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ABSTRACT 
 
In this work we make a description of the time reversion problem in sound waves. Our objective is to explain the 
phenomena through the Fourier transform of the Green’s function. With this function it is possible to characterize 
the propagation of the emitted signal. It also can be used to express the time-reversed signal in such a way that we 
can select precisely the destination site of the signal. Finally, we show some possible practical applications of this 
problem. 
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1. INTRODUCTION 
 
Time reversibility arises from the second order time derivatives of the wave equation and is different from the 
phenomena represented by the nonlinear behavior of media, known as inverse acoustic or electromagnetic scattering, 
studied in other sites [1]. This subject gives rise to an interesting variety of items. One of them is the time reversal of a 
signal by a sound mirror (TRM). Another may be the possibility to send a message with a precise physical destination. 
Very interesting and useful applications might be based on the time reversibility of sound waves. In medicine, it is 
possible to build devices that can destroy a brain tumor by focusing ultrasound waves; undersea communications can 
be improved; in material and hydrodynamics analysis we can detect small changes in the isotropic properties of the 
studied media. 
 
The importance of time reversed acoustics is a great motivation for developing a practical generalized treatment of 
this phenomena, that can be systematically applied to a broad class of scenarios. In such a treatment we obtain 
expressions which take into account the geometry and nature of the original signal, and that can be used directly to 
measure some data needed to reverse the time in acoustic signals. The principal features of this work are firstly to 
obtain an equation, in the discrete case, that relates the Fourier transformed initial signals at the precise emitting sites 
to the measured Fourier transformed signals at the precise receiving sites through the discrete Fourier transform of 
the complete Green’s function. Then, by using this relation, to describe the detailed procedure involved in both the 
time reversion and the sending of messages toward specific places without dispersion. The procedure resembles the 
well-known technique in quantum mechanics collision theory that relates the incoming wave function with the 
scattered wave by means of the complete Green’s function of the problem. In fact, we develop the Neumann series 
of our discrete problem and calculate the sum in order to obtain our results. 
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Once we have sketched the formalism involved, we then comment on some possible applications. 
 

 
 

Figure 1. Locus of transducers 
 
2. DESCRIPTION OF THE SYSTEM 
 
We make the assumption that our system is confined to a region of space which contains a set of devices located at 

}{ sr  (s stands for site at the interior). These represent a set of either transmitters or receptors of a sound signal, at 

our convenience. At the boundary of this region is located another set of devices, at points }{ br  (b stands for 

boundary), whose operation is identical to the former set, that is, a set of transducers. The transmitters at }{ sr  may 

be considered themselves as scattering points for the signal generated by other transmitters. If the signal starts at the 
inner sr  as )'(tus , we can record the corresponding signal at location br  as )(tub  and, by time reversal, recover 

)'(tus . On the other hand, we could have a problem with a different purpose in which we can emit a signal )'(tub  

from a point br  at the boundary and send the message only to the inner site sr as )(tus . The sound signals are 

assumed to satisfy the wave equation 
 

             ))(/),((),()( 2
2

2

rtru
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∂
                                                                     (1) 

 
Here )(rρ is the density and )(rk is the compressibility of the transmitting medium. This equation is time reversal 

invariant since the time derivative is of second order. Then, for every ),( tru there exists a signal ),( tru − that retraces 

the complex paths and converges in synchrony at the original source. Suppose that a pulse ),( tru  leaves a source at 

sr ; then we can perform physically the time-reversal process by recording by means of the transducers }{ br  the 

signal that arrives at the boundary during a time Τ and thereafter sending the time-reversed signal ),( tru −Τ . Each 

of the }{ br  emit the signal )( tub −Τ also during a time Τ, so that the resultant field is the original ),( tru  focused 

at sr . 
 
One may want to make a sort of inverse application to the procedure described above: first we send a message 

)( tub −Τ  from the boundary at br  and make a similar translation in space and time so the signal arrives at the 

precise site sr  as )(tus . 

 
Let’s carry out these procedures with the Green’s function formalism. 
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3. GREEN’S FUNCTION FOR THE DISCRETE CASE 
 
Suppose we want to relate the values of ),( tru  at different places and times tr, and ',' tr . Because of the linearity 

of the wave equation (1) and remembering that )(),( tutru jj = , it is possible to write [2] for the signal measured at 

the site jr : 

                                                     )()( )( tutu jj
o= ∑ ∫
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+
jk
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where )',;,()( trtrG kj
o is the free Green’s function and the kA  are complex scattering coefficients that contain the 

full nonlinear interaction. The signal )'(tuk can be written in terms of the non-vanishing function )'(tSk  defined by 
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Then, equation (2) can be written 
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But we can express the free Green’s function in terms of its Fourier Transform corresponding to the associated 
frequency ω  
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Thus equation (4) becomes 
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This can be written as 
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Or also 
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where 
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That is, )(ωkg is the Fourier transform of )(tSk . 

