
ON SEPARABLE CROSS DECOMPOSITION

M. Ellzondo-Cortés & R. Aceves-Garda

Universidad Nacional Autónoma de México
Posgrado de Ingenieria, Circuito Exterior S/N, Ciudad Universitaria
Apdo. Post. 3000, Tel. 015556223282 ext. 128 Fax. 015556223282 ext. 107

mareli@avantel.net

Received: January 28'h, 2003. Accepted: May 17th, 2005

ABSTRAG

The Inventory-Routing Problem (IRP) involves a central warehouse, a fleet of trucks wlth finlte capacity, a set of

customers, and a known storage capacity. The objective is to determine when to serve each customer, as well as

what route each truck should take, with the lowest expense. IRP is a NP-hard problem, this means that searching for

solutions can take a very long time. A three-phase strategy is used to solve the problem. This strategy is constructed

by answering the key questions: Which customers should be attended in a planned period? What volume of

products should be delivered to each customer? And, which route should be followed by each truck? The second

phase uses Cross Separable Decomposition to solve an Allocation Problem, in order to answer questions two and

three, solving a location problem. The result is a very efficient ranking algorithm O(n3) for large cases of the lRP.

RESUMEN

El Problema de Inventarlo-Distribuclón (Inventory-Routlng Problem, IRP), combina las actividades logísticas críticas

de ruteo y manejo de inventarios. El objetivo es, al menor costo posible, atender las necesidades de un conjunto

de clientes, utilizando una flotilla de vehículos que desde un almacén central, recorren rutas de distribución. EIIRP

es un problema NP-duro que en aplicaciones reales suele ser de gran tamaño. Para la solución de este problema

se diseñó una estrategia conformada de tres fases, que responden a las preguntas características delIRP: 1. lA qué

clientes atender en el horizonte de planeaclón? 2.lCuánto entregar a cada cliente? y 3. lQué ruta debe seguir cada

vehículo? La segunda fase, parte medular de la estrategia, utiliza la técnica de Descomposición Cruzada Separable

para responder a las preguntas dos y tres, solucionando un problema de localización. El resultado es un algoritmo

muy eficiente de orden O(n3) para instancias grandes delIRP.

KEYWORDS: Inventory, Routlng, Cross Decompositlon.

1- INTRODUGION

Nowadays, many prlvate and publlC orQanizatlons have realized that Qoods or servlces can be more valuable for a

customer If there 15 Qood IoQistlcs manaQement. Moreover, the avallablllty of thelr produd In the rlQht place and at

the rlQht time, conslstency In dellverles and ease In placlnQ orders, are becominQ Importance aspeds of the loQiStlcs

servlces that form part of supply chalns. Likewlse, the Importantconcept of customer value can be created throuQh

the avallablllty of the produd In place and time by allocatlnQ orders, amonQ other loQistlcs servlces as part of the

supply chain manaQement.
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Vendor Managed Inventory (VMI) 15 an example of a combinatlon of elements that can create a logistic value.

Supplier-managed replenlShment creates value for both the supplier and the customer. This iS a wln-win situation as

the suppller saves on distribution costs and wlth the posslbility of improving the coordination of deliveries, while

customers do not have to use resources on inventory management. The transportation of the products and inventory

management are the most expensive aspect of supply chalns. Another reason for using suppller management
replenishment is the rapid fallln the costs of the technology, making it possible to monitor customers' Inventories off-

site.

In splte of this, the reason VMI has not been more widely applied is attributed to the fact that it is extremely

complicated to design a distribution strategy to mlnlmlze transport and inventory costs, while avoidlng depleted

inventory. This Is called the Inventory Routing Problem (IRP). The first inventory-dlstribution model was developed by

Federgruen and ZipkJn [1] and is interpreted as an enriched vehicle roúting problem (VRP), which includes inventory
conslderatlons. Numerous models and strategies have been proposed slnce then. The IRP Is a .hard. problem, as

many other logistlc problems. These kinds of problems are called NP-hard so the optlmal solutlon in a reasonable

runnlng time Is almost Imposslble.

