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ABSTRACT 

A system that combines techniques of wavelet transform (DWT) and singular value decomposition (SVD) to 
encode images is presented. The image is divided into tiles or blocks of 64x64 pixels. The decision criterion 
as to which transform to use is based on the standard deviation of the 8x8 pixel subblocks of the tile to 
encode. A successive approximation quantizer is used to encode the subbands and vector quantization/scalar 
quantization is used to encode the SVD eigenvectors/eigenvalues, respectively. For coding color images, the 
RGB components are transformed into YCbCr before encoding in 4:2:0 format. Results show that the 
proposed system outperforms the JPEG and approaches the JPEG2000. 
 
RESUMEN 
 
Se presenta un nuevo sistema que combina técnicas de transformada wavelet (DWT) y descomposición en 
valores singulares (SVD) para codificar imágenes. Las imágenes se dividen en cuadros de 64x64 pixeles. 
Para decidir qué transformada utilizar, se utiliza un criterio basado en la desviación estándar de subbloques 
de 8x8 pixeles del bloque a codificar. Las subbandas, resultadas de aplicar la DWT, se codifican utilizando un 
cuantizador de aproximaciones sucesivas. Los eigenvectores y eigenvalores, resultados de la aplicación 
SVD,  se codifican utilizando cuantización vectorial y escalar, respectivamente. Antes de codificar imágenes a 
color, las componentes RGB se transforman a YCbCr en formato 4:2:0. Los resultados muestran que con el 
sistema propuesto se logra mucho mayor compresión que JPEG y se aproxima bastante al nuevo estándar 
de compresión JPEG2000. 
 
KEYWORDS: Wavelet Transform, Singular Value Decomposition, HC-RIOT, SPIHT, Scalar Quantization, Vector 
Quantization, Image Coding, HDCTSVD. 
 
 
1. INTRODUCTION 
 
A hybrid DCT-SVD (HDCTSVD) image coding algorithm was developed earlier by Dapena and Ahalt [1]. 
They showed that the hybrid technique performs well on low spatially correlated images. In this paper, 
another hybrid approach called HDWTSVD is proposed. This method takes advantage of the multi 
resolution – multi frequency capabilities of the discrete wavelet transform (DWT). Various adaptive 
features such as selection of the DWT or singular value decomposition (SVD), discarding low magnitude 
eigenvalues and corresponding eigenvectors, VQ and/or SQ of eigenvectors 
- including different codebooks sizes-, and SQ of eigenvalues are introduced with the principal objective 
of optimizing image quality at low bit rates. As the SVD is computationally intensive [2], its selection is 
limited to a few tiles of an image to help the compression. The SVD or DWT is applied adaptively to non-
overlapping tiles each of size (64x64) pixels. Subbands resulting from the DWT of tiles are coded by a 
modified set partitioning in hierarchical trees (SPIHT) [3] called the “homogeneous connected-region 
interested ordered transmission” (HC-RIOT) [4].  This system is applied to color images, which are 
processed as YCbCr format and 4:2:0 resolution. The number of subbands decomposition of the 
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downsampled chrominances is one less than the corresponding luminance component for each color tile. 
Using standard test images, the performance of the HDWTSVD is compared with that of the HDCTSVD, 
JPEG and JPEG2000 [5], [6]. Details of the proposed algorithm are described below.  
 
2. SELECTION OF DWT OR SVD 
 
The decision criterion as to which transform to use is based on two simple parameters: the average 
standard deviation (ASTD) of 8x8 subblocks of the (64x64) size tile to encode, which is nothing but the 
standard deviation of 8x8 subblocks of a tile averaged over all subblocks of the tile; and the standard 
deviation of the standard deviations (SSTD) of the same 8x8 subblocks of a tile. The subblock size of 
(8x8) pixels is selected after an evaluation of various subblock sizes, including the (64x64) tile. The 
selection of the DWT or SVD, for color tiles, is based on the ASTD and SSTD of the luminance tile only. 
 
