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Abstract

This paper presents a simple and systematic approach to formulate the inverse position problem of a Schonflies parallel manipulator. As a
result, the inverse position problem is solved in closed form and leads directly to the automatic generation of the workspace of the manipulator.
Additionally, a systematic velocity analysis is also presented, which allows to detect and characterize all the singularities related to this manipulator.
All Rights Reserved © 2016 Universidad Nacional Auténoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnolégico. This is an
open access item distributed under the Creative Commons CC License BY-NC-ND 4.0.
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1. Introduction

Although several studies of workspace have been performed for many types of manipulators (Abdel-Malek, Adkins, Yeh, &
Haug, 1997; Bohigas, Manubens, & Ros, 2012; Bonev & Ryu, 2001; Davidson & Hunt, 1987; Gosselin, 1990; Gupta & Roth, 1982;
Lee & Lee, 2012; Macho, Altuzarra, Pinto, & Herndndez, 2013; Merlet, 1999; Pernkopf & Husty, 2006), the search of a general
and precise definition of the workspace of a robot is a subjective task. Perhaps it is because the workspace of a manipulator may be
described with respect to its ability to reach points, lines, planes or three-dimensional bodies attached to the mobile platform. Hence
the simplest definition of workspace is that related to positioning manipulators. For this simple case, the workspace is defined as
the volume of space that a point of the end effector can reach. However, when the physical entity attached to the mobile platform
is a line, a plane or a 3D object, the problem related to the graphical visualization of the corresponding workspace is not an easy
task. Therefore, due to the particular features of a Schonflies motion, namely, a spatial translation and a rotation about a fixed axis,
this paper deals with the so-called reachable workspace, i.e., the volume of space within every point can be reached by the mobile
platform in at least one orientation.

Furthermore, qualitative and quantitative studies of workspaces are important because they may be used to: (a) yield useful
insights about the kinematic architecture of the manipulator in the design stage, (b) lead to criteria for the evaluation of different
types of manipulators, (c) assist in the planning of desired tasks in favorable zones, and (d) avoid dangerous collisions with objects.
Moreover, even for the simplest robotic system, the robot controller program must control the motions of the manipulator and mobile
platform to carry out a task in the specific workspace.

On the other hand, a first-order singularity analysis deals with those problems encountered during the solution stage of the velocity
analysis of a manipulator (Hao & McCarthy, 1998; Gosselin & Angeles, 1990; Altuzarra, Pinto, Avilés, & Hernandez, 2004; Amine,
Masouleh, Caro, Wenger, & Gosselin, 2012; Ghosal & Ravani, 2001; Zlatanov, Fenton, & Benhabib, 1995). As a result of such
problems, degrees of freedom may be instantaneously gained or lost. Particularly dangerous are those manipulator’s configurations
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Fig. 1. Layout of the Schonflies parallel manipulator.

where degrees of freedom are gained in an unexpected way. There, the manipulator may danger its own environment, including
adjacent equipment and human beings. Moreover, certain types of singularities divide the whole workspace into several regions.
Hence it is important to detect all the singularities and to know about their distribution in the workspace of the manipulator.

In particular, in Amine, Masouleh, Caro, Wenger, and Gosselin (2012) it is reported a singularity analysis of 3T1R parallel
manipulators with identical limb structures, where a specific case study is fully detailed. However, the kinematic structure of
the manipulator described in that case study is not equal to the kinematic architecture of the manipulator reported in the present
paper. Moreover, the singularity analysis reported in (Amine et al., 2012) is based on Grassmann-Cayley Algebra, whereas the
singularity analysis introduced in the present paper is based only on classical concepts of vectors and Linear Algebra, which
results in a simpler approach. Furthermore, due to the exhaustive nature of the approach proposed in the present paper, a set of 95
singularity configurations are mathematically identified and geometrically characterized. Finally, the singularities are plotted into
the manipulator’s workspace, thus enlightening their geometric meaning.

From the foregoing discussion, the contribution of this paper will be focused on four directions: (a) a closed form solution of
the inverse position problem, (b) a workspace generation scheme, (c) a systematic velocity analysis, and (d) characterization and
detection of all the singularities and their distribution in the reachable workspace of a Schonflies parallel manipulator. It is expected
that these contributions may be useful for an adequate planning of tasks.

2. The Schonflies parallel manipulator

Figure 1 shows a spatial 4-dof parallel manipulator whose mobile platform generates a Schonflies motion.

Referring to Figure 1, it may be noted that the moving platform (link 5) is connected to a fixed base (link 0) by four nonidentical
legs. The objective is to have a Schonflies parallel manipulator with different actuation schemes, i.e., using two rotatory actuators
and two prismatic actuators. As a result, the Jacobian matrices will not be homogeneous in terms of units, see Eq. (41). It is expected
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Fig. 3. Geometry of the first leg.

to conduct an analysis of this particular type of Jacobian matrices and their relation with dexterity indices. This will be the research
topic in a forthcoming paper.

2.1. Kinematic architecture of the legs

The kinematic architecture' of the legs involves two types of legs:

(a) The first type of leg is made up of five revolute joints, see the first (O1-A1-B1-C1-D1-1) and the third (O3-A3-B3-C3-D3-3) legs
shown in Figure 1. In this leg, the second and fifth joint axes are parallel to the first joint axis, whereas the fourth joint axis is
parallel the third joint axis. Moreover, the third joint axis intersects the second perpendicularly, and the fifth joint axis intersects
the fourth perpendicularly. Furthermore, there is an offset distance between the first and the second joint axes. A rotational
actuator is used to drive the first joint of the leg where the motor is installed on the fixed platform.

(b) The second type of leg is made up of one prismatic joint and four revolute joints, see the second (02-Az-B2-C3-D»-2) and the
fourth (O4-A4-B4-C4-D4-4) legs shown in Figure 1. In this leg, the second and fifth joint axes are parallel to the first joint axis,
whereas the fourth joint axis is parallel the third joint axis. Moreover, the third joint axis intersects the second perpendicularly,
and the fifth joint axis intersects the fourth perpendicularly. Furthermore, there is an offset distance between the first and the
second joint axes. The first moving link of this leg is driven by a translational actuator mounted on the fixed platform.

2.2. Geometry of the manipulator

For the spatial parallel manipulator shown in Figure 1, the four fixed points O1, O», O3, and O4 define the geometry of the fixed
platform, and the four moving points 1, 2, 3, and 4 define the geometry of the mobile platform. Although the particular manipulator’s
platforms shown in Figure | are symmetrical, it should be noted that both, the fixed platform and the mobile platform, may be
arbitrary planar quadrilaterals, see Figure 2.

Additionally, Figures 3—6 show the link lengths and joint variables related to the four legs. It is important to mention that unit
vectors e, e>, €3 and e4 denote the joint axes of those revolute joints that join links 12 and 13, 22 and 23, 32 and 33, and 42 and 43,
respectively.

1" According to the approach proposed in the manipulator under study was obtained by assembling four legs. These four legs include two types of basic legs
proposed in Kong and Gosselin (2007), which were designed to generate a Schonflies motion. However, it is important to mention that this particular manipulator,
as a whole, is not explicitly reported in Kong and Gosselin (2007).
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Fig. 5. Geometry of the third leg.

In summary, the pose of the mobile platform can be specified in terms of the position of point P, and an orientation angle, namely,
¢, see Figure 2. Moreover, the origin of the fixed coordinate frame X(YyZy is located at point O.

