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ABSTRACT

A new symbolic-method is introduced to enhance the calculation of symbolic expressions of analog circuits. First,
the analog circuit Is transformed to a nullor equivalent circuit. Second, a new method is introduced to the
formulation of a compact system of equations (CSEs). Third, a new method is introduced to the solution of the
CSEs, by avoiding multiplications by zero to improve the evaluation of determinants. Finally, two examples are given
to show the usefulness of the proposed methods to calculate fully symbolic transfer functions.

RESUMEN

Se presenta un nuevo método simbdlico para mejorar el calculo de expresiones simbdlicas de circuitos analogicos.
En primer lugar, el circuito analdgico es transformado a un circuito equivalente con anulador (nullor). Segundo, se
presenta un nuevo método para la formulacion de un sistema de ecuaciones compacto (SEC). Tercero, se presenta
un nuevo método para la solucion del SEC, evitando multiplicaciones por cero para mejorar la solucion de
determinantes. Finalmente, se presentan dos ejemplos para mostrar la utilidad de los métodos propuestos para
calcular funciones de transferencia totalmente simbolicas.
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1. INTRODUCTION

The goal of symbolic analysis is focused on the calculation of symbolic expressions [1-7] to help the designers to gain
insight and understanding of the behavior of a circuit. The symbolic expressions should represent the dominant
behavior of a circuit to be useful for synthesis and optimization procedures. Furthermore, by applying matrix-methods,
four basic procedures are executed, namely: modeling of the circult elements, formulation and solution of network
equations, and simplification of a symbolic expression. On one hand, the majority of symbolic simulators are based on
the modified nodal analysis (MNA) method for the formulation of network equations [1-71, which means that
controlled sources form the basic set of primitive elements to model the behavior of the analog circuit. The solution
of the network equations Is done basically by applying Cramer’s rule. On the other hand, by modeling the behavior of
an analog circuit by using nullors [8], the formulation of network equations can be done by applying nodal analysis
(NA) [9-11]. Most important is that the application of the NA method to nullor circuits leads us to formulate a compact
system of equations (CSEs) [12]. in this manner, both operations -the formulation of huge matrices and stamping of
controlied sources- can be avoided. Henceforth, a new method is introduced to the formulation of a CSEs for analog
dircuits, by avoiding cumbersome matrix-manipulations. In the same manner, as new contributions for the solution of
network equations are based on determinant decision diagrams (DDDs) [13-15], where DDDs use the contents of the
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admittance matrix, a new method is also introduced for the solution of the CSEs to enhance the calculation of a fully
symbolic expression.

2. NULLOR EQUIVALENTS OF ANALOG CIRCUITS

The behavior of any active device and non-NA compatible circuit-element can be modeled by combining nullators and
norators [1-2, 8-12]. The nullator is an element which does not allow current through it, and the voltage across its
terminals Is zero. The norator is an element for which an arbitrary voltage can exist across it and simultaneously an
arbitrary current can flow through it. A nullator-norator pair forms the nullor element, which can be used to model the
behavior of several analog circuits [8-12], as shown in Figure 1. In this manner, a nullor equivalent circuit can be
analyzed by applying the NA method, which consist on formulating equation (1), with: /as the vector of independent
current sources, vthe vector of node-voltages variables, and Ythe linear admittance matrix

i=Yv
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Figure 1. Nullor equivalents of the (a) independent voltage source. (b) BIT and MOSFET, (c)
operational amplifier (OPAMP) and (d) operational transconductance amplifier (OTA)

3. FORMULATION OF A COMPACT SYSTEM OF EQUATIONS

For a nullor equivalent circuit, the formulation of its CSEs, having the form of equation (2), can be done by
manipulation of the Interconnection relationships (IRs) of norators, nullators and admittances. The order of the CSEs
(m), is determined by the number of nodes (n) (with the reference node labeled by 0), minus the number of nullors

(N).