3. INITIAL TESTS 
 
This test consists of considering the high frequencies or low correlated areas of tiles of different 
monochrome images to compare the SVD and the DWT. Figure 1 shows the plot of the ASTD vs. the 
mean squared error (MSE) of the encoded tiles using the DWT and the SVD. The encoding process 
consisted of decomposing each tile into 3 levels of wavelet decomposition (see Fig. 2). The high-high 
subband of the first level or level zero (HH0) was discarded (all the coefficients are set to zero). The HH0 
subband consists of 32x32 coefficients, which means that one quarter of the total number of coefficients 
were discarded. The tiles were recovered by applying inverse DWT and the MSE was calculated. Then, 
each original tile was subdivided into subblocks (A) of 8x8 pixels and the SVD was applied. Assuming  
block A was full rank (r), each subblock was decomposed into two (8x8) orthogonal matrices containing 
the eigenvectors (U and VT) and one (8x8) diagonal matrix containing the eigenvalues (W) as follows [2], 
[7]:  

 
A = U W VT                                                                                 (1) 
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Figure 1. Plot of average standard deviation (ASTD) vs. MSE 
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After rearranging the eigenvalues in decreasing order, the seventh and eighth eigenvalues were 
discarded. This means that one quarter of the total number of eigenvalues of a tile (64 subblocks) were 
discarded, followed by inverse SVD (ISVD). Figure 1 shows that the MSE increases as the ASTD does, 
which means that the DWT introduces more error for tiles with high ASTD.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Three levels of wavelet decomposition 
 
The filter bank used to implement the DWT was the Daubechies 9/7 [8], factored into lifting steps to help 
reduce computational complexity [9]. Symmetric periodic extension was used on each tile compressed 
using the DWT, to help reduce the block artifacts of the reconstructed tile and the coefficient expansion 
at the output of the analysis bank [10].  
 
The DWT and the SVD are computationally expensive, but the SVD is even more expensive because  
the computation of the basis vectors is time-consuming [2], [7]. This imposes the following restrictions on 
the HDWTSVD system. 
 
1. There are tiles that exhibit low and high pixel activities. Low pixel activities are low-ASTD tiles and 
high pixel activities are high-ASTD tiles. 
2. Tiles with low pixel activity are usually low-frequency blocks with high correlation. 
3. Tiles with high pixel activity contain edges, high frequencies, edges and high frequencies, or edges 
and low frequencies (these can be sharp edges). 
4. Edges are high-frequency regions which have more masking effects and require large codebooks to 
be encoded in order to reduce the distortion.  
5. Combination of edges and high pixel activity tiles will increase the distortion in the recovered tiles but 
will be less noticeable visually . 
5. Tiles with high pixel activity or combination of low pixel activity and smooth edges will be compressed 
using SVD. 
7. The decision taken on whether to use DWT or SVD must be simple. 
 
Restriction 7 imposes us to look for a fast decision. From Fig. 1, we can see that the ASTD could be a 
good indicator of the pixel activity. High pixel activity tiles result in high ASTD. It seems that from this 
figure we can select a threshold of ASTD, but that is false because the test set contains any type of tiles 
as mentioned in restriction 3. Sharp edges should not be encoded by using SVD because of restriction 4. 
A tile containing a sharp edge can produce high ASTD. Therefore, the ASTD of a sharp edge would be a 
wrong indication and may be understood by the system as a high pixel activity tile. However, if one 
calculates the standard deviation of the already calculated standard deviations (SSTD) of 8x8 subblocks, 
we see that the sharp edges result in SSTD much higher than low or  high pixel activity tiles. The 
threshold for the ASTD can be calculated by taking the ASTD of tiles containing a combination of sharp 
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edges and smooth areas. Tiles to calculate this threshold were taken from Baboon, Tiffany, Boat, and 
Elaine images in the database [11]. Table 1 shows the average standard deviation of tiles containing a 
combination of sharp edges and low pixel activity areas only.  From this table, we can set a threshold of 
20 for the ASTD.  
 
 
    

ASTD 

18.30 18.33 18.22 17.01 19.36 19.33 18.01 

16.06 19.63 17.15 18.51 15.21 18.56 18.00 

18.23 16.45 18.17 18.14 18.18 18.62 19.05 

Average of ASTD 18.02 

Variance of ASTD 1.21 

Standard deviation of ASTD 1.10 

 
Table 1. ASTD of tiles containing sharp edges and low pixel activity 

 
 
 
The SSTD indicates how deviated the standard deviations of the mean  are;  if this value is very high 
then, as long as the ASTD is also high, we are dealing with a sharp edge,. The SSTD can be calculated 
after calculating the standard deviations of the 64 subblocks of a tile and the ASTD.  
 
Table 2 shows the typical SSTD value for tiles containing sharp edges, low pixel activity, high pixel 
activity, and a combination of high and low pixel activity. 
 
 
 
 
 
 
 
 
 

Table 2. SSTD of tiles containing (a) sharp edges, (b) low pixel activity, (c) high pixel activity, and (d) 
combination of high and low pixel activity 

 
 
 
 
 
 
 
 
 
 
 

Pixel activity SSTD
Sharp edge 23.01 
Low 3.46 
High 7.46 
High and low 11.16  
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Figure 3. Barbara image divided into tiles showing tiles 45 and 47 

 
The selected threshold for SSTD is 12. Below this value, we include tiles with low and high pixel activity 
but not sharp edges. The images used to calculate this threshold are the same as the images used to 
find the ASTD [11]. 
 