3. Kinematic position analysis

The objective of this section is to formulate the inverse position problem associated with the manipulator under study. On the one
hand, it should be noted that angles ¢1, @2, 3, ¢4, B1, B2, B3, Ba, V1, V2, Y3 and y4 are passive joint variables, whereas 01, p>, 63
and p4 are active joint variables, see Figures 3—6. On the other hand, rp/p =(x, , 27T is the position vector of moving point P with
respect to fixed point O, which is measured in the X(YyZy coordinate frame, and ¢ denotes the rotation of the mobile platform about
the Zy axis, see Figure 2.
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3.1. Constraint equations

In order to obtain the so-called constraint equations, the procedure begins by writing a loop-closure equation for each leg:
Yo;/0 +Ta;/0; +XB;ja; +XC;/B; +YD;jc; +Yiyp, =Fpro +Tijp, i =1,2,3,4. (1)

where rj; stands for the position vector of point j with respect to point k.
Writing equation (1) for i=1, 2, 3, 4, and taking the X(YyZ( coordinate frame as a reference, it is obtained that:

Rix + bycos6y + Lysin(6; + ¢1)cos B1 = x + p1x cos ¢ 2)
bysin®; — Lycos() + ¢@1)cos B1 =y + pix sin¢g 3
ai+hi+Lising+d =z 4
Rox — Ly cos o cos B cosan + (by + Ly singy cos Br) sinay = x + pox OS¢ — pay sing 5)
Roy — Ly cos o cos Ba sinay — (by + Lo sin p cos ) cos oy = y + pax Sin ¢ + pay cos ¢ (6)
p2tha+Lasinfr+dy =z (N

R3x + {b3cos 63 + L3 sin(63 + ¢3) cos B3} cosaz — {b3sinf3 — L3 cos(63 + ¢3) cos B3} sin a3
=X+ p3x COS¢P — p3y sin ¢ 3

R3y 4+ {b3cos 03 + L3 sin(63 + ¢3)cos B3} sinaz + {b3 sinf3 — L3 cos(f3 + ¢3) cos B3} cos a3

=y + p3x sing + p3y cos ¢ ©)
a3 +h3 + LysinB3 +dz =z (10)
Rax + L4 cos@qcos Bycosay — (bg + Lgsin g cos Bg)sinag = x + p4x COS P — p4y Sin ¢ (11)
Ray + L4 cos@gcos Basinag + (bg + L4 sin@gcos Bg) cosaa = ¥ + pax Sin g + pay cos ¢ (12)
pa+ha+ Lasinfy+ds =z (13)

which are the constraint equations sought.
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3.2. Handling of the constraint equations

The approach can be started by focusing on the fact that equations (2)—(13) are linear in the sines and cosines of passive joint
variables @1, ¢2, @3, and @4. Thus, from simultaneous solution of equations (2), and (3), (5), and (6), (8), and (9), (11), and (12),
respectively, it is found that:

_ pixcos(¢ —01) + (x — Rix)cos b + ysinb — by

sin 14
®1 L cos By (14)
—p1x sin(¢ — 01) + (x — Ryx)sinf; — ycos by
cos @ = (15)
L1 cos By
. —p2x sin(¢ — o) — pay cos(¢p — o) — Rox sinay + Ryy cosap + xsinwg — ycosoy — by
sin gy = (16)
L> cos B
—p2x cos(¢p — ap) + pay sin(¢p — an) + Rox cosanr + Roy sinay — xcosap — ysinoyp
CcoS @y = (17)
Lo cos
. 03x cos(¢p — 03 — a3) — p3y sin(¢p — 63 — a3)
sin @3 =
L3 cos B3
_ R3x cos(03 + @3) + R3y sin(63 + a3) — x cos(63 + a3) — ysin(63 + a3) + b3 (18)
L3 cos B3
P3x sin(¢ — 03 — a3) + p3y cos(¢p — 63 — a3)
cosg3 = —
L3 cos 33
n —R3x sin(63 4+ a3) + R3y cos(63 + «3) + xsin(63 + a3) — y cos(63 + «3) (19)
L3 cos B3
. pax sin(¢ — aa) + pay cos(¢p — ) + Rax sinog — Ray cos oy — xSinog + ycosaq — by
singg = (20)
L4 cos B4
P4x €08(¢p — atg) — pay Sin(¢p — aq) — Rax cos g — Ryy sinog + x cos g + y sinay
COS @4 = 21
L4 cos B4
Introducing the trigonometric identities sin 2%_ +cos 2(/),- =1,fori=1, 2, 3, and 4, Egs. (14)—(21) become:
2p1x{xcos¢ + ysing — by cos(¢p — 1) — Rixcosd + p1x/2} — 2bi1(xcosf; + ysinf; — Ryxcosbq) + (Rix — x)2
+ 32 + b} — Licos’1 =0 (22)

2p2x{xcos¢ + ysing + by sin(¢p — @2) — Ryx cos¢p — Roy sing + pax/2} — 2pay{xsin¢ — ycos¢ — by cos(¢p — a2)
— Ryx sing + Roy cos ¢ — poy/2} — 2ba{xsinay — ycosay — Rox sinas + Roy cosay — by /2}

+(Rax — x)* + (Ray — y)* — L3cos’fr = 0 (23)

2p3x{xcos¢ + ysing — b3 cos(¢p — 63 — a3) — Rax cos¢ — Ryysing + p3x/2} — 2p3y{xsin¢ — ycos ¢
— b3 sin(¢p — 03 — a3) — R3x sing + Ry cos ¢ — p3y/2} — 2bz{x cos(63 + «3) + y sin(63 + «3)
— Rax cos(63 + a3) — Ray sin(03 + a3) — b3/2} + (Rsx — x)> 4+ (R3y — y)* — L3cos*B3 =0 (24)

2p4x{xcos¢ + ysing — by sin(¢p — a4) — Rax cos$ — Ray sing + pax/2} — 2pay{xsin¢ — ycos ¢ + by cos(¢p — ay4)
— R4x Sin¢@ 4+ Ray cos ¢ — pay /2} + 2ba{x sinwg — ycos g — Rax Sinag + Ry cosaq + by /2}
+(Rax — x)* + (Ray — y)* — Licos’f4 = 0 (25)
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Additionally, Eqgs. (4), (7), (10), and (13) are solved for sin ;, and then squared. Next, Egs. (22)—(25) are solved for coszﬂi.
Then, by introducing the trigonometric identities sin 2 Bi+cos 2 Bi=1,fori=1, 2, 3, and 4, the following equations are obtained:

e1sinf; + 20y cosb; +x; =0 (26)

P3+200pr+k2=0 @7

&3sinf3 + 203 cos b3 + k3 =0 (28)

P +204 py + 14 =0 (29)
where

g1 = —2b1(y + p1x sin @)
o1 = b1 (Rix —x — p1x cos @)

K1 = x% 4+ y? + (a1 +di + b1 — 2 = 2Rix(x + pix cos §) + 2pix(xcos ¢ + ysin§) + bt + Ry + pix — L}

oy=dy+hy—z
K2 = (Rax — X)* + (Ray — »)* + (da + ha — 2)* — 2Rax(p2x €08  — pay sin @) — 2Ray(p2x sin ¢ + pay cos ¢)
+2p2x{xcos ¢ + ysing + by sin(¢p — a2) + pax/2} — 2pay{xsing — ycos ¢ — by cos(¢ — a2) — p2y/2}

—2by(xsinay — ycosay — Rax sinap + Roy cosay — by /2) — L%

&3 = 2b3{xsinaz — ycos a3z — p3x sin(¢p — a3) — p3y cos(¢p — a3) — R3x sinaz + R3y cos oz}
03 = —2bz{xcosaz + ysinaz + p3x cos(¢p — @3) — p3y sin(¢p — a3) — R3x cosa3 — R3y sin 3}
k3 = (Rax — x)> + (Ray — y)* + (a3 + ds + h3 — 2)* + 2pax(x cos ¢ + ysin ¢ + p3x/2)
—2p3y(xsing — ycos ¢ — p3y/2) — 2R3x(p3x Cos  — pay sin @) — 2R3y (p3x sind + p3y cos ) + b3 — L3

oy =ds+hg— 2z

K4 = (Rax — X)* + (Ray — )* + (da + ha — 2)° — 2Rax(pax c0s ¢ — pay sin @) — 2Ray(pax sin ¢ + pay cos ¢)
+2psx{xcos¢ + ysing + pax/2} — 2p4y(xsing — ycos ¢ — pay/2) — L3 + 2b4{(x — Rax) sin g
+ (R4y — y)cosay — pax Sin(¢ — aq) — p4y cos(¢p — ) + ba/2}

At this point, it should be mentioned that equations (26)—(29) can be solved for the input displacements, namely, 61, p2, 63 and
P4, respectively, which is a procedure usually known as inverse position problem.

4. Workspace generation

The workspace of the manipulator will be defined here as the volume of space that point P of the mobile platform can reach in at
least one orientation. Thus, the manipulator’s workspace will be composed by a large set of points P;, whose Cartesian coordinates
are given by x;, y;, z;. At each point P;, the mobile platform will have a common orientation angle, namely, ¢¢.

