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ABSTRACT  

The heart rate variability  (HRV)  of subjects with normal sinus rhythm  (NSR)  and subjects with congestive heart failure 
(CHF) is compared by using a structure function borrowed from turbulence studies.  Firstly, it is shown that the HRV of 
subjects with NSR displays a power law scaling property, which indicates the presence of structured heartbeat  control  
mechanisms. Secondly,  it is found that such  a  scaling  property  is partially lost for subjects with CHF. The absence of 
scaling properties  is associated  to  the  presence  of  uncorrelated  (i.e.,  noise-like) heart rate variations. In order to  gain 
insights  on  the source of the scaling property, the HRV is analyzed from a systemic  (i.e.,  feedback control) viewpoint in 
the frequency domain. It is found that the HRV of subjects with NSR is governed by a stable adaptive control mechanism 
presumably located in the autonomic nervous system. In the case  of  subjects  with  CHF,  the results show that this 
regulation mechanism  is  partially  or  totally absent, which is interpreted as the cause of the breakdown of the scaling 
law property. 
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1 INTRODUCTION 

A significant  relationship between the neurocontrol systems  (including the autonomic  nervous  system, ANS in 
short) and cardiovascular mortality, including sudden cardiac death, has been recognized in the last 25 years (see, for 
instance, [1] and references therein).  Existing experimental evidence showing the association between propensity for 
lethal arrythmia and signs of neurocontrol malfunctioning have moti- vated studies for the development of measures 
of the autonomic activity.  In this way, it is now accepted that  heart  rate variability  (HRV)  plays an important role in 
the determination of neurocontrol,  includ- ing the  ANS as an important  case,  and non-neurocontrol systems. 
Additionally,  the  easy derivation of this measure by means of many commercial devices has popularized its use into 
the medical commu- nity. However, the human cardiovascular system is characterized by a high degree of complex 
variability, such that many standard measures obtained from HRV can lead to incorrect conclusions and dangerous 
extrapolations [2]. As a consequence, the recent two decades have witnessed the developments of system- atic 
procedures to characterize,  both qualitatively and quantitatively, the HRV of healthy and unhealthy subjects.  

Classical statistical analysis in time and frequency domains have widely explored, and include the computation of 
means, standard deviations, histograms, power spectra distribution, etc.  [2,3].  Of particular interest is the use of 
spectral analysis based on autoregressive models, which shows dominant activities at low (around 0.1 Hz) and high 
(around 0.25 Hz) frequencies.  In turn, these dominant dynamics have been related to the activity of the 
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neurocontrol  systems via, e.g., sympathetic and parasympathetic mechanisms [1,4,2].  Classical statistical analysis is 
based on the assumptions of linearity, stationary and equilibrium nature of HRV signals. If one conceptualizes the 
cardiovascular system as a control mechanism responding to wide variety of, e.g., physiological requirements, 
including oxygen and nutrient transportations, then one is tempted to suspect that nonlinear phenomena are 
involved in the genesis of HRV. In fact, they are determined by complex interactions of hemodynamic, 
electrophysiological, and humoral variables as well as by the autonomic and central nervous regulations [5].  It has 
been speculated that methods borrowed from  nonlinear  analysis  might  provide  important  insights  for  
physiological  interpretation  of  HRV  and for the assessment of the risk of sudden death.  Nonlinear dynamics and 
fluctuation analysis include the computation of Lyapunov exponents, Poincare sections, fractal Hurst exponent [6,3], 
and detrended fluc- tuation analysis (DFA) [7].  In particular, DFA has been shown that there is a difference in the 
long-range scaling between heart beats in healthy and unhealthy subjects [8] and between sleep and wake periods 
[6]. Multifractality features of HRV time series have been also explored [9].  Ashkenazy et al.  [10] also used DFA to 
study magnitude and sign correlations in HRV. They found that the magnitude series relates to the nonlinear 
properties of the original time series, while the sign series relates to the linear properties. Lin and Hughson [11] 
proposed a turbulence analogy for the long-term HRV of healthy humans.  Based on such an analogy, the 
equivalence of an inertial range was found and a stochastic cascade model was proposed.  Robustness of the 
cascade model was subsequently studied [12] showing that a rigid structure for the multiple time scales is not 
essential for the multifractal scaling in healthy HRV. 