Figure 3 shows the 512x512 Barbara image divided into tiles of 64x64 pixels. The image shows  tiles 45 
and 47; both of them are high ASTD tiles, but tile 47 contains an edge, which produces high distortion. 
Figure 4 shows the area of tiles which are good candidates to be compressed using SVD for this image.  
This is a selective area that contains tiles with an ASTD greater or equal to 20 and an SSTD less than or 
equal to 12. This area engulfs tiles 31, 33, 45, 48, and 54. Tile 47 has an ASTD of about 30 and an 
SSTD of about 16. With the ASTD as the only threshold, this tile was one of the candidates for SVD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Candidate tiles for SVD of Barbara image 

 
The HC-RIOT [4] is a modified SPIHT [3] that considers scalability, perceptual optimization, error 
resilience, and spatial segmentation strategies. The HC-RIOT takes advantage of the DWT to exploit 
multiresolution, self-similarity in subbands, and spatial localization properties. This approach is combined 
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with a two-stage ZTE/SPIHT algorithm for entropy coding of the image that considers progressive 
transmission, scalability, and perceptual optimization. The bit stream is initially transmitted using three 
layers. A base layer with a fixed bit rate always gives a decodable image, an enhancement layer with 
progressive transmission containing critical bits necessary to keep the encoder and decoder 
synchronized in image reconstruction and enable picture quality improvements, and another 
enhancement layer that only contains information necessary to improve the image quality. The HC-RIOT 
encodes well the tiles with sharp edges. 
 
4. ENCODER 
 
Figure 5 shows the diagram of the encoder. The input image is divided into blocks or tiles of 64x64 
pixels. The tile size was decided based on the number of SVD subblocks per tile to calculate and the 
number of subband decomposition levels. That means that we selected a tile size, which could be well 
decorrelated by the DWT and the computational complexity of the SVD could not be exacerbated. The 
ASTD and the SSTD are calculated. If the ASTD of the tile is equal to or greater than 20, and the SSTD 
is equal to or less than 12, the tile is subdivided into subblocks of 8x8 pixels and then compressed 
independently by using SVD. First, the mean of the subblock is subtracted and encoded using 8 bits. 
Then, the SVD is applied to each subblock to calculate matrices U, VT and W. In the adaptive 
reconstruction and comparison stage, the eigenvalues are rearranged in decreasing order (from the 
highest to the lowest) and discarded progressively, by setting them to zero, from the lowest to the 
highest until an MSE for the subblock is met (after exhaustive tests the MSE set for this unit was 5). The 
total MSE of the subblock is calculated each time an eigenvalue is discarded by using equation (2). 
 

∑
+=
σ=

r

1qn

2
nNxN

1MSE                                         (2) 

 
where σ n is the nth largest eigenvalue, NxN is the block size (8x8), r is the rank, and q is the number of 
eigenvalues retained. 
 
After meeting the MSE requirement for a subblock, the resulting eigenvalues are coded using uniform 
scalar quantizers of 8,8,7,7,6,6, and 4 bits, respectively; and their corresponding eigenvectors are sent to 
the decision stage. The eighth eigenvalues/eigenvectors are discarded. The adaptive reconstruction and 
comparison stage helps us to discard adaptively the eigenvalues and eigenvectors that do not introduce 
a significant visual error.  
 
The decision stage consists of three uniform scalar quantizers of 7, 7 and 5 bits, respectively; and seven 
codebooks of lengths 256, 128, 32, 32, 32, 16, and 8. The scalar quantizers and the codebooks are the 
same for the eigenvectors of matrices U and VT. After quantization of one eigenvector of matrix U, the 
process is repeated for the eigenvector in matrix VT. 
 
In the decision stage, the best matches for the 1st, 2nd, and 3rd eigenvectors are searched in their 
respective codebooks. The MSE of the original eigenvectors with respect to their best matches in the 
codebooks is calculated. If the MSE is above 0.01, 0.1, and 0.4, respectively, the first two original 
eigenvectors’ components are scalar quantized using 7-bit uniform quantizers, and the third original 
eigenvector is scalar quantized using 5-bit uniform quantizer.  The rest of the eigenvectors are encoded 
using vector quantization only. For the first three eigenvectors, one extra bit is included to indicate to the 
decoder if they are coded by VQ or SQ. Then, the next subblock is processed until the tile is encoded. 
The decoder has to know how many eigenvalues per subblock were encoded. Three extra bits are used 
to inform this parameter to the decoder.  Matrices U and VT are encoded using the same codebooks 
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Figure 5. The HDWTSVD encoger 