Also we have 
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So equation (8) is now 
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From this equation we obtain 
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Or in vector form 
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By factorizing, 
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Formally, we can invert equation (14) 
 

                                                                          )()](1[)( )(1)( ωωω oo gGg −−=                                                             (16) 

That is 
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The k component of equation (17) is 
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Now, by substituting )(ωkg from (18) into (12) 
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The brackets can be eliminated to give 
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From this equation we obtain the discrete Neumann [3] series for the Fourier transform of the solution to the integral 
equation (2) 
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If the expression between brackets in (21) converges, it must be equal to the Fourier transform of the complete 
Green’s function ),( tj rrGω , so that we can write 
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Equation (22) can be written in vector form as 
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Equations (23) and (24) constitute our basic tools to perform the time inversion, that is, we can use equation (23) to 
obtain experimental data of the components ),( kj rrGω , because we know the Fourier transforms of the original 

signals )()( ωo
kg , and we can measure the arriving signals )(ωjg . 

 
4. THE TIME INVERSION OF A SIGNAL 
 
Let us carry out a time inversion. Suppose we have transmitted a signal burst from the site sr and that we have 

recorded the arrived signals during a time Τ by the set }{ br . We can reverse the signal from each of the }{ br ; for 

example, the signal )(tu j recorded by jr can be emitted in reverse order1 to obtain a contribution at the original 

place as 
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We can express (26) in terms of the Fourier transform ),(*
sj rrGω : 
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which can be rearranged as 
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Based on properties of the Fourier transform, equation (29) is equivalent to 
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And if we also put the Fourier development of )()( tSs
o : 
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We get 
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where )(ωjg  is the Fourier transform of the signal received at jr , while )()( ωo
sg  is the Fourier transform of the 

signal that returned to sr  after it has been reflected.  
 
If we want the total contributions at sr from the set of transducers }{ jr  we must do the sum 
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which gives 
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5. SENDING A MESSAGE TOWARDS A SITE. 
 
Suppose now that our objective is to send a message from jr , that arrives at sr . Then we write [4] 
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From this and equation (27), we have 
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This can be rewritten as 
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And by expressing )()( tS s
o

⋅ and )'(tS j in terms of their Fourier series development we obtain 
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This gives 
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where )(* ωjg is the complex conjugate of the Fourier transform of the message sent from jr , while )()( ωo
sg is the 

Fourier transform of the signal that was selected to arrive at sr .  
 
For a batch of different messages from jr  that go to the precise sites 1sr , 2sr , 3sr , …, nsr , we have the sum 

 

                                                              ∑ ∑ →
Τ−=

q q
qjsj

i
s grrGeg qq

)(),()( **)( ωω ω
ωo   ,                                                 (41)        

where qj →  means that the signal begins at jr  and its destination is qsr . 

 
6. A SURVEY OF APPLICATIONS OF TIME INVERSION 
 
As we said in the introduction, we developed a tool that can be applied to a broad class of phenomena where time 
reversal is involved, and we gave the mathematical support. Let us recall several specific applications such as those 
mentioned at the introduction. For the development of a device for destroying brain tumors or kidney stones [5] the 
first step would be the localization of the abnormal sites with the help of an explorer emission and by means of the 
above described inversion techniques which show and record the interesting points using a set of transducers. Then 
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the recorded signal is greatly amplified, sent, and returned backward in time toward the tumor or the stone to destroy 
it. To improve the results we can repeat the exploration procedure several times before the final amplification. 
Regarding the improvement of sonar underwater [5] detection, the procedure would basically consist again in the 
emission of an exploration signal that is received and recorded tens of kilometers away from an initial sound source 
by a series of transducers known generally as a Time Reverse Mirror (TRM); once the signal has been returned by the 
TRM, another collection of transducers near the initial signal source record the remaining returned signal, resulting in 
a very localized area in a very localized interval of time, and thus the TRM has been calibrated by the original signal 
and any new obstacle can be detected easily. Another objective is to learn how to implement the process of sending 
a message from one location to another very specific location. So, our immediate work is to implement an 
experimental measure of the Green’s functions for simple geometries and simple arrangements of transducers. For 
instance we can seek to improve the focus of a TRM reflected signal by increasing both the number of obstacles in 
the signal trajectories and the time Τ during which the incident signal is recorded, phenomena that are explained by 
an increment of the cross section of the receptors as the signal collides with each obstacle, thus improving the signal 
definition, as was reported by other authors [4]. 
 
6. REFERENCES 
 
[1]   Colton, D. and Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical 

Sciences 93. Springer-Verlag, Berlin, Heidelberg 1992, 1998. 
[2]     Sneider, R.K. and Scales, J.A. Time-reversed imaging as diagnostic of wave and particle chaos., Physical   

Review E, 58, (5), 5668-5675,November (1998).        
[3]     Schiff, L.I. Quantum Mechanics. Mc Graw Hill International Editions. Auckland, Bogotá, Guatemala, Hamburg,  

Lisboa, London, Madrid, México, New Delhi, Panamá, Paris, San Juan, Sao Paulo, Singapore, Sydney, Tokyo, 
1968.  

[4]      Fink, M. Time Reversed Acoustics. Physics Today, 8, (3), 34-40, March (1997). 
[5]      Fink, M. Time Reversed Acoustics. Scientific American pages 67-73, November (1999). 
 