Recent Physica A’s  papers  have  used  methods  borrowed  from  statistical  physics  to  study  certain stilized features of 
heartbeat dynamics. Dudkowska and Makowiec [13]  presented  a  visual  method  for qualifying a heart rate signal. 
The method converts a  time  series  into  a  dot  plot,  which  offers  to  the human aye an extra possibility to uncover 
similarities  and  differences  between  heart  rate  patterns  of healthy and ill persons. Sakki et al. [14]  showed  that  
low-variability periods follows a scaling power law. It has been conjectured that the  values  of the scaling exponents 
are  personal  characteristics  and depend on the daily  habits  of  the  subject. Imponente [15]  used DFA  to  provide  
further  evidences  of scaling properties in the heartbeat dynamics.  These results show that methods borrowed from 
statistical physics represent potential tools for HRV assessment. However, further exploration of fluctuation analysis 
methods is required in order to establish standards and assess the full scope of these methods. 

In this paper, a further exploration of fluctuation analysis for the HRV of persons with normal sinus rhythm (NSR) 
and persons with congestive heart failure (CHF) is studied.  Specifically, our aim is twofold: 

i) To detect scaling differences between NSR and CHF cases based on the original (i.e., nondetrended and 
nonsmoothed) RR time series. To this end, a structure function approach, analogous to that used for developed 
turbulence is used [11,16].  Contrary to most fluctuation analysis reported so far, no detrending of the HRV is made in 
order to retain both high- and low-frequency characteristics of the heartbeat dynamics. 

ii) To  interpret  the scaling  behavior of RR  time series from a  feedback  control  framework  [17,18] in order to gain 
insights on the dominating control mechanisms that regulate the RR dynamics [19].  

Our results shows that the HRV of subjects with NSR displays a power law scaling property, which indicates the presence 
of well organized heart rate control mechanisms. In contrast, it is found that such a scaling properties are totally or 
partially lost for subjects with CHF. The absence of scaling properties is associated to the presence of non structured (i.e., 
noise-like) heart rate variations. Going beyond existing fluctuation analysis results, and to gain insights on the source of 
the scaling  property, a frequency domain is used to give a system theory explanation of the HRV. It is found that the HRV 
of subjects with NSR is governed by a stable adaptive control mechanism, which is presumably located in the autonomic  
nervous system.  In the case of subjects with CHF, the results show that this regulation  mechanism is partially or totally 
absent, which is interpreted as the cause of the breakdown of the scaling law property. 

Our  contribution with respect to previously reported results on scaling power laws for HRV [6- 8,10,14,15] can be 
summed-up as follows: 
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• It is shown that a fluctuation analysis based on the original  (i.e., non detrended) HRV signal has the potential of 
detecting differences between healthy and unhealthy subjects. It should be emphasized that,  although  the  scaling  
properties of RR  time  series  with no detrending  was  studied  by  Lin and Hughson [11], the authors focused  
mainly on theoretical aspects aimed to propose a  cascade model to describe the main stochastic features of HRV.  
In this way, studies on the discrimination of healthy and unhealthy subjects based on the original (i.e., non 
detrended) RR time series have been not explored previously. Our results show that such a discrimination  is  
possible  when  used the so-called structure function [16]. 

• The power law scaling property is related to  the presence of a stable  adaptive control mechanism [20], whose 
functioning has been deteriorated in unhealthy subjects. To the best of our knowledge, a relationship between 
scaling properties of RR time series and feedback control mechanisms has not  been reported  previously.  Indeed, a 
complete understanding of the underlying feedback  con- trol mechanisms involved in the cardiorespiratory system 
functioning is  required  for  assessing  its response capability in the face of environmental disturbances [19]. 

In this way, together with existing results,  our results can help to asses the potentiality of  fluctuation analysis for 
detecting and measuring stylized features of HRV. 

2 HRV DATA  

In our analysis, the HRV data were taken from the public-domain  MIT-BIH database www.physionet.org. 