(2)

Iena = YenaVenu

The conventional formulation of a CSEs of nullor circuits, by applying the NA method, has been done by the
formulation of an initial non-CSEs of order n, which is reduced further in one order for each nuilor until obtaining a
CSEs of order m=n-N [9-11]. It clearly results that this matrix-reduction process implies cumbersome matrix-
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manipulations to eliminate N rows and N columns. Furthermore, to avoid complex matrix manipulations, this paper
presents a new method to formulate the CSEs of nullor circuits by manipulation of the IRs of norators, nullators and
admittances. Henceforth, from the netlist of a nullor equivalent circuit, the proposed formulation method is
summarized as follows:

Step  Generate three data structures to represent the IRs of:

1 Norators: Generate a set to include the pair of nodes (1,]), associated to each norator P, . From the properties

of the norator [9], both nodes i and j are virtually short-circuited and those indexes are assoclated to rows in
equation (2).

Nullators: Generate a set to include the pair of nodes (ij),- associated to each nullator O, . From the
properties of the nullator [9], both nodes i and | are virtually short-circuited and those indexes are associated

to columns in equation (2).
3 Admittances: Generate a set containing the symbol and the pair of nodes (i,j), associated to each

admittance.

Step 2. Calculate the indexes associated to rows, columns, and admittances to formulate equation (2) by manipulation
of the IRs calculated in step 1.

1  Set ROWIx: It contains m elements ordered numerically, which are calculated by using the IRs and property of
the norator, and by including all nodes n. These Indexes are used to fill vector i, In equation (2), and to

calculate row-indexes to fill the matrix Y,
2. Set COLIx: It contains m elements ordered numerically, which are calculated by using the IRs and property of

the nullator, and by including all nodes n. These indexes are used to fill vector Vewa eguation (2), and to

calculate column-indexes to fill the matrix Yena

Admittance indexes: They are structured as shown in Table I, by using ROWIx and IRs of admittances. Each
element in ROWIX is equated to node 1, then node-value is equated to node j for each pair of nodes (i,j) of
each admittance-symbol. Note that always i#j.

Table |. Admittance indexes

ROWIx Node | Value | Admittance Symbol |
1 (0:G1) (4:5C3)
D) (1:G4) | (4:5C3 (n-3:G7) |
" (3:G2) | (5:C1) (0-1:G3) ]

Step 3. Evaluate the Cartesian product among sets ROWIx and COLIx to form pairs of indexes (r,c) [16]. Each pair is
associated to one symbol in Table I r is searched in ROWIx, then ¢ is searched in node-value until the associated
admittance-symbol is found. If ¢ does not exist, the associated value to the pair (r.c) is equated to 0. Thus, one is able

to fill matrix ¥, in the formulation of equation (2).

4. SOLUTION OF NETWORK EQUATIONS

The solution of eguation (2) can be obtained by applying Cramer’s rule. However, on one hand, since for large circuits
the matrices are too sparse, an efficient method should be applied to eliminate multiplications by 0, e.g. DDDs. On
the other hand, since DDDs need to construct a graph to expand the determinant, they spent computational time to
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verify the graph-connectivity [13-15]. Furthermore, a new method is introduced herein to avoid both the construction
of a graph and multiplications by 0. it is worth to mention that instead of doing the formulation of matrix Yy, , the

proposed method uses its contents by beginning from the admittances calculated in step 3 of section 3, being
summarized as follows:

Step 1. Generate a data structure to represent the multiplications for the calculation of the determinant of matrix Yy,
of order m. It Is done as follows:

1 Elements of the data structure: For a matrix with all its elements different to 0, the data structure Is an array
with m! rows and m columns.

2. To fill the data structure, one should include element by element as it is done by applying Cramer’s rule. So
that for the matrix shown in equation (3), the data structure is listed by Table II. According to the previous
item. it has 4! x 4=06 elements.

Step 2. Evaluate the determinant of the associated matrix by multiplying all the elements of each row in Table Il. it is
done as follows:

Each element in Table Il has been signed according to the evaluation of minors, as it is done by applying

Cramer’s rule.

For each row, multiply all elements and signs in order to evaluate m! multiplications for a matrix with all its
elements different from 0. So that from Table I, the determinant of equation (3) has 4!=24 product-terms of 4
elements of the associated matrix.