Authors Biography 
 

 
 

Juan Manuel Velázquez Arcos 
 

Was educated at the Facultad de Ciencias of the Universidad Nacional Autónoma de México (FC-UNAM), where he 
received his B.Sc., his M.Sc. in 1985 and his Ph.D. in physics in 1987. Currently he is Head of the Department of Basic 
Sciences at the Universidad Autónoma Metropolitana - Azcapotzalco (UAM-A). Dr. Velázquez has lectured at FC-
UNAM, Escuela Nacional de Estudios Profesionales - Acatlán, Universidad Anáhuac, Tecnológico de Estudios 
Superiores de Ecatepec and UAM-A. He is a full time professor of physics at UAM-A, and a member of the Area of 
Physics of Irreversible Processes. He has been a member of two committees for the appraisal of academic work and 
resources in physics at UAM-A. He has published 15 research papers and attended 25 physics meetings and symposia. 
Dr. Velázquez is a member of the Sociedad Mexicana de Física and the American Association for the Advancement of  
Science. His area of principal interest is mathematical physics, as applied to nuclear physics, acoustics, operator 
algebra, Green functions, special functions, etc. His work has been awarded special mention by SOMI. 
 



 
Time reversibility in acoustic signals, J.M. Velázquez, A. Ramírez & C.A. Vargas., 107-115 

 

115 
Journal of Applied Research and Technology 

 
 

Alejandro Ramírez Rojas 
 

Obtained his B.Sc. in physics at the Facultad de Ciencias at the Universidad Nacional Autónoma de México (UNAM). 
He received his M.Sc. at the Escuela Superior de Física y Matemáticas of the Instituto Politécnico Nacional (ESFM-IPN), 
and his Ph.D in physics at the Facultad de Ciencias of the Universidad Autónoma del Estado de México (UAEMex), with 
specialty in physics of nonlinear phenomena. He has served since 1985 at the Universidad Autónoma Metropolitana - 
Azcapotzalco (UAM-A), where he is currently a full time professor of physics at the Department of Basic Sciences, Area 
of Physics of Irreversible Processes. He has lectured at the Facultad de Ciencias of UNAM, at the Tecnológico de 
Estudios Superiores de Ecatepec, and also in the Master of Science Program in Computational Sciences of the 
Fundación Arturo Rosenbleuth. He has served as coordinator of the core curriculum for engineering students, and as 
an advisor in several divisional academic committees at UAM-A. Dr. Ramírez has participated in several national and 
international physics congresses and seminars. Currently he focuses his research on the analysis of time series of 
complex systems, as well as on the study of chaotic mappings. He has published several papers mainly on electrical 
signals associated with earthquakes, and the application of deterministic chaotic and aleatory models to 
electroseismical signals. He has been a member of the Sociedad Mexicana de Física for a decade. 
 
 
 

 
 

Carlos Alejandro Vargas  
 

Was born in Mexico City. He received his B.Sc. in physics at the Facultad de Ciencias of the Universidad Nacional 
Autónoma de México (FC-UNAM), and his M.Sc. in physics at the Escuela Superior de Física y Matemáticas of the 
Instituto Politécnico Nacional (ESFM-IPN), where he is currently working on his Ph.D. He is a member of the Mexican 
National System of Researchers, where he has attained Level I status. In 1980 he served as Academic Technician at the 
Instituto de Física of the Universidad Nacional Autónoma de México; from 1983 to 1991 he was an associate professor 
of physics at the FC-UNAM, and since 1981 to this day he has been a lecturer at the ESFM-IPN. He was Head of the 
Modern Physics Laboratory at FC-UNAM since 1987 to 1990. During 1997-1998 Professor Vargas was Head of the 
Physics Area at the Universidad Autónoma Metropolitana - Azcapotzalco (UAM-A), where he is a full time professor of 
physics. He is a co-founder of the Laboratory of Dynamical Systems (1991) and a founder and currently Head of the 
Laboratory of Critical Phenomena and Complex Fluids (1998), both at UAM-A. He has directed several engineering 
thesis and has published research papers on physics and physics education. At UAM-A he lectures mainly on optical 
engineering, transducers and modern physics. His fields of interest include the physics of complex systems -specially 
the study of mechanical, electrical and magnetohydrodynamic instabilities-, and theoretical work on electrodynamics 
and quantum mechanics. He is a member of the American Association of Physics Teachers, the American Physical 
Society, and the Sociedad Mexicana de Física. 
 


	Previous Article
	ABSTRACT
	1. INTRODUCTION
	2. DESCRIPTION OF THE SYSTEM
	3. GREEN’S FUNCTION FOR THE DISCRETE CASE
	4. THE TIME INVERSION OF A SIGNAL
	5. SENDING A MESSAGE TOWARDS A SITE.
	6. A SURVEY OF APPLICATIONS OF TIME INVERSION
	7. REFERENCES
	Authors Biography
	Juan Manuel Velázquez Arcos
	Alejandro Ramírez Rojas
	Carlos Alejandro Vargas

	Next Article