The data correspond to beat-at-beat time intervals, so that the HRV data can be seen as signals sampled from ECG 
records, with non-constant sampling period.  The original analog recordings were made using ambulatory ECG 
recorders with a typical recording bandwidth of the order of 0.1 − 40 Hz.  Annotation files were prepared following the 
procedure described in [6,13].  The selection of the data sets was made under the following guidelines: 

a) Each data set corresponds to ECG records over a 24 hours period. A nocturnal database fraction from midnight to 
05:00 and a diurnal fraction from 12:00 to 17:00 were used for analysis. 

b)  As made in Figure 2 of Dudkowska and Makowiec [13],  12 recordings were chosen for analysis: 6 from subjects with 
NSR and 6 from subjects with CHF. Subjects included both men and women, aged 30 to 71. NSR records are nsr06, 
nsr08, nsr09, nsr10, nsr12 and nsr13. On the other hand, CHF records are chf01, chf02, chf04, chf07, chf08 and chf12. 
It should be emphasized that, although we have used such a limited number of HRV records, our conclusions will be 
of general nature in the sense that they still hold for the HRV recordings non reported in this paper. 

c) Only the  intervals  between normal beats were determined from annotation files and intervals  containing non-
normal beats were eliminated.  The moving-window averaging procedure proposed by Dudkowska and Makowiec 
[13] was applied to eliminate outliers due to missed beat detections.  In this way, for NSR data, an average of  0.01% of 
the intervals were eliminated, and for the CHF data, an average of 0.12% of the intervals were eliminated.  No 
interpolation was done for the eliminated intervals. 

Figure 1 shows a fraction of the RR intervals, denoted by ri, for a NSR subject (nsr06) and a CHF (chf01) subject.  
Notice that the HRV is composed by high frequency fluctuations evolving on a baseline and a  trending. In the  
following  section,  a fluctuation function will  be  introduced  aimed  to  extracting hidden information from the 
complex cardiac series. 

Since the RR interval is a signal  sampled with a  nonconstant  sampling period,  one  must  introduce a suitable  time  
measure. This is done by taking the beat number i  as a time  scale.  In  fact, there is  a one-to-one strictly increasing 

function between the discrete time index i, and the physical time t, namely,  ∑
=

=
i

k
ki rt

1

 . Hence,  in  the  sequel  we  will  

use  the  beat  number  i  as  the  time-scale  for  the  RR  interval dynamics.  In this way, time-scale will be used as a 
synonymous of beat-scale, and vice versa. 
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Figure 1.  RR interval dynamics for (a) a NSR case and (b) a CHF case. 

3 Structure Function 

Figure 1 shows that the  RR interval dynamics is composed of both high- and low-frequency fluctuations. High-frequency 
fluctuations seem to  evolve on a low-frequency trending. In principle, RR interval fluctuations reflect the heart response 
to baroreflex-feedback regulation commands introduced by different control  centers  [19].  For  instance,  a decrement  
in the  RR interval can be responding to a larger  blood flowrate requirement in a body section. In turn, such a 
requirement can be induced by a given (routine or non-routine) physical and / or mental activity.  In this way, a sustained 
activity may result in a trending change. If the HRV is the response to high-and low-frequency feedback control 
commands generated by e.g., the ANS, it seems to be reasonable to study how such RR interval fluctuations change over 
different time-scales. In order to capturer the main stylized features of these dynamics, one should analyze the original 
HRV time  series without executing detrending and smoothing (e.g.,  low-pa  s filtering, integration, etc.) procedures.  As 
a first approach  to address  this analysis, in  this  work  we  will  consider  the turbulence analogy proposed by Lin and 
Hughson [11].  To this end, let jiiij rrf −−=  be the instantaneous RR interval fluctuation over the beat-scale j.  For the 

beat  series   { }N
iir 1=  , consider the structure function  [16,21,22,11]: 

qN

i

q

ijq f
N

jF
1

1

1)( ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=
                                                                        (1) 

The function  )( jFq  is also called as the qth-order fluctuation function and can be seen as the q-norm of the signal  

{ }N
iir 1= .  It is expected that if the beat series  { }N

iir 1=  is scaling, then a power law behavior is displayed as follows: 

qH
q jjF ∝)(                                                                               (2) 
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where qH   is called as the generalized qth order Hurst exponent [21,22]. 

 

Figure 2.  Scaling properties of a Brownian motion.  Notice that 5.02 =H . 

Some comments regarding the Hurst exponents  qH  are in order [16,21,22]: 

• If H4  varies with q,  a nontrivial multiaffinity spectrum is obtained.  Basically,  multifractal analysis  allow us to 

analyze the mixing state of fractal dimensions as displayed in the complex nature of the  time series { }N
iir 1= . According 

to [16,21], multiaffinity  arises  from  the  kinetic  surface  roughening  with power-law-distributed amplitudes of 
uncorrelated noise. 