3 o~ >
T o~ >

Table Il Data structure of equation (3)

A f k p
A f - 0
A g ] p
A -g - n
A h | 0
A h -k n
-b -e k p
b € - 0
-b g i p
b g - m
-b -h i 0
b -h -k m
C € i p
C e - n
C -f i p
C -f - m
C h i n
C h 4 m
d -e ] 0
-d € K n
d f i 0
d f K n
d 9 i n
d -9 - m
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Step 3. Factorization of a symbolic expression: In Table II, one can identify minors and one can make factorizations
composed of two elements. Example: for the rows 1 and 2 the product af is factorized along with the minor kp-lo,
which also appears at rows 7 and 8, factorized with the product -be, so that the product-terms for rows 1,2,7,8, can be
factorized as (af-be)(kp-o). The final expression can be factorized as-(af-be)(kp-lo)+(ce-ag)(jp-In)+ah-de)(jokn)+{bg-
cf)(ipIm)+(df-bh)(io-km)+(ch-dgXinjm). It is worth to mention that for sparse matrices, this method avoids
multiplications by 0, as shown in the following section.

5. CALCULATION OF FULLY SYMBOLIC EXPRESSIONS
Two examples are presented in this section to calculate their symbolic transfer functions.
5.1 Active RC filter

Let's consider the active RC filter taken from page 955 of [5]. By transforming the voltage source and all opamps, the
nullor equivalent circuit is shown in figure 2.

HL"I
I —— —
1 it fN GI_ i][“"'m_\_‘_
Nin <213 : - G
eaf 31 < lf o ::-4 £23
= hy T
-I:_'_,"%l

Figure 2 Nullor equivalent circuit of the RC filter taken from page 955 of (5]
5.1.1  Formulation os the CSEs
Step The data structures of the IRs for norators, nullators and admittances are given by:

IRs of norators: {(2,0),(4,0),(6,0).(8,0),(11,0)}
IRs of nullators: {(1,2),(3,0),(5,0),(7,0),(9,10)}

IRs admittances:
{1,(1,001.1G1 (2.3)1.[5C1,(3,4)1.1G5,(3,4)1,[G4.(4,5)1,1G3,(4,10)1,1G7.(5,6)1.1G8,(6,7)1,(G6.(3,8)1.[sC2.(7,8)1,1G2,(2,10
),1G9,(8,9)1.[G10,(9,0)1.1G11,(10,11)]}.

Step 2. The indexes associated to rows, columns, and admittances are given by:

Set ROWIx: {(1).(3),(5),(7),(9),(10)}. By using these indexes iy, = [v,.n ,0,({,0,0,0]'.

7 Set COLIx: {(1,2),(4),(6),(8),(9,10),(11)}. From which vy, =[vl,z,v4,v6,v8,v9,w,v“]'.

3. Admittance indexes: They are searched in the IRs of admittances. The search is only done for the indexes
included in ROWIXx, as shown in Table Hl.
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Table /ll. Admittance indexes

lode: symbol

(2:G1) (4:sCl1) (4:G5) (8:G6)

(4: G4 (6:G7)

(6: G8) (8:5C2)

8:G9) (0: G10)

(4:G3) (2:G2) (11:Gl11)

Step 3. The Cartesian product ROWIxxCOLIx Is given by equation (4).

1,1)+(1,2) (1,4 (1,6) (1,8) (1,9)+(1,10)  (1,11)
(3,1+(3,2) (3,4 (3,6) (3,8 (3,99+(3,10) (3,11)
(5,1)+(5,2) (5,4) (56) (58) (59)+(510) (511)
(7,1)+(7,2) (7.4 (7,6) (7,8) (7,9)+(7,10)  (7,11)
9,1)+(9,2) (9,4) (9,6) (9,8  (9,9)+(9,10)  (9,11)
(10.1)+(10.2) (10,4) (10,6) (10,8) (10,9)+(10,10) (10,11)

(4)

As one sees, It generates pairs (r,c) associated to an admittance symbol which Is searched in Table Ill. For r=c, one
should add all symbols in the row associated to index r from column ROWIx. For example, for Y65= (10,9)+(10,10):
r1=10 Is located at the end of ROWIx in Table 1ll. Now, by searching for ¢1=9, it results that c1 has not any associated
symbol, therefore (10,9)=0. However, for the next pair r2=c2=10, this means that all admittances associated to r2
should be added, so that: (10,10)=G3+G2+G11. Furthermore, by evaluating all the pairs (r, c), the resulting CSEs is given

by equation (5).
v, | |1 0 0 0 0 0 |
0| |-Gl -G5-sCl1 0 -G6 0 0
0 0 -G4 -G7 0 0 0
ol |o 0 -G8 -sC2 0 0
0 0 0 0 -G9 G9 + G10 0
0 -G2 -G3 0 0 G2+G3+Gll -Gl