On the other hand, one of the major obstacles that prevents small and medlum business from prospering In Mexlco Is

the lackof awareness of and Investment In loglstlcs optlmization projects. So it is necessary to look for alternatlve

strategies in order to make these companies more competltlve. This is why It is necessary to develop low-cost

strategles of solutlon for logistlcs problems such as the IRP on a large scale.

In the next 5ectlon, I make a quick revlew of the relevant Ilterature about deCompO5itlon technlque5; in Sedlon 3

there 15 a detailed deflnitlon of the problem; In Sectlon 4 the 5olutlon procedure i5 pre5ented and thi5 15 te5ted in

Sedlon5. Finally the COnclU5ion5 are pre5ented In Sedion 6.

2. LlTERATURE REVIEW

The typical Inventory Routlng Problem (IRP) Involves a central warehouse and a set of geographically-distributed

customers. The model can be descrlbed as follows: Each customer possesses a known storage capacity (e.g. the tank

slze In the case of industrial gas).The central warehouse is responslble for maintaining a proper level of supply in the

customers' depots and, as often as not, is at fault when there 15 a shortage. The dlstribution company makes all the

decislons about dellvery scheduled, on the basls of Its estimates of the customers' demands and the known real-time

levels of Inventory, provlded by eledronic data Interchange (EDI) systems.

A characterlstlc of the IRP 15 the slmultaneoUS presence of two baslc aspedS: routlng and Inventory. The two aspeds
are comblned In a dynamlc enVlronment. So that repeated declslons must be taken at dlfferent moments on the time

horlzon. and past declslons wlll influence future declslons.The declslon-makers must decide:

when the deliveries should be made; le.. when the vehicles should be loaded and when to vislt the

customers;
how much to load on each vehlcle. in terms of the amount of each produd under consideratlon. and how

much of that load to distrlbute among the customers who require it;

what route each vehlcle should take to call on the customers..

Over time dlfferent method5 have been developed to deal wlth the5e deci5lon5, which are alway5 pre5ent, though in

di5tlnct scenarlo5 or formulatlon5. Baita et al [2] developed a clas51flcatlon of 5olutlon methods that groups these Into

two maln types: 1. Frequency domaln methods, and 2. Time domain methods. In the former the decislon variables are

the frequencies of replenlshment or time between deliverles. In the latter, the dellvery schedule 15 decided or, with

dl5crete time model5, the amounts and routes are decided, uslng fjxed time intervals.
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2.1 Frequency Domain Methods

There are three categories: Aggregatlon Methods, Flxed Pollcy PartlCipatlon Methods and Methods for Discrete

Frequency Models. In particular, the success of the aggregatlon method [3] is due to the fad that It produces

analytlcal models that do not consume too many computer resources, although they do requlre skill for thelr

construdlon and Interpretatlon. The use of the aggregatlon method 15 more of an art than a completely formalized

method, whlch can be a great advantage in speCific cases. The Flxed Pollcy PartiCipatlon Method only glves asymptotlc

optlmality. In fad It can give bad or almost trivial solutlons for small or medlum-slzed examples. Hall [4] showed that

its main Ilmltatlon 15 that the method cannot model coordinated deliverles, thus the results are only valid for

Independent deliveries, or can only barely be consldered as upper bounds for the real costs. This Ilmltatlon also occurs

In dlscrete frequency models that, In this case, obtain extremely complex and unmanageable models.

2.2 Time Domain Methods

Contrary to frequency domain. this involves operations bein~ pro~rammed throu~h a horizon that could be infinite. In

principie. decisions are only taken once. Nevertheless the most interestin~ case is when. in a dlscrete time model.

decisions are taken at the be~innin~ of each time perlod (e.~. day or week), knowin~ the state of the system

(inventory levels).