• For  q = 2, one obtain that  −(2H2 + 1)  is the slope of the Fourier power spectrum S(f ) of { }N
iir 1=  

Thus, S(f ) contains information about the exponent 2H . However, )(2 τF is superior in estimating 2H  [16] 

because )(2 τF is a smoother function than  S(f ). In fact,  S(f ) can fluctuate significantly and as a result scaling 

regions are often masked. The relation between the fractal  dimension fD  and the Hurst exponent 2H can be 

expressed as 22 HD f −= . So, by finding 2H , we can estimate the fractal dimension of the time series. 

• It has been shown [16] that the correlation function )(τC  of future values with past values, is given by 

)12(2)( 12 −∝ −qHC τ .  A value of 0=qH  corresponds to a zero-mean, stationary process withindependent 

increments (e.g., Gaussian noise).  A value of 5=qH results from uncorrelated time series and corresponds to a 

purely random walk or Brownian motion (BM) (see Figure 2).  In this case, { }N
iir 1= is characterized  by  “integrated”  

white  noise,  which  means  that  future  predictions of  the time series is  impossible. But  for  5.0≠qH , one  has  
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that  0)( ≠τC  independent  of  the time horizon τ . This indicates infinitely long correlations and leads to scale-

invariance associated with positive long-range correlations  (persistence) for 5.0>qH  (i.e., in  increasing  trend  in  

the past  implies  an increasing trend in the future) and to a scale-invariance associated with negative long-range 
correlations (antipersistence) for 5.0<qH  (i.e., an increasing trend in the past implies a decreasing trend in the 

future). Random walks with 5.0≠qH  are referred to as fractional Brownian motions (f BM). It is important to note that 

persistent stochastic processes have little noise whereas anti-persistent processes show presence of high-frequency 
noise. 

One can interpret the q-norm )( jFq as the statistical response of the cardiovascular system to (internal and external) 

disturbances and control commands from different control centers acting in the beat-scale j. For the sake of illustration, 
Figure 3 shows the RR interval fluctuation time series for 1=j  and  100=j  for a NSR data (nsr06).  Notice that the 

variation of the time series 100,if   is larger than the variation of the time series 1,if ,  implying that 

)1()100( 22 FF > . In this way,  the dynamics of the RR interval data nsr06 (corresponding to a NSR person) are less 

forecastable for larger beat-scale horizons.  Alternatively, this can indicate that the nsr06 case is more sensitive to high 
than to low beat-scale disturbances.  In the sequel, to focus on the very basic scaling properties of the HRV, only the 
case  q = 2  will  be considered in this work. 

4 SCALING PROPERTIES OF HRV 

The scaling properties of the HRV are studied in this section for both the NSR and the CHF cases.  In the sequel, the 
reported scaling results are the average of the computations from nocturnal and diurnal data. 
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Figure 3.  RR interval fluctuation time series for j = 1 and j = 100 for a NSR data (nsr06). 

4.1 Regularities in the scaling of NSR 
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Figure 4.  Log-log plot of the fluctuation function 
)(2 jF as a function of the beat-scale [ ]1000,1∈j , for the NSR data. 

Figure 4 shows a log-log plot of the fluctuation function )(2 jF as a function of the beat-scale [ ]1000,1∈j , for the 

NSR data described in Section 2.  For  the sake of  presentation,  the  fluctuation  function )(2 jF   has been 

normalized by )1(2F , so that all graphs start in the  unity.  As  has  been  observed  previously by Echeverria et al.  

[23], the HRV does not follows a unique scaling power law.  In fact, the fluctuation function )(2 jF  can be well-

described as a piecewise power law function as follows:  

a) A first crossover is located at 101, =crj  beats.  Below 1,crj ,  the slope is about 0.5, which means that the dynamics 

of heartbeat fluctuations below 10 beats behaves as a random walk.  It is interesting to note  that  this  behavior  was  
reported  recently  by  Echeverria  et  al.   [2003]  by  means  of  DFA approach. 

b)  A second crossover is located at around 422, =crj .  Below 2,crj , 2H   is of the order of 0.1 − 0.15, showing that the 

dynamics in this beat scales are antipersistent.  This noise-like effect can be attributed to a short-range competition 
between the different neurocontrol  systems (e.g., sympathetic and  the parasympathetic)  [24]. In fact, it is known 
that the sympathetic control system reduces the RR interval while the parasympathetic one increases it.  The result is 
a highly-oscillating RR interval dynamics around a certain “nominal” beat frequency [24]. 