In order to detect which point P; is contained within the manipulator’s workspace, the following approach is proposed. Firstly,
if the workspace is given in terms of the Cartesian coordinates x, y, z and the orientation angle ¢, then equations (26)—(29) can be
solved for the input displacements, namely, 61, p>, 83 and p4, respectively. Analyzing equations (26)—(29), it can be observed that
equations (27) and (29) are quadratic in py and p4, respectively. Moreover, equations (26) and (28) are trigonometric expressions
that can be converted into quadratic equations in 71 =tan(61/2) and 73 = tan(63/2), respectively. Thus, the solution process can be
summarized as follows:

—e1 £ 4/6

01 = 2 arctan <811> , 61 = 8% + 4012 - K% (30)
K1 — 201

p=-0Et\/6h SH=o0—kK (€3]
—e3 £ /6

03 = 2 arctan (‘M) . 83 =¢34 4dos — i3 (32)
K3 — 203 N
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Fig. 7. Workspaces for different values of the given orientation angle ¢¢.
/ — 2
p4a = —04 + 1) s 84 =04 — K4 (33)

Then, a point P; (accompanied with a given orientation angle ¢ = ¢) will be part of the workspace if and only if the following
constraints:

§51>0, 86 >0, 8>0, and 84 >0. (34

are simultaneously satisfied. Such conditions guarantee that at least one set of real input displacements exist for that point.

In summary, the workspace is generated by considering a three dimensional grid of points P; equipped with conditions (34). As
a result, the plots shown in Figures 7 and 8 were obtained.

Figures 7 and 8 were generated by considering the following numerical values of the design parameters: Ryx =180, Rox =180,
Ryy=0,R3x=0,R3y=—180, R4x=—180,R4y =0, p1x =181.10, pox =13.25, poy =119.26, p3x =176.69, p3y =39.75, pax = —17.67,
pay=—159.02,a1=a3=113,b1 =by=b3=bs4=40,h1=hy=h3=h4 =123, L1 =L, =L3=L4=100,d| =dy =d3z =ds = 103, which are
given in an arbitrary system of units. Moreover, numerical values of constant angles were chosen as a =0°, «3 =0° and ag =0°.

5. Velocity analysis

A velocity analysis related to the parallel manipulator under study is introduced in this section. In order to present a systematic
approach, the corresponding mathematical formulation is divided into the following three parts.
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5.1. Velocity analysis related to the joint motions

Due to the several closed loops that compose the kinematic architecture of the parallel manipulator, the joint motions are not
independent. Hence, the objective of this section is to obtain the linear relationships that exist between joint velocities. To this end,
the procedure begins by formulating the velocity state’ of the mobile platform with respect to fixed platform in terms of the joint
motions of each manipulator’s leg. Thus, by resorting to screw theory (Rico, Gallardo, & Duffy, 1999), it is obtained that:

6,
v ®15/0 ko ko 0 ko @1 35)
15/0 = = ;
Vp/0 ko xrp/0, Ko XxXrpp €1 xrpysc, Ko Xrpp, B1
Vi

2 The velocity state of body i with respect to body j is denoted by Vi/i = (wiyj, vp, /oj)T. This is a six-dimensional vector composed of two three-dimensional
vectors: (a) the angular velocity vector of body i with respect to body j, namely, w;;, and (b) the velocity vector vp, /0, of a point P; (fixed on body i) with respect to
any point of body j, such as point O;.
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P2
Vas)0 = [WZS/O] = lo ko ’ ko ] ?2 (36)
VP/O ko koxrpp, e xrpyc, koxrpp,| | B
72
b3
V350 = [(%5/0] = l ko ko ’ ko ] ({03 37)
Vp/0 ko xrp/o, Ko xrpp, €3 xrpyc, Koxrpp,| |B3
V3
Pa
Vusp0 = [w%m] = [0 ko ’ ko ] ?4 (38)
VP/O ko koxrpp, esxrpyc, koxrpp,| | Pa
V4

On the other hand, since each leg shares a common fixed and mobile platform, i.e., links 5, 15, 25, 35 and 45 represent the mobile
platform, whereas links 0, 10, 20, 30 and 40 represent to the fixed platform, it can be stated that:

Visi0 = V2550,  Visj0 =V3s0, Visjo = Vaso (39

which yields the following matrix array:

C: D E; F . )
q q
G D, E; F l,’]zo, [C D E F][,’]zo (40)
q q
C; Dy E3 F3| " d
where:
[ 1 0 1 0
C = }
_ko X Trp/o; —k() 0 0
[ 1 0 -1 0
C = }
_k() X Tp/0o; 0 —k() X Tp/0; 0
[ 1 0 0 0
C = }
_k() X Trp/o; 0 o0 —k()
[ 1 0 1 -1 }
D, =
Lko xrp/g, €1 xrpyc, koxrpp, —Kkoxrpp,
[ 1 0 1 O}
D, =
_k() XTrp/g, €1 XTIpy/C k() X Ip/D; 0
[ 1 0 1 0}
D; =
_ko X rP/Bl €] X I'DI/(;1 k() X rP/Dl 0
[ 0 -1 0 O}
E| =
| —€2 xrp,yc, —koxrpp, 0 0
E [0 0 —1 0 }
2 =
_0 0 —ko X rP/B3 —e3 X I‘D3/(;3
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E3

S O O O
oS O O O
S O O O
oS O O O

S O o O
S O O O
S O o O
S O o O

-1 0 0 0
0 0 0

F
L —k() X l'p/D3

—1

—k() X I‘p/D4

[0 —1 0
_0 —ko X rP/B4

F3
—e4 X rD4/C4

=00 h 0 P4]T

ap=[91 B 1 @ B 1 @3 B 3 ¢4 Pa 4]
Eq. (40) will be referred to as structural velocity model. It should be noted that equation (40) does not contain any parameter

(e.g., the Cartesian coordinates %, , z of velocity vector of point P) related to the output motion of the mobile platform, but it only
contains input joint velocities (; and passive joint velocities p.

5.2. Velocity analysis related to the input and output motions

In a parallel manipulator, the architecture of the legs determines the transformation of the joint motions into motions of the
mobile platform. Thus, the mobile platform acquires a certain velocity state through the actuation of the legs composing the parallel
manipulator. Hence the objective of this section is to relate the output motion of the mobile platform with the input motions generated
by manipulator’s actuators.

For the purposes of this paper, the output motion is defined as the velocity state of the mobile platform with respect to the fixed
platform, namely, Vs, = (w59, v p/0)T. On the other hand, the input motion is defined by a four-dimensional vector ¢, which involves
the input joint velocities of the parallel manipulator, i.e., ¢; = (91, p2, 63, p4)T.

In order to reach the objective formulated previously, theory of reciprocal screws can be used to provide an elegant formulation.
Thus, computing the Klein form of both sides of Egs. (35)—(38), and after some algebra, it follows that:

K rg1/C1
K2 rTJz/CZ { ¢
K3 I%3/6'3
K4 I.TD4/C4
where:
n1 = (ko X ri/p) Tpy/cys
n2 = (Ko X r2/p)-Tpy/Cys
w3 = (ko X r3/p) Tpy/Cs,

4 = (Ko X T4/p)-Tp,/cys

VP/o} B

A0 0 0] Té
0 2 0 0] |p
0 0 a 0] |6|’
0 0 0 | |pa

A1 = (Ko XTB/A) TD/Cs
‘M =ko-rpyc,,
A3 = (Ko X I'py/a3) TDy/Cs)

r=Kko-rpycy-

As = Bq, 1)

Given the role represented by Eq. (41), it will be referred to as input—output velocity model. It should be noted that Eq. (41)
directly relates the output motion, vp/0, ¢, with the input motion, §;, . In other words, the output motion is decoupled from the passive
joint motions, qp.
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5.3. Global velocity model

The so-called global velocity model includes both, the structural velocity model (40), as well as the input-output velocity model
(41). Thus, the global velocity model is constructed by assembling equations (40) and (41) in one single matrix array, which is given
by:

S
A —B  O4x4 Osxs Osxs .
47 | =016x1, Lm =064 42)
Oppxs  C D E F q
P

where Q44 and Q1244 are zero matrices, whereas 0161 is a zero vector. It should be noted that equation (42) is an homogeneous
linear system of 16 equations in 20 unknowns.

6. Singularity analysis

Speaking in simple words, a first order singularity analysis deals with the detection and interpretation of the different solutions
of the global velocity model (42). If there can be made a choice between solutions, it may be important to consider which solutions
have additional interesting properties. This is the motivation behind a singularity analysis. Thus, a singularity occurs whenever there
is an instantaneous alteration of the finite mobility of the mechanism, which may be related, for example, to the blockage of the
actuators or to the loss of control on the motion of some link, e.g., the mobile platform of a parallel manipulator. Moreover, each
singularity type is characterized by the occurrence of a certain physical phenomenon, which results from the indeterminacy of the
global velocity model. Therefore, conditions for the occurrence of singularity are presented next.