 
 

In previous tests with low and high pixel activity images, it was observed that the first 
eigenvalue/eigenvector plays the most important role in reducing the subblock MSE. Therefore, the MSE 
allowed for this eigenvalue has to be very small as compared to the other thresholds. In preliminary 
tests, for high pixel activity tiles (high ASTD) taken from some textures and not containing sharp edges, 
the average number of eigenvectors/eigenvalues per tile was 6.82. The total number of tiles used was 
128 taken from different images [11]. This means that the last two eigenvalues/eigenvectors are less 
probable to exert a noticeable effect in a subblock. This allows us to have a codebook of reduced size for 
the 7th eigenvector and to discard the 8th eigenvector.  The codebooks sizes were determined after 
exhaustive tests. The LBG algorithm was used [12] to train the codebooks and the training images are 
taken from [11]. 
 
If the ASTD of the tile is less than 20 and/or the SSTD greater than 12, the tile is compressed using the 
Daubechies 9/7 filter bank factored into lifting steps. The tile mean is subtracted before filtering and 
quantized to 8 bits; then, the tile, or subband, is extended using symmetric periodic extension to help 
reduce the block artifacts effect in the reconstructed tile and to avoid coefficients expansion. Each 64x64 
tile is decomposed into a maximum of three levels;  level two or last decomposition level is an 8x8 block. 
The subband coefficients are non-integer; therefore, they are rounded to the nearest integer, which 
causes a minimal loss in PSNR. The resulting subbands, after three levels of decomposition, are 
encoded using the HC-RIOT [4].  
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5. DECODER 
 
Figure 6 shows the diagram of the decoder. The first bit of the encoded tile is read, and if the tile belongs 
to SVD, it is recovered in 8x8 subblocks. After reading the number of eigenvalues encoded for a specific 
subblock, another bit is read. This bit informs the decoder if the information for the first eigenvector 
belongs to an entry index (8 bits), or if the following 56 bits (7 bits x 8 eigenvectors’ components) are the 
quantized eigenvector’s component. The process is repeated to recover the first quantized eigenvector 
of the matrix VT and the second eigenvectors of U and VT. The third eigenvectors of U and VT are 
recovered in the same way except that if the information belongs to the component’s eigenvector, then 
the eigenvector will be retrieved in a packet of 40 bits (5 bits x 8 eigenvectors’ components). The 4th, 
5th, 6th, and 7th eigenvectors of matrices U and VT are retrieved by reading the indices of their 
respective codebooks. The eigenvalues are retrieved by reading and applying inverse quantization to the 
quantized values. 
 
After applying inverse SQ/VQ, the eigenvalues and eigenvectors are decoded and an approximation of 
each subblock is recovered as Â  =U W VT. Then the process to recover another 8x8 subblock is 
repeated until the tile is reconstructed. 
 
 

 

Figure 6. The HDWTSVD decoder 
 
 
6. CODING OF COLOR IMAGES 
 
The HDWTSVD system to encode color images is shown in Figure 7. The input image has 512 x 512 8-
bit-PCM RGB components. These components are transformed into YCbCr format, and the chrominance 
components (Cb, Cr) are downsampled by a factor of 2 before encoding. The luminance component is 
divided into tiles of 64x64 samples and the chrominances into tiles of 32x32 samples. Each tile contains 
one luminance component (Y) and two chrominance components with one quarter the resolution of the 
luminance component. The choice between DWT or SVD depends on the ASTD and SSTD of the Y 
component. If the tile is inside the area shown in Figure 4, the Y component and the downsampled Cb 
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and Cr are encoded using SVD; otherwise, DWT is used. If DWT is used, three levels of subband 
decomposition to Y and two levels of subband decomposition to Cb and Cr are applied. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The HDWTSVD system for color images 
 
 

After decoding each component and each tile, the resulting Cb and Cr are upsam-pled by a factor of 2 
both horizontally and vertically; color transformed to RGB, and each color component clipped in the 
interval from 0 to 255. 
 
7. RESULTS 
 
Figure 8 shows the Barbara image compressed at (a) 0.5 bpp with PSNR of 30.30 dB, and (c) 1.05 bpp 
with PSNR of 35.26 dB.  The error images are shown in Figure 7 (b) and (d), respectively.  
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(a)                                                               (b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(c)                                                               (d) 
 
 
Figure 8. Barbara image compressed at (a) 0.5 bpp, PSNR = 30.30 dB, (b) the error image, and (c) 1.05 
bpp PSNR = 35.26, (d) the error image 
 
We can see from the error images of 8 (b) and 8 (d), that the smooth areas compressed using DWT are 
changing. From low bit rate (0.5 bpp) we can see more perceptual error than for high bit rate (1.05 bpp). 
The areas compressed by SVD (corner of the table and some parts of the pants of Barbara) show a 
constant error because the encoding scheme is fixed and calculated to give the best quality of a tile for 
low bit rates. 
 