5.1.2 Calculation of the fully symbolic transfer function (FSTF)

By applying the proposed solution method, the FSTF can be calculated as follows:

Step 1. Generation of the data structure:

Vi2

(5)

In equation (5), only 39% of the elements are different from 0, this means that the data structure will be an
array with very few rows than m! and m columns.

2. By inciuding element by element as it is done by applying Cramer’s rule, the data structure is listed in Table IV.

155

lournal of Applled Research and Technology



Step 2. Evaluation of the determinant by multiplication of all the elements in each row:

Each element in Table IV is calculated according to the evaluation of minors by applying Cramer’s rule.
However, the generation of rows is stopped if an element of the determinant equals to zero, so that many
savings result compared to Cramer’s rule, and also there is not-a need to generate an associated graph, as it
is done by DDDs. Furthermore, only 23 rows were generated in Table IV, instead of mi=6!=720 if the matrix

Y. were not sparse.

2 For each row with all its m elements different of zero, multiply all the admittance elements and signs. So that
from Table IV, only 2 multiplications arise, those in rows 1 and 10. The determinant of equation {5) is thus
given by equation (6).

AY,y, = (Y11°Y22*Y33*Y44"Y55°Y66)+Y1 1*Y24*Y32*Y43*Y55"Y66) (6)

Table IV Data structure to calculate the determinant of equation (5)

Y11 Y22 Y33 Y44 Y55 Y66
Y11 Y22 Y33 Y44 056
Y11 Y22 Y33 045

Y11 Y22 Y33 046

Y11 Y22 034

Y11 Y22 035

Y11 Y22 036

Y11 023

Y11 Y24 Y32 041

Y11 Y24 Y32 Y43 Y55 Y66
Y Y24 Y32 Y43 056
Y11 Y24 Y33 042

Y11 Y24 -Y33 045

Y11 Y24 Y33 046

Y11 Y24 035

Y11 Y24 036

Y11 025

Y11 | 026

012

013

014

015

016

Step 3. Factorization procedure: Equation (6) can be factorized as shown by equation (7).

AY = Y11*Y55%Y66*(Y22*Y33*Y44 + Y24*Y32*Y43) (7)

By replacing each admittance Y,.j by its corresponding symbols from equation (5), then equation (7) becomes

equation (8), where by multiplying all the elements, the resulting simplified determinant is given by equation (9).
Furthermore, after the solution for v,,, = v, , the FSTF is given by equation (10), according [5].

AY o, =(1X(G9+G10)(-G11)[(-G5-sC1 W-G7)(-sC2)H(-G6)(-G4)(-G8)] (8)
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AY, =G11(G9 + G10)[ s G5GTC2+5° C1GTC2+G6GAGS] (9)

v, _ —(G9+G10)C162C2G7s” +((G1G3 - G2G5XG9 + G10))C2G7s - G4G8(GIGIG2 + G3 + G11)+ G2G6(G9 + G10)) (10)
G11(G9+ G10)\G6G8G4 + sC2G7G5 + sC2GTC1)

<

in

5.2 OTA filter

Let's consider the OTA filter shown in figure 3, its FSTF Is calculated as follows:

| |= +
i | lc
T+
- H —.0 -‘:[
VB3O8
VAT P Q'
CA = 3
CA =
| vt S,

Figure 3 Nullor equivalent circuit of the OTA filter taken from page 28 of [17]

5.2.1 Formulation of the CSEs
Step 1. The IRs of norators and nullators are given by equations (11) and (12).

{(2,0).(9,3),410,0),{11,0),(12,3),{13,0),(14,4),(15,4),(16,0),(6,0),(8,0).(17,0),(18,4)], (1m
{(1.2),(9,4),(10,0),(11,2),(12,0),(13,3),(14,0).(5,6).(7.8),(15,4).(16,0),{17,6),(18,0)}, (12)

IRs of admittances are calculated as: {I[gm?1,(9,10)],[gm2,(13,14)1.[gm3,(15,16)],
[gm4, (17,18)1,[gm5,(11,12)1,01,(1,0)1,[1,(5,0)1,11,(7,0)1,[sC1,(3,0)1,[sC2(4,8)1}.