The time domaln method is used In a number of papers by Dror and Ball [5J. Dror and le\-y [6J. Dror and Trudeau [7J.

and Trudeau and Dror [8]. In each time interval only customers who have reached their Inventory safety level are

attended. Just one product should be delivered from one warehouse to several customers, whose demands, dlfferent

jn each time perlod, are determlnlstic in [5] and [6]; stochastic in [8]; stochastic or deterministic In [7]. More recently,

Campbell et al [9] demonstrates an application and a solution method, using a comblnation of the GRASP heurlstic

and Integer programming, for a real application of industrial gas dlstrlbution for the company PRAXAIR. Couslneau-

Oulmet [10] applles the well-known metaheurlstic Taboo Search to the IRP. However It was limlted by the length of

the planning perlod and, In fact. is consldered to be In an initial stage of research.

2.2. 1 Decomposition Techniques

As part of the time domaln methods, the Decomposltlon Ti

used to solve large-scale problems as we" as problems of I

by a decompositlon of the original system into subsystems,

problems are considered manageable due to thelr slze, b

avallable computer capaclty being immensely complex.

The prinCipie of decompo5ition. includinp; the primal and dual form5. i5 known as Bender5 Decompo5ition and

Lap;ranp;ean Dual Decompo5ition (Dantzip;-Wolfe), re5pectively. The5e technique5 make it pO551ble to take advantap;e

of the 5peCial 5trudure of the problem, by 5olvinp; a 5equence of 5impler problem5. Thu5, the primal or dual

5ub5trudure of the problem 15 explored. In fad, 5uch 5tratep;ie5 are con5idered dual for each other and in each one of

them the cyclinp; Occur5 between the master problem and the 5ub-problem. In particular, the decompo5itlon

technique5 were propo5ed and u5ed to 5olve the inventory routlnp; problem (IRP), by author5 5uch as Federp;ruen and

Zlpkin [1 ]; Chien, Balakri5hnan and Wonp; [11] and Chri5t1an5en [12].

Van Roy [13] prOpO5e5 a new deCOmpo5ition method called CrO55 DeCompo5itlon for 5olvinQ Mixed InteQer Problem

(MIP). Thi5 method i5 based on the relatlon5hip between Bender5' and DantziQ-Wolfe'5 principies of deCompo5itlon. In

fad, it 15 PO55ible to e5tabli5h that the LaQranQean dual 5ub-problem 15 a relaxed master problem In the Bender5'

decompo5itlon and, at the 5ame time, Bender5. 5ub-problem can be con5idered a relaxed master problem for the dual

decompo5lt1on. It 15 al5O a known fact that both method5 are dual pair5, I.e.. if Bender5' alQorlthm i5 applled to a

Linear ProQram (LP) problem, it coincides wlth the DantziQ-Wolfe decompo5itlon alQorithm applled to the dual of that

same LP Droblem [14].
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The baslc fundamental Idea af Crass Decampasitian is ta use bath sub-prablems In a single salutlan pracedure,
explalting the fact that In same cases, bath sub-prablems are simple ta salve. Van Ray [13], applled Crass

Decampasltlan ta a set af standard MIP test prablems and abtalned a 20% average redudlan in salutlan time

camblned with the best alQarlthms knawn at the time.

3 DEFINITION OF THE INVENTORY ROUTING PROBLEM (IRP)

The deflnitlon of the problem was as follows: A single produd (boxes, containers) ¡s d¡stributed from a warehouse to

several customers in dlfferent geograph¡c locatlons. The geograph¡c pos¡tlon of the warehouse and the customers is

known, as well as the distances between the warehouse and the customers and the dlstances between all the

customers. Cost parameters (storage and organ¡zatlon costs) are used "to charaderize the customers. It 15 assumed

that every customer's demand for the produd 15 known and constant In time, In fad, the real time needs are known,
which allows for a push-system strategy, based on the precise and tlmely knowledge of all the Inventories. The

del¡veries begin at the start of every one-day perlod, using vehlcles charaderized bya given capacity, fixed costs and

var¡able costs ¡n regards to distance covered. There is no limitatlon in the central depot's supplying capacity. A mixed

fleet of vehicles is avallable to take care of the customers in the time perlod. There are IImitatlons in the capacity of

the vehides and their size is a decision variable that wlll be involved In the optlmizatlon process. Time ¡s the decision

domain for the problem, as it defines fixed time perlods of one day. Moreover It is assumed that the customer's daily

dpmand does not exceed their storaQe capacity.