6.1. Lost output motions

There exist situations where the infinitesimal motion of the moving platform along certain directions cannot be accomplished.
Hence, the manipulator loses one or more degrees of freedom. In this regard, it would be interesting to know if there exist some
nonzero vectors, q; and q p, that result in a zero vector $. Under such circumstances, the global velocity model (42) becomes:

. 0
—B O4x4 Osxs4 Ogxa q; [ A }/\
| On2x4

S , LO
C D E F ap

o 1 —0, 43)

being Lo a (16 x 16) square matrix.

On the one hand, if matrix Lo is nonsingular, all the input motions, q;, as well as all the passive joint rates, ¢ p, become zero from
the homogeneous equation (43) and, as expected, the manipulator instantaneously becomes an immobile structure. On the other
hand, from linear algebra it is well-known that the homogeneous equation (43) may have non-trivial solutions when matrix Lo is
singular. This implies that at the configuration corresponding to loss of rank of Lo or when det(Lp) =0, the foregoing immobile
structure may have non-zero vectors (; and ( p, and therefore, the immobile structure recovers certain joint motions, but no output
motion is generated.

Due to the particular form of matrix Lo, its determinant may be expanded by using Laplace’s theorem (Crane & Duffy, 1998;
Korn & Korn, 2000), thus yielding:

det(Lp) = det(—B)det(L p) (44)
where:
Lp=[D E F]| (45)

A singularity will occur if the right hand side of equation (44) vanishes. However, this expression is the product of two additional
determinants. Hence the analysis is divided into two parts, each corresponding to each of the two determinants.
6.1.1. Singularities associated with matrix —B

From equation (41) it is apparent that:

det(—B) = —A1A2A3)4 (46)

Matrix —B is singular when the right hand side of equation (46) is equal to zero. This expression is the product of four scalar
quantities. Therefore, the singularity analysis of matrix —B will be composed of four parts.
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Case 1. Scalar A; =0.
Resorting to basic properties of vector triple products and, from equation (41), this condition yields:

A =Ko xrp/a,) rpc; = @B /A, XIpyyc;) Ko = (rp,/c; X Ko)-rp a4, =0 47)

There are three subcases depending on the relative orientation between vectors Ko, rp, /4, and rp,/c,:

Subcase 1.1 According to the first right hand side of equation (47), this type of singular configuration is reached whenever ko,
rg, /A, andrp, /¢, are coplanar. However, position vector rp, /¢, is not necessarily parallel to unit vector Ko or position
VECIOr I'p; /A, -

Subcase 1.2 The second right hand side of equation (47) implies that link 13 is parallel to line A1By, i.e.,rp,/4, X rp,/c;, = 0.

Subcase 1.3 Finally, the third right hand side of equation (47) means that link 13 is parallel to Zy axis, i.e.,rp,;c; X Ko = 0.

At these configurations, the motion of the corresponding actuator, namely, &1, does not produce any motion of the mobile platform.

Case 2. Scalar A, =0.
From the definition of X, see Eq. (41), this condition leads to:

rMm=ko-rpyc, =0 (48)

This type of singular configuration is reached when unit vector K is perpendicular to position vector rp, /c,, which means that
link 23 is on a plane parallel to the XoY( plane. At this configuration, the motion of the corresponding actuator, namely, p;, does
not contribute to the motion of the mobile platform.

Case 3. Scalar A3 =0.
From the definition of X3, see equation (4 1), and, after using basic properties of vector triple products, this condition leads to:

A3 = (Ko X IBy/a3) - TDy/c; = (KB /a3 X Tpyycy) - Ko = (Xpy/cy X Ko) -rpyja, =0 (49)

which can be used to identify the following three subcases:

Case 3.1 Resorting to the first right hand side of equation (49), this type of singular configuration is reached whenever Ko, rp, /44
and rp,,c, are coplanar. However, it is not necessary that position vector rp,,c; be parallel to unit vector ko or position
VeCtor r'p;/A;-

Case 3.2 The second right hand side of equation (49) implies that link 33 is parallel to line A3B3, i.e., ¥y 45 X Ipy/c; = 0.

Case 3.3 Finally, the third right hand side of equation (49) means that link 33 is parallel to Zy axis, i.e., *p;/c; X ko = 0.

At anyone of these configurations, the motion of the corresponding actuator, namely, 63, does not produce any motion of the
mobile platform.

Case 4. Scalar A4 =0.
According to the definition of parameter A4, see (41), this condition can be formulated as follows:

M =Ko D, /Cy = 0 (50)

This singular configuration is achieved when unit vector Kk is perpendicular to position vector rp,,c,, which means that link
43 lies on a plane parallel to the XoY( plane. At this configuration, the motion of the corresponding actuator, namely, p4, does not
contribute to the motion of the mobile platform.

6.1.2. Singularities associated with matrix Lp

In order to perform a comprehensive and exhaustive analysis of the singularities related to matrix Lp, it is proposed an integrated
approach composed of two focuses. On the one hand, the singularity is related to the loss of rank of matrix Lp. Although the
exhaustiveness of this focus may be difficult to achieve, the corresponding mathematical process is relatively easy to be conducted.
On the other hand, the singularity of matrix Lp may be also directly related to the symbolic expression of its determinant, i.e.,
det(Lp). However, since Lp is a 12 x 12 matrix, the symbolic computation of its determinant is a real challenge, as it is shown in
Appendix A. No matter which approach is used, both focuses produce results with physical insight, and they are complementary
one of the another.

Firstly, analyzing the form of equation (45), matrix Lp can be written as follows:

Lp=[D E F|=[n; m n3 ny ns ng n; ng ng ny 0 0y (51)
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Fig. 9. Singularity configuration where the motion axes of ¢; and y; are coaxial.

where:
o= [ 1 Gkoxrys) 1 (koxrps)’ 1 (koxrps) 1
m = [ 0 (ex rDl/Cl)T 0 (e x rDl/Cl)T 0 (e x rDl/Cl)T 17
m = [ 1  (koxrpp) 1 (koxrpp) 1 (koxrpp) 1T
ng = [ -1 —(koxrpp) 0 07 0 o7 1’
ns = [ 0 —(e2xrpyc) 0 o’ 0 o’ I
ng = [ -1 —(koxrpp)’ 0 0" 0 of 17
n, = [ 0 o’ -1 —(koxrpp) 0 0" 1
ng = [ 0 07 0 —(e3xrpyc)’ O 07 I
n = [ 0 o’ -1 —(ko xrpp)f 0 0" 1
ng = [ O 07 0 o’ -1 —(ko xrpp)" 17
n; = [ 0 07 0 0" 0 —(es xrpye)’ 17
n, = [ 0 07 0 o’ -1 —(ko xrpp)’ 17

Matrix Lp is singular when: (a) it becomes rank-deficient, that is, when some of its columns are linearly dependent, or, equivalently,
(b) its determinant is zero, that is, det(LLp) = App =0. In what follows, a complete description of linearly dependent sets of columns is
introduced. Moreover, in order to form a satisfactory and balanced whole, each case is also associated with the symbolic expression
of Arp, which is shown in Appendix A.

Case 1. Columns nj and n3 are linearly dependent.
Columns n; and n3 are linearly dependent when there exist two scalars €1, €2, both different from zero, such that:

emm; +en3 =0 (52)
which implies that:

€1(ko xrp/g) +e2(kg X rp/p,) =0 (53)
ko x (eirp/p, + €2rp/p;)) =0 (54
equation whose solution is given by:

rpg, —rpp, =(h1 + Lk, e =1, e =-1 (55)

as it is graphically illustrated in Figure 9. For this particular type of singularity, the motion axes of angles ¢; and y, which are
shown in Figure 3, are coaxial. Moreover, Figure 9 reveals that, at the singularity at hand, link 13 is parallel to axis Zy, that is, vectors
rp,/c, and Ko are parallel.