c)  A third crossover is observed at around 2503, =crj .  In the domain [ ]3,2, , crcr jjj∈ one finds that 2H  is of the 

order of 0.25 − 0.35, showing that antipersistent behavior is still the dominating phenomena in  this  beat  scale. 
Similar  to  the  range  2,crjj < ,  This  antipersistent effect can be attributed to a short-range competition between 

the sympathetic and the parasympathetic control centers However, a more dominating effect of the parasympathetic 
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control centers, which reduces the high variability induced by the sympathetic control centers, seems to be present. 

d)  A transition plateau located at  about P = [250, 350] is  observed. In  this  case,  2H  is  around  zero, which 

indicates that the dynamics of the HRV behaves  very  likely  as  a  zero-mean,  uncorrelated noise. 

e)  Beyond the plateau P, the scaling exponent 2H  is around 0.45 − 0.5, indicating that the large-range dynamics 

behaves as a random walk. Large-range dynamical behavior is associated to the trending, which are introduced by 
changes in the nominal operating point of the cardiovascular system.  That is, a change in physiological processes 
(induced maybe by physical and/or mental activities) requires a change in the cardiovascular system operation.  For 
instance, the transition between the different sleep stages can involve a change in the muscular stress [25], which 
implies a change in the oxygen and nutrient  demands. Such a change is reflected in the cardiorespiratory  frequency,  
which  is modulated by the control systems to satisfy the physiological requirements. In this way, a value of H2 
slightly below 0.5 indicates that the nominal operating point dynamics behaves closely to an uncorrelated process. 

The impressive regularity of the fluctuation function )(2 jF  for the NSR cases, which is in agreement with the results 

displayed in Figure 2 of Dudkowska and Makowiec [13], seems to indicate that the scaling properties discussed above 
are likely to be distinctive of persons with a healthy cardiovascular system. 

4.2. Discussion 

Since the pioneering work  by Peng  et  al. [7], a large set of results  has been  reported  on  the  different aspects of 
HRV scaling properties.  In the introduction, we have made a brief description of these scaling results.   In  this  
subsection,  the  scaling  properties  described  above  are  discussed  in  comparison  to  the main existing results in the open 
literature. 

a)  Peng et al.  [7] also used the structure function approach to study the heartbeat dynamics finding that the RR 
interval follows an antipersistent (i.e., anticorrelation) behavior, which is in agreement with our results. Unfortunately, 
Peng et al.’s conclusions are based on only one case study, which makes not easy a fair comparison with our results 
where several (public domain)  cases  were  considered. Lin and Hughson [11] reported the 3rd-order fluctuation 
function )(3 jF  for a “typical” subject from the physionet databank, showing the result in their Figure 2.a (database2 as 

tagged by the authors). Unfortunately, the figure lacks details, so that, as in the  Peng  et  al.’s  case,  a  fair  
comparison  is difficult.  However, Lin and Hughson’s result shows a nontrivial behavior of the structure function 

)(3 jF , presumably a log-periodic behavior. In particular, crossovers can be  observed at  about 10 and 250 beats, 

which are in agreement with the results displayed in our Figure 4. 

b)  Most studies on scaling properties of HRV have followed a conventional DFA approach.  The motivation relies on 
the fact that spurious detection of correlations are reduced.  In fact, classical techniques like the autocorrelation 
function and the power spectrum are not suited for non-stationary time series.  Basically, DFA shows that the RR 

dynamics of healthy individuals are correlated with 4.1≈α  and at long scales it is less correlated with  0.1≈α .  On  
the  other  hand,  the  opposite  behavior was observed for unhealthy subjects [6,7,10].  In this way, two main 
differences are found between the results obtained with DFA and structure function approaches:  i) DFA predicts less 
correlation at large scales while structure function predicts more correlation at the same  beat  scales,  and  ii) DFA 
gives persistent behavior while structure  function leads to antipersistent behavior.  The for- mer difference can be 
explained  from the fact  that correlation function approach is  based  on  the nondetrended heartbeat time series, so 
that large scale correlations related to stable changes in the cardiovascular respiratory system, are retained. Conversely, 
DFA approach eliminates this  long-range behavior, such that the observed decrement in correlation is a consequence of 
the reduction of forecastibility associated to a detrended time series. The second difference is a more subtle one that 
can be attributed to the fact that,  while the structure function approach uses the original (i.e., non smoothed) time 