The alm 15 to meet the customers' demand at the 10west COSt, comprising inventory-related COStS. Includlng storage
COStS, together wlth flxed supply COStS; and distributlon COStS. Including fixed COStS plus the COstS Involved In the

distanced covered by the vehlcles used. So. the problem is to find the supply and dlstribution pollc1es, defined on the

basis of the answers to the foUr fo110wlng questlonS that must be answered at the start of each day:

2

Which cu5tomer5 mu5t be 5upplied that day?

What vehicle wlll be u5ed to 5uPPly each cu5tomer?

What volume of the produd 15 to be delivered to the cu5tomer5 when Vl5ited?

What dellverv route wlll each vehicle take?

3

4

4. PROPOSED STRATEGY

The inventory routlng problem (IRP) is hard-NP for a context of NP-COmpleteness, as the vehlcle-routing Component of

the problem, which noW. moreoVer, includes inventory restrlctionS. is NP-hard and generallzes the Traveling Salesman

Problem (TSP) [10]. In fad. all the non-trlvial vehlcle-roUting problems are NP-hard [15], So it is unlikely that an

algorithm of polynomial time can be developed to its optimal solution. So, a three-phase strategy. which responds to

the foUr questions. was designed for the solution of the treated IRP and 15 as f0110WS:

Phase I answers the question: 7. Which customers must be supp/ied that day~ by applying an Optional Replenlshment
System (ORS). that forces the revlew of the inventory level at a flxed time frequency and orders restocklng If the level

has fallen below a certain amount. Thus, this 15 baslcally a flxed time perlod model. A demand level for that day D is

forecast from hlstorical data about daily demand. As supplylng stock involves time and economic resources, a

minlmum order slze Q can be established. A good optlon for calculatlng Q 15 to use the Economic Order Quantlty

(EOQ) equatlon. Therefore, when the produd is checked. the inventory posltlon I, iS subtraded from the requlred

level of restockin~ D and the result 15 called q .Formallyestablishlng
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q=D-I

where

D: level of forecast demand

I: current lnventory level ~

Q : shortfall for achievin~ the maximum level of inventory

Q: amaunt af the acceptable minimum arder

and the rule 15 that only if I ~ Q, q i5 ordered; If q = O the customer 15 not 5erved. U5lnQ an ORS for each

cu5tomer, dependlnQ on their 5pecific cirCum5tance5, the 5upplier decides if they 5hould be 5upplled ontQat dayor
walt for the next review. Supply, the 5ubQroup of cu5tomer5 who wlll be vi5ited that day can be obtalned. The

information requlred durlnQ thi5 phase COn5i5t5 in the 5peciflc D, I, q and Q for each cu5tomer dependinQ on

their demand, capacity, inventory level5, re5tockinQ CO5t5, 5hortfall and 5toraQe. Once the que5t1on i5 an5wered, you

Qo on to the next phase.

Phase II responds to the questions: 2. What vehlcle wlll be u5ed to 5upplyeach cu5tomer? and J. What volume of the

product 15 to be dellvered to the cu5tomer5 when vl5lted?These questions are answered by applying a decomposition

technlque called Separable Cross Decomposition [16], to a Facility Location (FL) problem that, by analogy, assumes

that the services are vehicles that will dellver to the customers. The use of Separable Cross Decomposltion contains a

result that is fundamental to the study of the strudure of the problem, by taking advantage of the research started by

Van Roy [13], solvlng a FL problem that uses the binary variables to allocate vehicles to customers.

It 's therefore the problem of Allocation ofVehicles and Distribution (AVD) with thefollowinQ formula:

where

m number of avallable vehlcles

number of customers

d.
J

.¡;

customer demand j

flxed cost for the route i

a.
l

c..
11

: vehlcle capacity i

CO5t of di5tributlon to cu5tomer j vehicle i, the CO5t 15 determlned as a fundlon of di5tance

fractlon of the customer's total demand that has been supplled j uslng vehicle ix..
II

y i= 1 If vehlcle i 15 u5ed, O If not

The restridion (3.1) ensures that the demand Is totally supplied, (3.2) establishes distributlon only with active vehicles,

(3.3) considers the use of enough vehlcles to attend to the demand and (3.4) avoids exceeding the capaclty of the

vehicle.

