejection of the casting speed perturbation with moderate control actions of the proposed 
controller. On the contrary, the PID controller carries out severe control actions in order to restore the mold and 
tundish levels to the setpoints. However, these control actions cause unpleasant transient overshoots in the control 
outputs.   
 
To test the robustness of the proposed control scheme, the control law was evaluated assuming a constant density of 
steel while the steel density in the plant was changing with time and temperature. Numerical simulations showed that 
the maximum difference between the control outputs considering both constant and variable steel density in the 
controller evaluation is around 0.1%, which represents a negligible change in the dynamic performance. This is due to 
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the fact that, in accordance with Eqs. (5)-(6), for a typical teeming period of 3000 s the steel temperature only 
decreases 25 °C10 , which corresponds to a non-significant change in density (of around 0.3%).  
 
5. CONCLUSIONS 
 
In this work, a mathematical model for a vacuum-based continuous casting process and a nonlinear implicit controller 
has been developed.  Once a dynamic response for the control output is established, a discrete implicit controller is 
obtained, which is solved through a numerical iterative procedure. Computer simulations show that the dynamic 
performance of the proposed controller is more appropriate than that of a PID conventional controller 
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