series ir , the DFA bases its computations on the integrated time series ∑
=

=
j

i
ij rz

1
. 
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It is known that integration behaves as a low-pass filter [18], which smoothes the dynamics, with a consequent 
increment in the predictability, of the time series.  In turn, such a predictability incre- ment implies also a correlation 
increment. To illustrate this,  Figure 5  shows  the  results  of  DFA, with a first-order detrending, based on the original 

jr   and the integrated jz  heartbeat dynamics for the nsr012 case.  For the integrated time series, the scaling 

exponent is about 1.32, which is in the magnitude order reported previously [6].  Notice that the data can be well-
fitted along the domain [10, 1000] with a sole straight line.  In the case of  the  original time-series,  the scaling 
exponent is around 0.279, which is in the magnitude order of the scaling exponents estimated with the structure 
function approach.  Notice that the difference between the scaling exponent of the integrated and the original  time  
series is  about 1.0. This seems to be reasonable since,  for power functions, integration increases the exponent by 
1.0.  It is also noticed that, contrary to the original time series case, the log-log plot displays local structure with at least 
one crossover at about 50=crj , which is  in agreement with the results displayed in Figure4.  Despite the fact that 

conventional DFA based on the original time series jr   can lead to results similar to that found with the structure 

function approach, the latter has two main advantages; namely, i) more details on the local scaling behavior can be 
obtained, and ii) it allows us to obtain a feedback control interpretation as will be shown in Section 5 . 

 

Figure 5.  DFA, with a first-order detrending, 
based on the original jr  and the integrated jz  heartbeat dynamics. 

4.3 Breakdown of Scaling Properties in CHF Data 

Similar to Figure 4, Figure 6 shows a log-log plot of the fluctuation function )(2 jF  as a function of the beat-scale  

[ ]1000,1∈j ,  for  the CHF data described in Section 2. For  a  better  visualization of  scaling breakdown effects, the 

cases are presented as two plots.  Contrary to the behavior shown in Figure 4 for NSR data, no common scaling 
behavior is observed.  The behavior of the fluctuation function )(2 jF  for the six cases studied is briefly described as 

follows: 
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Figure 6.  Log-log plot of the fluctuation function 
)(2 jF  as a function of the beat-scale [ ]1000,1∈j , for  the NSR data. 

a) chf01. A plateau is observed in the range (20, 70).  In this case, the crossover for NSR is expanded to cover a wide 
range of beat-scales.  

b) chf02. The fluctuation function )(2 jF  meets a single power law scaling property in the whole range [5, 500]. In 

this case, the crossover cj  is  lost,  which  might  indicate  that  the  control  mechanism acting at high beat-scales has 

no effect in the HRV. 

c) chf04. The fluctuation function )(2 jF has not a clear scaling property because of certain oscillatory phenomena 

with period of about 80 beat-scales. However, )(2 jF can be described as an oscillatory scaling power law of the form  
2)(sin2 Hjwjπ .  Notice that such a periodic behavior is also observed in the AIP diagram shown in Figure 2 of 

Dudkowska and Makowiec [13]. 

d)  chf07.   Interestingly,  the  fluctuation  function )(2 jF meets  an  anomalous  scaling  power  law  with negative  

exponent  of  the  form  α)(2 jF 0, 2
2 >− Hj H . That  is, fluctuations at larger beat-scales are less volatile than  

fluctuations at smaller beat-scales.  This a contraintuitive situation since, in this cases, fluctuations at larger beat-scales 
are  more  predictable  than  fluctuations  at  smaller beat-scales. 

e)  chf08 and chf12. In these cases, the fluctuation  function )(2 jF  satisfies  a  scaling  power  law  with a scaling 

exponent 2H  very close to zero. That is, the beat-series { }N
ijif

1, =
  presents  weak  scaling properties, resembling the 
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Figure 7.  Linear plot of )( 1
2

−wF versus w  for the NSR cases. 

Summarizing, the above results indicates the potential of the fluctuation function )(2 jF  to distinguish between 

normal and abnormal HRV patterns.  Specifically, while NSR data display a well-defined )(2 jF  scaling behavior with a 

several crossovers, these characteristics are lost in the case of data corresponding to CHF illness.  In the latter cases, no 
unique pattern of scaling properties lost is observed, showing that congestive heart failure is an illness where the 
failure of the cardiovascular control  mechanisms  can  be due to a wide variety of situations.  It is observed that the 
chf01 case behaves similarly to the nsr cases. This observation suggests that by performing a more detailed analysis of 
the scaling behavior, as opposed to the conventional linear characterization, it would be possible to recover 
information about the degree of severity of the CHF condition [23]. 