There are some dlfficulties in optimizing these types of problem, because of thelr size and combinatorial structure. In

fact, logistic-type problems such as the IRP and AVD are usually very big considering their large number of variables

and restrlctlons. The AVD in itself 15 very complicated, since the single baslc declsion to use or not to use a vehlcle

Qives problems a complex combinatorial structure. When it 15 a question of problems that assoclate that combinatorlal
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strudure with a great slze, the compllcations increase, whlch is why mathematlcal programming relles on key

technlques for this type of challenge such as boundlng techniques. duallty theory and decomposltlon technlques [16].

This problem, in particular, has two types of inherent decfSions: choosin~ the vehicles to be used and the best way to

supply the customers. This makes decomposition techniques an attradive option for dealin~ with it, thus when the

discrete decision of choosin~ the vehicle has been done, the on~oin~ distributlon problem is, in ~eneral, easier to

solve. Even if it is not possible to take advanta~e of this charaderistlc in the desi~n of solutlon al~orithms,

decompositlon can stlll be a very attradlve optlon, if the Allocatlon of Vehicles and Distributlon (AVD) problems were

not complicated by the discrete decision of choosin~ services and were formulated as a linear pro~rammin~ problem

(relaxin~ the inte~rality restridions for the problem's variables), it would stlll be very bi~ and difficult to solve.

Fortunately thls problem has a special strudure that can be exploited by decompositlOn techniques [16].

As a result of Van Roy's research [17] and the strudure of the ÁVD, we can conflrm that when the cross

decompositlon strate~y is applled to this problem, a consequence solutlon is produced for two sub-problems,

incorporatln~ a pin~-pon~ process between them, reducin~ the number of master problems to be solved. Three fads

are fundamental for the Cross Decompositlon al~orithm:

the relationship between the primal (Benders) and the dual (through Lagrangean relaxatlon)

decomposition;

2. the sub-problems (SP X2) and (SDU2) can be considered master problems for each other;

3. conslderatlons under which {P) can be solved by only Iteratin~ between both sub-problems.

The research developed by Aceves [16], incorporates into thls cross process the strate~y of La~ran~ean Separable

Relaxatlon, a speclal La~ran~ean Relaxation case that is very advanta~eous because, wlth thls scheme, none of the

ori~inal restrldlons dlsappear and It Is not necessary to choose between 1he quallty of the bound obtalned and the

de~ree of dlfficulty of the problem that remains. When incorporated, it establishes that It is not necessary to use the

master problem In the solutlon, i.e., (P) can be solved Just by Iteratin~ between sub-problems. completely avoldin~

the master problems. Thls procedure Is called Separable Cross Decomposition and is the procedure applied to the

Allocation ofVehic/es and Distribution (AVD) problem in thls phase.

Two sub-problems are obtained when Separable Cross Decomposition is applied to the AVD problem. The applicatlon

of Benders to the primal ~ives us:

m n m

~~c..x.. +~ I'. y .

L.,¡ L.,¡ y y L.,¡ J i I

i=1 ;=1 i=1

Minimize

subject to

'V'j

m

Ixij=l,
i=1

n
~ d.x.. <a. y .¿.,.¡ J I] -II'
1=1

O < X ..< y-1/- i'

'r;fi

"di. i

that Is a transport problem; and applylng the Lagrangean Separable Relaxatlon to the dual problem gets the

subproblem
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subject to

Lxij~dj' \ij
i

~X.. ~a. , \ii

"-' y 1

j

xij~O,Ai<O,\ii,j

wlth values of Aj, for i = 1,...,m with

A; = -~, V-i as initial value, and

a;

¡;A~ = , 'Vi for.the subsequent values.
""' x ..

L,,¡l}

j

Thls result has made It posslble to develop an algorithm that is much slmpler that those previously obtained [16].