On the other hand, speaking now in terms of the determinant Ay p, see Eq. (A.47) appearing in Appendix A, this particular case
of singularity is represented by the vector product:

by x d; = {e; xrp1jc1} x {ko X (rp/p1 — rp/p1)} (56)

Thus, when condition (55) is satisfied, the right hand side of equation (56) becomes zero vector, i.e., b; x d; =0 and, therefore,
Arp=0.
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Case 2. Columns n4 and ng are linearly dependent.
The set of columns n4 and ng is linearly dependent if it is possible to find two scalars, 1 # 0,y #* 0, which satisfy the following
relation:

gy + &ng =0 57
a condition that leads to:

e1(—Ko x rp/p,) + €2(—=ko x rp/p,) =0 (58)
(e1rp/B, + &2rp/p,) X Ko =0 (59
equation whose solution is given by:

rp/g, —Yp/p, = (2 + La)Kg, €1 =16 =-1 (60)

as it is graphically illustrated in Figure 9. For this particular type of singularity, the motion axes of angles ¢, and y;, which are
shown in Figure 4, are coaxial. Moreover, from the geometry shown in Figure 9, it can be concluded that, for this type of singularity,
link 23 is parallel to axis Z, that is, vectors rp,,c, and Kg are parallel.

Now, if we resort to the mathematical form of the determinant Azp, see Appendix A, this particular case of singularity is
represented by the vector product:

by x dy = {ex x rpy/c2} x {Ko X (rp/p2 — rp/p2)} (61)

Thus, when condition (60) is satisfied, the right hand side of equation (61) becomes zero vector, i.e., by x dy =0 and, therefore,
Arp=0. It should be noted that vector product b, x d; appears in all the components of the first factor of the right hand side of
equation (A.47), see Appendix A.

Case 3. Columns n7 and ng are linearly dependent.
The set of columns n7 and ng is linearly dependent when there exist two scalars ¢, ¢, both different from zero, such that:

sin7 + gomg =0 (62)
which implies that:

S1(=ko x rp/py) + s2(—ko X rp/p;) =0 (63)
(s1rp/By + S2rp/py) X ko =0 (64)
equation whose solution is given by:

rp/g, —Tppy =(h3+L3)ko, ¢c1=1, ¢ =-1 (65)

as it is graphically illustrated in Figure 9. For this particular type of singularity, the motion axes of angles ¢3 and y3, which are
shown in Figure 5, are coaxial. Moreover, from the geometry shown in Figure 9, it can be concluded that, for this type of singularity,
link 33 is parallel to axis Z, that is, vectors rp,,c, and Ko are parallel.

On the other hand, resorting to the mathematical form of the determinant Ay p, see Appendix A, this particular case of singularity
is represented by the vector product:

bs x d3 = {e3 x rp3/c3} x {ko X (rp/p3 — rp/p3)} (66)

Thus, when condition (65) is satisfied, the right hand side of equation (66) becomes zero vector, i.e., b3 x d3 =0 and, therefore,
Arp=0. It should be noted that vector product b3 x d3 appears in all the components of the first factor of the right hand side of
equation (A.47), see Appendix A.

Case 4. Columns ¢ and ¢ are linearly dependent.
This case deals with the possibility to find two scalars, §; # 0, &2 # 0, which satisfy the following relation:

§1c10 +&¢12 =0 (67)

Thus, if relationship (67) is satisfied, then the set of columns ¢1¢ and ¢y, constitutes a linearly dependent. Furthermore, such a
condition leads to:

§1(—ko x rp/p,) +&(—Kko xrp/p,) =0 (68)
(é1rp/B, +&2rp/p,) X ko =0 (69)
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equation whose solution is given by:
rp/g, —rp/p, = (ha + La)ko, &1 =1,6=—1 (70)

as it is graphically illustrated in Figure 9. For this particular type of singularity, the motion axes of angles ¢4 and y4, which are
shown in Figure 6, are coaxial. Moreover, Figure 9 reveals that, at the singularity at hand, link 43 is parallel to axis Z, that is, vectors
rp,/c, and ko are parallel.

Now, analyzing the mathematical form adopted by the determinant A;p, see Appendix A, this particular case of singularity is
represented by the vector product:

by x dg = {e4 X rpasca} X {Ko X (*p/ps — rp/Ba)} (71

Thus, when condition (70) is satisfied, the right hand side of equation (71) becomes zero vector, i.e., bs x d4 =0 and, therefore,
Arp=0. It should be noted that vector product bs x d4 appears in all the components of the first factor of the right hand side of
equation (A.47), see Appendix A.

Case 5. Columns ny, ns, ng and np; are linearly dependent.
The main objective related to this particular case may be formulated in terms of the possibility to find four scalars, n; # 0,
n2 # 0,3 # 0, ns # 0, which satisfy the following relation:

ning + nons + n3ng + ngnyp =0 (72)

When condition (72) is fulfilled, then columns nj, ns5, ng and ny; constitute a linearly dependent set. Moreover, resorting to
equation (51) and analyzing the particular form of vectors ny, ns, ng and njp, it can be concluded that condition (72) leads to the
following vector equations:

ni(er x rp/c;) — (€2 X rp,/c,) =0 (73)
ni(er X rp,/c;) —n3(€3 X rpyc;) =0 (74)
ni(er xrp,/c,) — na(es xrp,/c,) =0 (75)

equations whose common solution is given by:

€1 XIp/C; =€) XIp,/C, = €3 XTDy/cy =€4 XIpyycy, M =M =1n3=1n4=1 (76)

which means that links 13, 23, 33, and 43 are parallel and, the motion axes of joint angles B1, B2, 83, and B4 are parallel too.
On the other hand, determinant Az p can be written as follows:

App =ko{(bz x d3) x (bg x dg)} - (b1 x dy) + k3{(bs x dg) x (b x d2)}- (b1 x d1) + ka{(by x d2) x (b3 x d3)}- (by x dy).
(77

where ky =(by xdy)-(ap —ay), k3=(b3 xd3)-(a3 —aj), ky=(bg xdy)-(ag —a;) and b, =e; x rpjc;, fori=1, 2, 3, 4.
Thus, when condition (76) is satisfied, it means that b; =by, b; =b3 and b; =b4. In consequence, the right hand side of equation
(77) becomes zero since, for i=2, 3, 4, and j=3, 4, 2, respectively:

{(b; xd;) x (b; xdj)}-(by xdy) = {by-(d; xd)}{b;-(b; xdj)} — {by-(d; x b)}{d;-(b; xd;)} =0 (78)
where b; - (b; x dj))=0and by - (d; x b;)=0fori=2, 3,4, and j=3, 4, 2, respectively. As aresult, A;p=0.

6.2. Locked actuated joints

Another important physical phenomenon related to singularity analysis occurs when all the actuated joints are locked. This fact
implies that vector ¢; must be set to zero. Thus, the mobile platform may possess infinitesimal motion in some directions while all
the actuators are completely locked. For this particular case, the global velocity model (42) becomes:

0
A O4xs Osxs Ouxs $ B |1~ $
J = Q. Li|. |=0 (79
O12x4 D E F qp -C qp

where Ly is a (16 x 16) square matrix.

Then, if matrix L; is nonsingular, all the output motions, §, as well as all the passive joint rates, q p, become zero from equation
(79) and, as expected, the manipulator becomes an immobile structure. On the other hand, from linear algebra it is well-known
that homogeneous equation (79) may have non-trivial solutions when matrix L; is singular. This implies that at the configuration



J.J. Cervantes-Sdnchez et al. / Journal of Applied Research and Technology 14 (2016) 9-37

Table 1

Singularities of the Schonflies parallel manipulator.