5. A SYSTEMIC INTERPRETATION OF HRV BEHAVIOR 

So far, we have used time domain to look at scaling properties of the fluctuation function )(2 jF .  However, as 

discussed in [1], complementary information on the HRV can be  obtained  in  the  frequency  domain. Traditionally, 
this frequency domain interpretation of the HRV has been addressed with spectral analysis of RR interval variability 
based on either fast Fourier transformation or autoregressive models [2,3].  The resulting PSD from autoregressive 
models shows dominant dynamics at low - (around 0.1 Hz) and high- frequency (around 0.25 Hz) which has been 
related to the activity of neurocontrol systems.  For instance, the efferent vagal activity is a major contributor to the  
high-frequency  components,  as  seen  in  clinical and experimental observations of autonomic maneuvers  [26].   
More  controversial  is  the  interpretation of the low-frequency components, which is considered by some [26,27] as a 
marker  of  the  sympathetic modulation.  The underlying idea behind the interpretation of the frequency domain 
results is that the heart rate and rhythm are largely under the control of the ANS [4]. In this way, one can see the heart as 
an actuator that responds to control commands generated by the ANS. Such control commands are intended to 
modulate  the heart  rhythm in order  to met  certain physiological specifications (e.g.,  to increase  the blood 
circulation flowrate to fulfill nutrient and oxygen requirements during physical activity) [19].  Then, under this view, a 
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healthy cardiovascular system  must  provide  a  stable  and  robust  (e.g.,  resilient  to disturbances) response to 
control commands  within  a certain  operating frequency range.  According  to the most standard concepts of 
feedback control theory [17,18], if the heart is the final actuator of a stable control system, its dynamics should contain 
at least two components; namely; i)  An adaptive scheme to reject exogenous disturbances (e.g., loads), and ii)  Low 
sensitivity at relatively high-frequencies to  avoid  unstable  behavior  due  to  high-frequency dynamics. Issue i) can be 
met if the controller is equipped with an integral compensator [20], which becomes the regulatory component of the 
controller.  In fact, integral feedback control is a basic engineering strategy for ensuring that the output of a system 
robustly  tracks its desired value independent of noise or variations in system parameters.  On the other hand, issue ii) 
can be obtained if the dynamics of the controller are dominated by low-pass filtering components at high-
frequencies.  In turn, this dynamics are induced by stabilizing feedback control actions commanded from, e.g., the 
ANS. 

Let us assume that the RR interval dynamics can be modeled as a continuous-time linear system as follows: 

)()()( scsGsy =  

where rsrsy −= )()(  is a RR interval deviation from a basal (i.e., nominal) RR interval  r , )(sc is a vector of control 

commands from neurocontrol systems, and )(sG is a causal transfer function with s being the differential (or 

difference) operator.  We have seen that the RR interval response  )(sy   is a complex signal (see,  for  instance,  Fig.1) 

with components of different frequency and magnitude values.  Since (3), this implies that the control command 
signal )(sc should be also display complex time-varying dynamics. From a statistical standpoint, we can consider the 

control command as a signal with a mean magnitude m.  That is, 

)()( smsc σ≈  

where )(sσ  is a signal with unitary magnitude (i.e.,  1)( =wiσ ,  for  all  frequency w ,  where  1−=i ). 

The resulting RR interval response corresponds to the statistical averaged signal 

)()()( scsGsy =  )()( ssmG σ≈  

One can move to the frequency domain by the identification wis → , such that  )()()( wiwimGwiy σ≈ .  