4.1 Separable Cross DecompositlOn AI~orithm

Usin~ the primal SP y and dual SD). sub-problems, iteratln~ between their solutions by fixln~ the values of the

primal Yi or dual A.i variables and startin~ from an assumptlon for such variables, it is possible to ~o from one to

another of the followin~ sta~es:

1) flx y i at It5 current value and 5alve the Bender5 5ub-prablem SP Y' that 15 a tran5part prablem, In arder ta

~enerate a new value for the upper bound of (P) and

2) flx Aj at Its current value and solve the La~ran~ean sub-problem SDA, to ~enerate a new value for the lower

bound of (P). The followin~ are sta~es of the al~orithm:

vv(-00), Vp(+00); r;O = I, for i = I,..., m;

fj fi . 1).? = --c.!.- , or 1 = ,..., m.
I a,

2.- Solve. Dual sub-problem SD ,k (transport problem) to obtain y ~ = 1 """' x..
A I , L,,¡ I)

j

2.1.-Calculate. ).~ =-~, for i=l,...,m.f

k k -
-1. for y i -
-A-l

, then end. E/se, Identify which y: = for i = 1,...,m
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Salve. Sub-prablem primal SP k (transpart prablem), ta abtain V(SP k )
Y; Y

, then end. Eise, return stage 2 but now with íL~

An analy515 of the convergence of the CrO55 DeCompo5itlon algorithm, developed by Holmberg [18], Indlcate5 that the

crO55 deCOmpO5itlon algorlthm has finlte convergence for problem5 where the Dantzlg-Wolfe deComposlt1on
algorlthm or the Bender5 deCOmposltlon algorlthm have finite convergence. Thi5 re5ult 15 very advantageou5 as the

reason for u5lng crO55 deComposlt1on 15 it5 practlcal efflclency, /.e., it i5 developed to have a Quick convergence In

practice, by replaclng the master problem5 with easier 5ub-problem5, as much as PO55lble. ThU5 it i5 nece5sary to 5ee if

the algorlthm u5ed to 5olve the tran5port problem5 has finite convergence.

In subsequent iterations of the Separable Cross Decomposltion, the most economlc routes gradually get cheaper and,
in consequence, they are allocated greater flow until they are saturated, elther by using up the capacity of the vehlcle

or meeting the demand, i.e.:

.I;
a,

~ k-l < ~ k < ~ k+l <
L,.,¡ X tj -L,.,¡ X tj -L,.,¡ X tj -

j j i

~ A; ~ A;+I ~...with J..k-l
t

~-

Thus, the vehlcles that satisfy the demand obtained from the solutlon of the Lagrangean dual sub-problem SD J. can

beusedasactivevehlcles;i.e. Yi =l,wlth i=l,...,m,thatwereflxedlntheprimalsub-problemSPy.

So the separable croSS decomposltion algorithm ends in an flnlte number of iterations and obtalns the solution to the

Facllity Locatlon (FL) problem of Phase 11. Thus It Is knoWn: whlch vehicle 100ks after each customers and what

amountof product ShoUld be delivered to them. From this result yoU go on to the next phase.

Phase III responds to the questlon: 4. What de/lvelY route wl// each vehic/e take..:: which 15 answered by solvlnQ a

TravelinQ Salesman Problem (TSP), for each of the vehicles used. The proposed alQorithm 15 the Adaptation-Prim-20pt-
Hybrld heurlstic method, whose components are the 20pt Method and an Adaptation of Prlm's AIQorithm Method. In

order to minlmize the total amount of dlstance, the 20pt Method imprOve successively an initial route. This is done by

elimlnatlnQ 2 edQes In each Iteration and reconnectinQ the route with new edQes. The Adaptation of Prlm's AIQorithm

Method obtalns an initial route with a minlmum spannlnQ tree usinQ a Qreedy alQorlthm. The use of Adaptation-Prim-
20pt-Hybrld heuristic method obeys the Inltial supposltion of a Qreat number of customers for each vehlcle to visit.