25

Singularity Geometric condition Source equations
1 Vectors Ko, rp, /4, and rp, /¢, are coplanar Egs. (44), (46) and (47)
2 Vectors rp, /4, and rp,/c, are parallel Eqgs. (44), (46) and (47)
3 Vectors ko and rp, /¢, are parallel Eqgs. (44), (46) and (47)
4 Vectors ko and rp, /¢, are perpendicular Eqgs. (44), (46) and (48)
5 Vectors Ko, rp;/4, and rp, /¢, are coplanar Egs. (44), (46) and (49)
6 Vectors rg, a5, I'py/cy are parallel Eqgs. (44), (46) and (49)
7 Vectors kg and rp,/c, are parallel Eqgs. (44), (46) and (49)
8 Vectors ko and rp, /¢, are perpendicular Eqgs. (44), (46) and (50)
9 Vectors rp, /¢, and kg are parallel Eqgs. (44) and (52)
10 Vectors rp,,c, and ko are parallel Eqgs. (44) and (57)
11 Vectors rp,,c, and kg are parallel Egs. (44) and (62)
12 Vectors rp, /¢, and Ko are parallel Eqgs. (44) and (67)
13 Links 13, 23, 33 and 43 are parallel Egs. (44) and (72)
14-94 Any combination (i, j, k, [) from:
i=1: Vectors ko, ry/p and rp, /¢, are coplanar Eqgs. (80)—(82)
i=2: Vectors ryp and rp, /¢, are parallel Egs. (80)—(82)
i=3: Vectors rp,/c, and K are parallel Eqgs. (80)—(82)
Jj=1: Vectors ko, ryp and rp,,c, are coplanar Eqgs. (80), (81) and (83)
Jj=2: Vectors ryp and rp, ¢, are parallel Eqgs. (80), (81) and (83)
Jj=3: Vectors rp,,c, and ko are parallel Eqgs. (80), (81) and (83)
k=1: Vectors Kk, r3,p and rp, ¢, are coplanar Eqgs. (80), (81) and (84)
k=2: Vectors r3p and rp,c, are parallel Eqgs. (80), (81) and (84)
k=3: Vectors rp,,c, and K¢ are parallel Egs. (80), (81) and (84)
I=1: Vectors ko, rq;p and rp, /¢, are coplanar Eqgs. (80), (81) and (85)
[=2: Vectors rqp and rp, ¢, are parallel Egs. (80), (81) and (85)
[=3: Vectors rp,/c, and ko are parallel Eqgs. (80), (81) and (85)
95 Links 13, 23, 33 and 43 have the same orientation Eqgs. (80), (81) and (86)—-(89)

corresponding to loss of rank of L; or when det(L;) =0, the foregoing immobile structure may have non-zero vectors § and ¢ p, and
thereby the manipulator gains one or more degrees of freedom. It is important to remark that this type of singularity is particularly
dangerous since the gained degrees of freedom are unexpected. Therefore, serious damages to people or surrounding equipment
may result.

Analyzing the form of matrix L, it may be observed that submatrix A has three zero submatrices O4x4 on the right and a
zero submatrix Q12x4 behind it. This particular form can be exploited in order to obtain the determinant of matrix L;. Hence, its
determinant may be expanded by using Laplace’s theorem (Crane & Duffy, 1998; Korn & Korn, 2000), thus yielding:

det(L;) = det(A)det(Lp) (80)

A singularity will occur if the right hand side of equation (80) vanishes. However, this expression is the product of two additional
determinants. Hence the analysis is divided into two parts, each corresponding to each of the two determinants.

6.2.1. Singularities associated with matrix A
The determinant of matrix A, see equation (41), can be computed by the expansion of its first column, that is:

det(A) = py det(Ay) — uo det(Az) + w3 det(As) — g det(Ay) (81)
where:
rTuz/cz rgl/cl rzT)l/cl rgl/cl
A= r£3/C3 , Ay = r£3/c3 , A3 = I‘Ez/cz , Ay = rlT)z/Cz
1{)4 /Cy r}[)4 /C4 r{u /Cy r& /C3

Matrix A is singular when the right hand side of equation (81) is equal to zero. This expression is composed of four different
scalar quantities. Therefore, several singularities are identified next.

Case 1. Scalars 41 =0, u2=0, u3=0and uq =0.
In order to present a systematic formulation of this particular case of singularity, the following approach is proposed.
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Fig. 10. Singularity type 1: (a) manipulator’s pose at x=—54.37, y=—31.44, z=311.06, and ¢ = 10°, (b) location on the workspace cross section at z=311.06.

360, 0

Fig. 11. Singularity type 2: (a) manipulator’s pose at x=—31.51, y=104.56, z=339.00, and ¢ = 10°, (b) location on the workspace cross section at z=339.00.

Firstly, from the definition of parameters 111, w2, ;3 and p4 and, after using basic properties of triple vector products:

u1 = (Ko xry/p)-rpyc; = 1P XTpyycy) Ko = (rpyc; X Ko)-riyp =0 (82)
w2 = (ko X r2/p)-Tpyyc, = (X2/p X ¥pyyc,) Ko = (rp,/c, X Ko)-r2/p =0 (83)
u3 = (Ko X r3/p) Tpy/c; = (X3/p X Ipy/c3) Ko = (Xpyyc; X Ko)-r3/p =0 (34)
w4 = (Ko X r4/p)-Tpycy, = (Xayp X rpy/cy) kKo = (rp,/c, x Ko)-rayp =0 (85)

On the one hand, satisfaction of condition (82) leads to the identification of three subcases:

Subcase 1.1 According to the first right hand side of equation (82), this type of singular configuration is reached whenever Ko,
ryp and rp, /¢, are coplanar. However, position vector rp, /¢, is not necessarily parallel to unit vector ko or position
vector ry/p.

Subcase 1.2 The second right hand side of equation (82) implies that link 13 is parallel to a line going from point P to point 1, i.e.,
I‘]/p X l‘Dl/c1 =0.
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Fig. 12. Singularity types 3, 7, 9, 11: (a) manipulator’s pose at x=—37.01, y=—21.18, z=439.00, and ¢ =10°, (b) location on the workspace cross section at

2=439.00.
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Fig. 13. Singularity type 4: (a) manipulator’s pose at x=—43.87, y=—9.04, z=311.11, and ¢ =30°, (b) location on the workspace cross section at z=311.11.

Subcase 1.3

Subcase 1.4

Subcase 1.5

Subcase 1.6

Subcase 1.7

Subcase 1.8

Subcase 1.9

Finally, the third right hand side of equation (82) means that link 13 is parallel to Zy axis, i.e., rp,/c, x ko = 0.

On the other hand, condition (83) is satisfied when:
According to the first right hand side of equation (83), this type of singular configuration is reached whenever ko,
ryp and rp, ¢, are coplanar. However, position vector rp, ¢, is not necessarily parallel to unit vector K¢ or position
vector rp/p.
The second right hand side of equation (83) implies that link 23 is parallel to a line passing through points 2 and P,
ie.,ryp xrp,c, =0.
Finally, the third right hand side of equation (83) means that link 23 is parallel to Zy axis, i.e., rp,/c, x ko = 0.

In turn, condition (84) is satisfied when:
According to the first right hand side of equation (84), this type of singular configuration is reached whenever ko,
r3p and rp, /¢, are coplanar. However, position vector rp,,c; is not necessarily parallel to unit vector ko or position
vector rz;/p.
The second right hand side of equation (84) implies that link 33 is parallel to a line that includes point 3 and point P,
ie.,r3p Xrpycy; =0.
Finally, the third right hand side of equation (84) means that link 33 is parallel to Zy axis, i.e., *p;/c; X ko = 0.
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Fig. 14. Singularity type 5: (a) manipulator’s pose at x =60.90, y = —8.46, z=339.00, and ¢ = 10°, (b) location on the workspace cross section at z=339.00.

Fig. 15. Singularity type 6: (a) manipulator’s pose at x =22.63, y=1.80, z=339.00, and ¢ =30°, (b) location on the workspace cross section at z=339.00.

Additionally, satisfaction of condition (85) leads to:

Subcase 1.10 According to the first right hand side of equation (85), this type of singular configuration is reached whenever Ko,
ryp and rp, ¢, are coplanar. However, position vector rp,,c, is not necessarily parallel to unit vector kg or position
vector ra/p.

Subcase 1.11 The second right hand side of equation (85) implies that link 43 is parallel to line 4 — P, i.e.,r4/p X rp,;c, = 0.

Subcase 1.12 Finally, the third right hand side of equation (85) means that link 43 is parallel to Zy axis, i.e., rp,/c, x ko = 0.

It should be noted that the singularity under analysis is reached only when all the scalars (1, 2, (3, and 4, are simultaneously
equal to zero. Hence it is necessary to detect all the feasible combinations of subcases shown previously. Thus, such a procedure
leads to the identification of 81 different singularities shown in Table 1, namely, singularities 14 to 94.

Case 2. Determinants of matrices A, A, A3z, and A4 are zero.
Since the determinants of matrices A, A2, A3 and A4 can be written in terms of triple vector products (Brand, 1947; Hao &
McCarthy, 1998) then this type of singularity can be formulated as follows:

det(Ay) =rp,/c, - (*py/c; X pyyc,) =0 (86)
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Fig. 16. Singularity type 8: (a) manipulator’s pose at x =35.66, y=11.52, z=338.60, and ¢ =30°, (b) location on the workspace cross section at z=338.60.
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Fig. 17. Singularity type 10: (a) manipulator’s pose at x="7.65, y=20.24, z=413.96, and ¢ =10°, (b) location on the workspace cross section at z=413.96.

det(A2) =rp,/c, - (Ypy/cy X rpyyc,) =0 (87)
det(A3) =rp,/c, - (*py/c, X ¥pyyc,) =0 (88)
det(Ag) =rp,/c, - (*py/c, X Tpyycy) =0 (89)

which are expressions that can be simultaneously satisfied when all the involved position vectors are parallel, thatis, rp, /¢, lIrp,/c,,
rp,/c,Itps/c; and rp, /¢, lIrp,/c,. Speaking in practical terms, at this configuration, links 13, 23, 33 and 43 must have the same
orientation. This is the singularity number 95, which has been included in Table 1.