Hence, the following relationship is obtained: 

)()()( wiwiGmwiy σ≈ )(wiGm=  

In principle, a statistical estimate of the frequency characteristics, represented by )(wiG , of the control transfer  

function )(sG  can  be obtained if the RR interval response )(wiy  and the control command mean m are 

known. Since we have not access to the control command signals )(sc , the mean value m is not available.  However, if 

m is assumed to be statistically stationary, the shape of   )(wiG   can be estimated modulo the scaling coefficient 

1−m  (i.e., )()( 1 wiymwiG −=  ).  In this way, we can take the frequency response  )(wiy  as a measure of 

the frequency characteristics of the control transfer function )(sG . 
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One knows that )(wiy  corresponds to the magnitude of the RR interval fluctuations as a function of  the  

exciting  frequency  w .   That  is, )(wiy   is  proportional  to  the  magnitude  of  the  RR  interval fluctuation when 

the heart control system is stimulated by a signal of frequency w .  In this way, in order to estimate )(wiy  one 

should compute the fluctuations )(wiy  at different frequencies.  It is noted that the fluctuation function )(2 jF  

(see  Eq. (2))  provides  a measure  of  the  RR interval  fluctuations for  the time-scale j .  Hence, it seems to be 

natural to define the “beat fluctuation frequency” as 1−= jw , so that  the following identification is considered: 

)()()( 1
2 wiGwFwiy α−≡  

In this form, one has that the frequency characteristics of the control transfer function )(sG  can be statistically 

represented by )( 1
2

−wF . 

For the NSR cases, Figure 7 presents a linear plot of )( 1
2

−wF  versus w  obtained from Figure 4. It is interesting 

to note that the frequency responses display the basic characteristics around a stable robust controller; namely, i) 
integral feedback compensation represented by high sensitivity for very low frequencies, and ii) low sensitivity for 
relatively large frequencies. In this way, one can say that a normal RR interval dynamics reflects the action of a 
stable and robust ANS-heart system. We conclude that the scaling power law of the RR interval dynamics is not 
merely an esoteric feature; rather, it reflects the presence of control mechanisms (maybe dominated by the 
autonomous nervous system [28,29]) with regulatory and stabilizing capabilities which yield fine tune of heart-to-
heart intervals. On the other hand, Figure 8 presents the corresponding plot for the studied CHF cases where the 
following can be observed: 

a) In all cases, the low-frequency sensitivity is significantly reduced. This would imply that a neurocontrol-cardiorespiratory 
system with CHF has lost its regulation capabilities (i.e., the integral feedback compensation scheme is totally or 
partially lost). In turn, this means that, e.g., the heart is unable to fulfill the blood flowrate and pressure required 
by the command control, or that the control command is not correct because a malfunctioning of the 
neurocontrol mechanisms. 

b) No unique behavior is displayed. In fact, while the NSR cases display a similar behavior, the CHF cases present 
diferent shapes: a) chf01 retains certain low-frequency regulatory capabilities but displays a resonant peak at 

about 135.0 −= beatwrf , which can lead to unacceptable sensitivity of the RR interval for disturbances with 

frequencies around rfw , b) chf02 and chf012 present a plateau for most frequencies, which would imply that the 

cardiovascular system acts as an amplifier with constant gain. Similar to a noise-like behavior, this situation may 
indicate a lack of learn-ing/adaptive mechanisms that endow the control system with desirable robustness properties 
[20], 

c) chf04 displays oscillations, which can be due to the presence of delayed control actions [17] due maybe to by-pass 
flowing, d) chf07 and chf08 behaves as a high-pass filter, showing a heart exces-sively sensitive to high-frequency 
disturbance (e.g., noise). In this case, the neurocontrol systems ANS seem to be unable to regulate the RR interval 
dynamics around stable beat conditions. 
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Figure 8.  Linear plot of )( 1
2

−wF versus w  for the CHF cases. 

The above preliminary results show the potential of alternative (linear and nonlinear) techniques to extract 
hidden useful information from HRV. 

6. CONCLUSIONS 

Our  results  have  shown  that  a  suitable  combination  of  nonlinear  statistical  and  system  theory (e.g.,feedback 
control) tools can provide important insights on the stylized features of RR interval dynamics. Of  particular 
interest  is  the  fact  that  the  existence  of a scaling power law  can be  related to the  action of  stable control 
mechanism  associated  to the autonomic nervous system. In this way, CHF  cases  are characterized by a lost of the 
regulation capabilities of the control mechanisms, which can lead to excessive sensitivity of the heart beat dynamics to 
relatively high-frequency disturbances.  In turn, such a loosing of the regulatory capabilities could lead to lethal 
arrhythmias and signs of ANS malfunctioning [1].  Further work should be directed towards a more detailed 
classification of CHR cases according to the frequency characteristics  of the RR interval fluctuations.  Additionally,  a physical 
interpretation of the  crossovers for healthy subjects in relation to the vagal and sympathetic neurocontrol 
mechanisms is an interesting issue that deserve further analysis. 
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