Castañeda [19] has an interestinQ study where she compares heuristic and exad methods for the TSP and proposes

the aforementioned hybrld as hlQhly advantaQeous in resped to other heurlstics, for very larQe TSP cases. AccordlnQ

to Castañeda [19], the idea of hybrldization arose as a result of the 20pt theory mentioninQ that thls method 15 better

when commenced with a Qood route. So the Adaptation of Prim's AIQorithm was decided on to flnd thls initial route

that would be used by the 2-0pt method. thus obtainlnQ the AdaptatiOn-Prim-20pt-Hybrid method.

5- EFFlCIENCY OF THE STRATEGY

In the Ideallzatlon of the strategy, the need to define algorithms, that would solve more manageable problems in an

easyand feaslble way, was ever present. As it has already been mentloned, the essentlal part of the strategy is the

applicatlon of Separable Cross Decompositlon in Phase II. Thus an algorlthm is obtalned that produces a runnlng
solutlon for two transport sub-problems. It is interestlng to note the enormous advantage of havlng this type of

problem, as their solutlon algorlthms have a low order of complexlty, O(n3 ) [20] and moreover, any type of

commerclal software can be used to solve them, even general purpose language programs. In such a way that the

order of the proposed strategy 15 O(n3), which makes It extremely efflclent.
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In order to assess the strategy's efflciency, 9 problems were constructed: 4 small problems wlth less than lO

customers, 2 medlum-sized ones wlth 30 and 35 customers respectlvely and tree large problems wlth 150, 200 and

250 customers. To the proposed strategy, a dlrect computational comparlson of the effectlveness of the results

presented In thls paper is not posslble. In fact, each author either considered a sllghtly dlfferent problem or solved a

completely dlfferent set of Instances. However, we show the characteris!lcs of the test instances and included In table

I are the values computed respect to the optlmal, whenever It was posslble.

The fixed costs, capacities and demands were taken from the examples given in Aceves [16]. The data generated as

random variables were the customers' demands and the matrices for dlstance (dense matrices) between customers

and between customers and the central warehouse. Said variables were obtained by means of the statistical package

STATGRAPHICS. The capacities of the vehicles (m3) took the values 24, 16, 8 and 4. The fixed costs varied between 50,

40, 35, 30, 25 and 20. Every problem was solved by obtaining the optimum using the Branch and Bound (B-B)

algorithm, by means of the LlNGO package. Afterwards each problem was solved with the proposed algorithm, by

means of a computer program developed in Pascal. The computer system used was a Pentium 4, at 2.00 Ghz with 256
MB RAM.

The results obtalned wlth the proposed strategy were: 1. an extremely short solutlon time, as three Iteratlons at most

were used to solve the problems and. in every case, the results were obtained In less than 3 seconds, however; the

optlmal values obtalned of EO31-09 and EO36-11 were 28 and 35 days respectlvely; 2. the quallty of the solutlons was

excellent In small and medlum slze problems, In fad, the optlmum was obtained.

rONrll JSIONS

Inventory Routing Problem (IRP) modeling 15 relatively new and itl5 not yet pO55ible to 5ay that there i5 a standard

2eneral formulatlon. A ranking 5trategy O(n3 ) was obtained that i5 easy to implement and apply. It give5 good quality

"e5ult5 and 15 efflclent In computatlonal effort even for large problem5, for obtalnlng the 5olution to an e55entially NP-

lard problem, the general goal of thi5 re5earch paper. Thi5 5trategy'5 low order of complexlty make5 it much more

=fficlent than the method5 u5ed to 5olve the IRP, which were revlewed in the 5tate of the art and 5olved cases, that

:oinclded with the one dealt with in thl5 5tudy. Thu5, .thi5 cOmpari5On demon5trated the 5uperiority of the propo5ed

;trategy as it can handle blgger problem5 with le55 computational effort. It 15 nece5sary to promote and continue

.e5earch Into the methodology for an optimal 5olution to dlfferent In5tance5 of the problem and reduce thelr

:omputational cOmplexity"

;ystems optimlzation is to be recommended as an approach that can -considerin~ the economic, social, political and

echnolo~ical challen~es that decision-makers are faced with- make businesses more competitive. Competitiveness is
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Important for every type of organization and enterprlse that wants to be up-to-date and successful in thelr sphere of

actlon and contributes not only to their own economic development but also to that of thelr surroundlngs.
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