Figure 9 shows the comparison of this image with JPEG2000 [6], JPEG baseline [5] and the HDCTSVD 
[1] using threshold coding. In this figure, we can see that the HDWTSVD follows close to JPEG2000 for 
low bit rates. For high bit rates, the algorithm does not perform as well. 
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Figure 9. Comparison of the HDWTSVD with JPEG2000, JPEG baseline, and HDCTSVD using 
threshold coding for the Barbara image 

 
Figure 10 shows the color Lena image compressed at (a) 0.5 bpp with PSNR of 33.68 dB and (b) error 
image of the R component, (c) error image of the G component and (d) error image of the B component.   

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                               (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c)                                                               (d) 
 

Figure 10. (a) Lena at 0.5 bpp and PSNR of 33.68 dB, (b) error image of the R component, (c) error 
image of the G component, and (d) error image of the B component 
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Figure 11 shows the color Lena image compressed at (a) 0.99 bpp with PSNR of 36.01 dB. and (b) error 
image of the R component; (c) error image of the G component, and (d) error image of the B component.   
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                               (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)                                                               (d) 
 

 
Figure 11. (a) Lena image at 0.99 bpp and PSNR of 36.01 dB, (b) error image of the R component, (c) 

error image of the G component, and (d) error image of the B component 
 
 

 
Figure 12 shows the comparison with JPEG2000 and JPEG baseline for the Lena image. The plot shows 
that the color HDWTSVD outperforms the JPEG baseline, and for low bit rates, it follows close to 
JPEG2000.  For high bit rates, the system does not improve much in terms of PSNR, but the image 
quality is good. There are two main reasons for this behavior. The first reason is that since the HC-RIOT 
is a low bit rate encoder, it performs well in this region. Another reason is that the tiles compressed by 
using SVD will be always recovered with the same quality for low and high bit rates. The codebook sizes 
used for this part were the same as the codebooks used for monochromatic images. These sizes, as well 
as the uniform quantizers in the decision stage, were selected to get a trade off between quality and bit 
rate for low bit rates.  
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Figure 12. Comparison of the HDWTSVD with JPEG2000 and JPEG baseline for the Lena image 
 

 
8. CONCLUSIONS 
 
In this research, a new system that combines techniques of DWT and SVD has been presented. 
Previous results to this work were published in [13], [14]. In this research, better quality images for both 
low and high bit rates have been obtained by optimizing each stage of the hybrid system. The advantage 
of the proposed system is that by tiling an image, one can take advantage of the local correlation. The 
decision on what transform to use is fast and based on the simple criterion of the ASTD and the SSTD 
only. The introduction of the adaptive reconstruction stage helps us to save bits in tiles compressed 
using SVD by reducing the number of eigenvectors and eigenvalues encoded. The decision stage helps 
us to increase the image quality adaptively. The periodic symmetric extension of the tiles is simple and 
helps to remove the block artifacts of the reconstructed images. No filter to reduce block artifacts, at low 
bit rates, was used as in JPEG or JPEG2000. Tiles are small and codebook sizes are short. Therefore, 
the algorithm can be well implemented in small memory systems. The encoding of the eigenvectors and 
the eigenvalues is simple. 
 
Results show that the recovered images are of very good quality and Figs. 8 and 11 show that the 
system outperforms the HDCTSVD and JPEG baseline and approaches JPEG2000. 
 
One of the main concerns of this research is about the computational complexity. SVD is computationally 
very expensive. To reduce the computational complexity in tiles compressed using SVD, a hybrid 
technique using SVD DCT could be implemented because there are subblocks that are highly correlated 
and DCT can be used for these subblocks. Other drawbacks of the system are that the fixed bit rate in 
tiles compressed using SVD limits the overall bit rate for each image.  For example, the minimum bit rate 
achieved for the Lena image was 0.18 bpp and for the Barbara one was 0.5 bpp for the HDWTSVD. 
Tiles compressed by using DWT can lower the bit rates because of the scalability used in HC-RIOT. This 
problem can be solved implementing a multistage VQ instead of VQ. Another problem is that the settings 
of the HC-RIOT have to be modified depending on the characteristics of the tile in order to obtain the 
best quality at low bit rates. 
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