It is important to point out that, a careful analysis of the singularities shown in Table 1 reveals that singularities 13 and 95 are
very similar. However, it should be noted that singularity 13 is related to lost output motions, whereas singularity 95 arose from the
analysis of the locked actuated joints. This is the reason because of both singularities were included separately.

Finally, in order to satisfy condition (80), det(Lp) =0. However, it should be recalled that singularities associated with matrix Lp
were previously analyzed and discussed in Section 6.1.2. Therefore, the singularity analysis has been completed.

In summary, all the singularities that were detected and discussed in the previous subsections are now shown in Table 1.

From Table 1, a total of 95 different singularities were detected for the Schonflies manipulator under analysis.
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Fig. 18. Singularity type 12: (a) manipulator’s pose at x=—10.21, y=19.67, z=416.17, and ¢ = 10°, (b) location on the workspace cross section at z=416.17.
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Fig. 19. Singularity type 13: (a) manipulator’s pose at x=—50.00, y=20.00, z=425.60, and ¢ =6.34°, (b) location on the workspace cross section at z=425.60.

,'/'

7. Singularity plots

In order to have a more detailed idea about the distribution of the singularities throughout the workspace, several singularity plots
were graphically generated. On the one hand, Figures 10-19 are singularity plots corresponding to those geometrical dimensions of
the manipulator that were used early in the workspace generation.

On the other hand, in order to obtain more singularity configurations of the manipulator, the fixed platform was geometrically
modified. As a result, a set of different geometrical dimensions for:

(a) Figure 20, were taken as Rjx = 113.89, Rox =42.34, Ryy=254.92, R3x =—211.92, R3y =15.55, R4yx =55.67, R4y =—270.48, and
constant angles oy =1 .45°, o3 =0° and a4 = 1 .45°,

(b) Figure 21, are Rix=98.75, Rox=—127.84, Roy=189.13, R3x = —61.79, R3y = —92.33, R4x =90.89, R4y = —96.79, and constant
angles ap =37.41°, a3 =0° and ovg =37 .41°,

(c) Figure 22, were selected as Ryx=163.55, Rox=1.61, Ryy=275.24, Rz3x=—161.72, R3y=4.68, R4x=—3.44, R4y=—279.92,
and constant angles oy =0.52°, ¢3 =0° and a4 =0.52°, and,

(d) Figure 23, are given by Rjx =215.50, Rpx =10.10, Roy =167.85, R3x =—216.36, R3y =23.59, Rax = —9.24, R4y =—191.44, and
constant angles a» =6.46°, o3 =0° and aq4 =6 .46°.
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450

Fig. 20. Singularity type (2, 1,2, 1): (a) manipulator’s pose at x=48.15, y=26.23, z=339.00, and ¢ =7.79°, (b) location on the workspace cross section at z=339.00.
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Fig. 21. Singularity type (2, 2, 2, 2): (a) manipulator’s pose at x=30.13, y=—17.37, z=339.00, and ¢ =43.75°, (b) location on the workspace cross section at
2=339.00.
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Fig. 22. Singularity type (3, 1, 3, 1): (a) manipulator’s pose at x=—0.72, y=18.35, z=439.00, and ¢ =5.81°, (b) location on the workspace cross section at
2=439.00.



32 J.J. Cervantes-Sdnchez et al. / Journal of Applied Research and Technology 14 (2016) 9-37

300

PO

250
100
}\ //
50
\/ 0 o
4 50 50 X

Fig. 23. Singularity type (3, 3, 3, 3): (a) manipulator’s pose at x=1.17, y=8.19, 2=439.00, and ¢ = 6.34°, (b) location on the workspace cross section at z=439.00.

-\-

8. Conclusions
A detailed singularity and workspace analyses of a particular Schonflies parallel manipulator have been presented in this paper.
As aresult, a total of 95 different types of singularities were detected. Moreover, geometrical conditions that characterize each type

of singularity were explained and mathematically formulated. It is expected that both analyses should be useful to avoid dangerous
configurations of the manipulator during the stage of trajectory planning.
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Appendix A.

The objective of this appendix is to show all the details involved into the symbolic computation of the determinant of matrix Lp,
which is given by Eq. (51).
The procedure begins by adopting the following definitions:

=ko xrp/p1, by =e; xrpiyc1, ¢ =ko xXrppi, (A1)
ay =Ko xrpp2, ba=e xrpyc2, € =Ko xrpp, (A2)
a3 =ko xrpp3, b3=e3 xrp3c3, € =Ko xrpp3, (A.3)

as=Kko Xrppy, bsa=e4Xrpsycs, ¢4=KoXrp/ps. (A4)
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Thus, the determinant Azp of matrix Lp, see equation (51), is given by:

1 0 1 -1 0 -1 0 0 0 0 0 0
ay by ¢ —a -by —¢ 0 0 0 0 0 0
Arp e 1 0 1 0 0 0 —1 0 —1 0 0 0 (A.5)
= 0a; b er 0 0 0 —a3 —b; —cz 0O 0 0 '
1 0 1 0 0 0 0 0 0 -1 0 -1
a b1 C1 0 0 0 0 0 0 —a4 —b4 —C4
Interchange of the ninth row to the second row and the fifth row to the third row leads to:
1 0 1 -1 0 -1 0 0 0 0 0 0
1 0 1 0 0 0 -1 0 -1 0 0 0
1 0 1 0 0 0 0 0 0 -1 0 -1
App = ai by ¢¢ —a -b —¢ 0 0 0 0 0 0 (A.6)
a; by ¢ 0 0 0 -—-a3; —-by —c3 0 0 0
a; by ¢ 0 0 0 0 0 0 —a4 —by —c4

Subtracting the first column from the third column, the fourth column from the sixth column, the seventh column from the ninth
column and the tenth column from the twelfth column:

1 0 0 -1 0 0 0 0 0 0 0 0
1 0 O 0 0 0o -1 0 0 0 0 0
1 0o O 0 0 0 0 0 0 -1 0 0

Arp=|a;, b, df —a» -b, & 0 0 0 0 0 0 (A7)
a; by d; 0 0 0 —-a3 —bs d3 0 0 0
a; by d; 0 0 0 0 0 0 —-a; —by dy

where:
di=c —a, dy=a—¢, di=a3—c¢3, dy=as—c4 (A.8)

Next, after interchanging column 4 to column 2, column 7 to column 3 and column 10 to column 4, determinant Azp becomes:

1 -1 0 0 0 O 0 0
1 0 -1 0 0 0 0 0
1 0 0 -1 0 0 0 0
App = a —ap 0 0 by di —-by d»
aj 0 —a3 0 b1 d1 0 0 —b3 d3 0 0

al 0 0 —ay b1 d1 0 0 0 0 —b4 d4

(A.9)

S O O O
S O O O
S O O O
S O O O

Now, Laplace’s theorem may be applied to evaluate determinant A;p by forming the product of every 3 x 3 determinant from
the first three rows of Ayp times its corresponding 9 x 9 complement determinant. Determinant A;p can thus be evaluated as:

I -1 0 1 -1 0
ArLp = (_1)1+2+3+1+2+3 1 0 1A+ (_1)1+2+3+1+2+4 1 0 0
1 0 0 1 0 -1
1 0 0 -1 0 0 (A.10)
x Ay + (_1)1+2+3+1+3+4 1 =1 0 |A5+ (_1)1+2+3+2+3+4 0 1 0 | Ay
10 —1 0 0 -1

Arp=A1+ A+ A3+ Ay

where each sub-determinant A, Ay, Az and A4 will be evaluated separately.