Step 2. The admittance indexes are shown in Table V. ROWIx and COLix are given by:

ROWIX: ((1),(3,9,12),(4,14,15,18,(5)(7)1. Thus igy, = [v,,0,0,v, vc |

COLI: ((1,2,11),(3,13,(4,9,15),(5.6,17),(7,81. TNUS Yoy = V12115V 13>VasasoVs.s17sVas |
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Step 3. After the evaluation of ROWIx<COLIx, the resulting CSEs is given by Eq. (13).

v, ] [ 1 0 0 0 0 Tvian

0 -gm5 sCl gml 0 0 Vais

0f=| 0 —-gm2 sC2+gm3 —gmd —5C2| Vs (13)
Vg 0 0 0 1 0 | vse1r

vel] L O 0 0 0 1] vrs

Table V. Admittance indexes

| (Node: symbol)

1 (0:1)

3 (0:sC1)
9 (10:gm1)
12 (11:8m5)
4 (8:sC2)
14 (13:gm2)
15 (16:9m3)
18 (17:gm4)
5 (0:1)

7 ‘ (0:1)

5.2.2 Calculation of the FSTF

The FSTF is calculated by solving for v, =v,. However, as can be seen, this voltage-variable is associated to the
solution for v, 4,5. For instance, the calculation of the determinant of equation (13), generates the data structure

listed in Table VI, for which two multiplications arise, those associated to rows 1 and 7. Then the determinant is given
by equation (14), its factorization by equation (15), and the simplified expression by equation (16).

AY = Y11%Y22Y33*Y447Y55 - Y1 1*Y23*Y32*Y44*Y55, (14)
AYCNA =Y11*Y44*Y55(Y22*Y33 - Y23*Y32), (15)
AY,y, =s*C1C2+sClgm3 + gmigm2 (16)

Furthermore, after the solution for v, , ;. the FSTF is given by equation (17), see [171.

Yol Val. VUS| IR PSP, Y N

” s°C1C2+sClgm3 + gmlgm?

From these examples, it could be can concluded about the usefulness to be extend the proposed methods to noise
analysis of analog circuits, e.g. to improve the method given in [18].
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Table VI. Data structure to calculate the determinant of equation (13)

Y11 Y22 Y33 Y44 Y55
Y11 Y22 Y33 045

Y11 Y22 Y34 043

Y11 Y22 Y34 045

Y11 Y22 Y35 043

Y11 Y22 Y35 -Y44 053
Y11 Y23 Y32 "] Y44 Y55
Y11 Y23 Y32 045

Y11 Y23 Y44 042

Y11 Y23 Y44 045

Y11 024

Y11 025

012

013

014

015

6. CONCLUSION

Two new methods to enhance the symbolic analysis of analog circuits have been introduced. From the .nullor
equivalent circuit of an analog circuit, it has been described the manner in which is formulated a CSEs by avoiding
complex matrix-manipulations. In the same manner, it has been described the manner in which the solution to a CSEs
is done by avoiding both the generation of an associated graph and multiplications by 0. Furthermore, from the two
examples given in section 5, it could be concluded the usefulness of the proposed methods to calculate fully symbolic
expressions of analog circuits by the manipulation of the interconnection relationships. Besides, enhanced data
structures can be generated for the solution method, by deleting those rows ending by an element equal to 0ij. Most
important is that there is no need to formulate equation (2), since the solution method uses the elements calculated
from the evaluation of the Cartesian product in section 3. As a final conclusion, the proposed symbolic method is very
suitable to be implemented within an environment of analog design automation (ADA), which nowadays is very much
needed because ADA has a very large design space in which 10 operate. So that, one could be able to calculate
analytical design equations to deal with constraints such as transfer functions, offset, impedances, noise, distortion,
and several others.
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