34 J.J. Cervantes-Sdnchez et al. / Journal of Applied Research and Technology 14 (2016) 9-37

A.l. Evaluation of A

This determinant is given by:
0 by di -by d 0 0 0 0
A= 0 by d 0 0 —bz dz 0 0 (A.11)
—a4 by di 0 0 0 0 —bs dy4

Applying Laplace’s theorem, determinant A is evaluated by forming the product of every 3 x 3 determinant from the first three
rows of A times its corresponding 6 x 6 complement determinant, that is:

Al — (_1)l+2+3+2+3+4|b1d1 _ b2|A11 + (—1)1+2+3+2+3+5|b]d1d2|A12 + (_1)1+2+3+2+4+5|b1

—bads| A3 + (=)' T Q) —hody|A (A.12)
where, in turn:
0 0 —b; d3 O 0
A = =0 (A.13)
—ay 0 0 0 —b4 d4
0 0 —b; d3 O 0
A = =0 (A.14)
—ay 0 0 0 —b4 d4
0 d; —-b; d3 O 0
Az =
—as d 0 0 —by dg
(A.15)
A13 — (_1)1+2+3+2+3+4|d1 _ b3d3|| — a4 — b4d4|
Az = —|d; — b3ds|| — as — bady]
0 by —-b3z d; 0 0
Ay =
—ay4 b1 0 0 —b4 d4
(A.16)
Alg = (_])1+2+3+2+3+4|b1 _ b3d3|| —ay— b4d4|
A1g = —|b; — bzds|| — as — bady]
therefore:
Ay = | — a4 — bgdy| {|b; — bad2||d; — b3d3| — |[d; — bad2||b; — b3d3]} (A.17)

A.2. Symbolic computation of A;

Determinant A is given by:
0 b d by da 0 0 0 0
Ay=|—a3 by di 0 0 —bs dz 0 0 (A.18)
0 b d O 0 0 0 —bs dy4

Applying Laplace’s theorem, determinant A, may be evaluated by forming the product of every 3 x 3 determinant from the first
three rows of A, times its corresponding 6 x 6 complement determinant, which yields:

A2 — (_1)1+2+3+2+3+4|b1d1 _ b2|A21 + (—l)1+2+3+2+3+5|b1d1d2|A22 + (—l)1+2+3+2+4+5|b1 _ b2d2|A23
(=D ) — bydy| A (A.19)
where, in turn:
—a3 0 —b; dz 0 O

Ay = =0 (A.20)
0 0 0 0 —by dy
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—a3 0 —b3 d3 0 0
Ay = =0 (A.21)
o 0 o 0 —bs ds
—as d] —b3 d3 0 0
Ay =
0 d 0 0 —by dg
(A.22)

Agy = (= )*5H6H24546|q4) _ bydy|| — a3 — bads|
Apz = |d; — bady|| — a3 — bad;)|

—as b] —b3 d3 0 0

Ay =
0 b; 0 0 —by dy4
(A.23)
Agy = (—D¥ITOTIFH01h, —budy|| — a3 — bsds|
Aoq = |by — bad4|| — a3 — bads|
and, finally:
Ay = | — a3 — bszds| {|b; — bsad4||d; — bod2| — [d; — bad4||by — baod|} (A.24)

A.3. Evaluation of A3

The third determinant A3 is given by:
—ay by di —by d2 0 0 0 0
Az=|0 by d¢ 0 0 —b3 d3 0 0 (A.25)
0 by d¢ 0 0 0 0 —bsy d4

Resorting to Laplace’s theorem, determinant A3 may be evaluated by forming the product of every 3 x 3 determinant from the
last three rows of A3 times its corresponding 6 x 6 complement determinant, which yields:

A3 — (_1)7+8+9+2+3+8|b1d] _ b4|A31 + (—1)7+8+9+2+3+9|b]d]d4|A32 + (_1)7+8+9+2+8+9|b1 _ b4d4|A33
(=D — byda] Asg (A.26)

where, in turn:

—ajp —bz d2 0 0 0
Az = =0 (A.27)
0 0 —-b; d; O
—a, —by dp 0 0 0
Az = =0 (A.28)
0 0 —b; d3 O
—aj d1 —b2 d2 0 0
A3z =
0 d; 0 0 —bsy dj
(A.29)
Azz = (= 1)HIFEF2E5H6|q, — bads|| — ay — body|
Azz = |d; — b3d3|| — az — bady|
—aj b1 —b2 d2 0 0
Azg =
0 b; 0 0 —bs3 ds
(A.30)

Azy = (=1)HSTEFZEHO L) — bads|| — ay — body|
Azq = |by — bzds|| — az — bady|
thus, the following result is finally obtained:

A3z = | —a —bady| {|b; — b3ds||d; — bsdy| — |d; — b3d3]|b; — bsdy|} (A.31)
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A.4. Symbolic evaluation of Ay

The last determinant A4 is mathematically given by:
ap by di —by d» 0 0 0 0
As=|a; by di 0 0 —bs d3 0 0 (A.32)
ai by di 0 0 0 0 —bs ds4

Similarly, according to Laplace’s theorem, determinant A4 may be evaluated by forming the product of every 3 x 3 determinant
from the first three rows of A4 times its corresponding 6 x 6 complement determinant, which yields:

Ay = (=TT 10 by dy [Agg + (DI a b — by Ay + (=D b ) | Ags
+ (=D a 1 d) — by |Agg + (— DT a,d do | Ags + (= DTS 1) bods|Age
+ (_1)1+2+3+2+3+4|b1d1 _ b2|A47 + (_1)1+2+3+2+3+5|b]d]d2|A48 + (_1)1+2+3+2+4+5|b] _ b2d2|A49

+ (= DITEFEHE 4y — body| Ao (A.33)

where the involved determinants are given by:

0 0 —b3 dj 0 0

Ag = =0 (A34)
00 0 0 —bs dg
d 0 —-b3; d3 0 0

Agp = =0 (A.35)
d 0 0 0 —by dy
di 0 —bs; d; 0 0

Agyz = =0 (A.36)
d 0 0 0 —bs ds
by 0 —bs dj 0 0

Aygq = =0 (A.37)
by 0 0 0 —bs dg
by 0 —bs d; 0 0

Ays = =0 (A.38)
by 0 0 0 —by dy
by di —bz d3 0 0

AVTES
b d; 0 0 —bs d4

Age = (—=DIHF23HIF2E3 1, 1d) — 310 — bads| + (= D' TF2H3F1F2H4 b dd3]]0 — bads] (A.39)
+ (=2 b bids)|d) — bady| + (—1)!F23F24344 4, — bads|[by — bada]
Aye = |by — bzds||d; — bady| — |d; — bzd3|[b; — bad4]

a, 0 —bs ds 0 0

Ay = =0 (A.40)
ay 0 0 0 —b4 d4
a;p 0 —bs d3 0 0

Ayg = =0 (A.41)
a 0 0 0 —b4 d4
al dl —b3 d3 0 0

Ay =
al d1 0 0 —b4 d4

Ago = (—D)IT23HIE28313,d) — b3 |10 — bady| + (— D232+ a,d,d3] |0 — bady] (A.42)

+ (=D a ) bids||d) — bads| + (= D)2 d) — bads|la) — bada

Ag9 = |a; — b3ds||d; — bady| — |d; — b3d3||a; — bsdy]
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a) b] —b3 d3 0 0
Ag10 =
a; by 0 0 —by dg

Ag1o = (= DIHFZBHE2E3 19 b — b3]10 — bady| + (—1)! 2314254 a1 b,d5 |0 — bady| (A.43)

+ (=D ay — bads|[by — bads| + (=D — bads|lag — badyl
Ag10 = |a; — b3ds||b; — bady| — by — bzd3||a; — bgdy]
Thus, after regrouping all the terms involved into equation (A.33) it is obtained that:

A4 = |a; — badz| {|b; — b3d3|[d; — bsdy| — |d; — b3d3]||b; — bsds|} — [by — bada| {|la; — b3ds||d; — bsdy|
(A.44)
—|d; —bads[|a; — bad4[} + [d; — badz| {|a; — bads[|by — bads| — [b; — bzds||a; — badyl}

On the other hand, expanding and regrouping the elements of equation (A.10) and recognizing (Schwartz, Green, & Rutledge,
1964) that:

luvw| = det((u v w])=det([u v w]T)=(wa)~u (A.45)
(axb)-(exd)y=(a-c)b-d)—(a-d)b-c) (A.46)
it is finally obtained that:

App = {{(bs x dg)-(ag — ap)}{(bz x d2) x (b3 x d3)} + {(b2 x d2)- (a2 — ap)}{(b3 x d3) x (bg x dg)}
+ {(b3 x d3)- (a3 — a;)}{(bg x dg) x (b2 x d2)}}-(by x dy) (A.47)

which is the result sought.
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