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ABSTRACT 
 
The problem of the on-line estimation of the reaction heat in a continuous stirred tank reactor from 
temperature measurements is addressed in this paper. The proposed uncertainty observer is based on 
differential algebraic techniques, such that the algebraic observability condition of the uncertainty from noisy 
temperature measurements is easily verified and the observer structure is very simple, which lead to feasible 
implementation. The observer proposed is robust against noisy measurements and sustained disturbances. 
The good performance of the observer is shown by means of numerical simulations. 
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1. INTRODUCTION 
 
The Continuous Stirred Tank Reactors (CSTR’s) are widely used in the chemical industry, e. g. in 
polymerization, petrochemical, pharmaceutical, biochemical, etc. Therefore, their importance in the industry is 
great, nowadays the demanding conditions in security, efficiency, environmental restrictions and so on makes 
that the process engineers applies more sophisticates techniques in modeling, monitoring and control 
strategies in order to obtain high performance in the processes. 
 
Generally speaking, the evaluation of reaction heats is a difficult task in chemical processes, due the 
complexity of the physic-chemical phenomena related. This lead to construct uncertain mathematical models 
of this process, such that the problem of on-line estimation of reaction heats must to be tackled. Currently, 
estimation theory is one of the most active research areas to the necessity to obtain on-line estimates of 
unknown terms related to mathematical models for process identification and control purposes. Schuler and 
Schmith [1], uses an uncertainty estimator based on calorimetric balances to infer the reaction heats in 
chemical reactors, Alvarez, et. al. [2] used this estimation methodology coupled with a linearizing controller to 
regulate temperature in FCC Units, like Aguilar, et. al. [3] whom employ this control scheme too, for the 
substrate regulation in a continuous bioreactor, but for dynamic estimation of uncertain terms these class of 
strategies become unstable when the measurements are noisy, because the derivative related with the 
accumulation terms can not be calculated adequately, which can lead to poor closed-loop performance or 
instabilities in the process. 
 
Georgakis, et. al. [4] proposed a Kalman filtering technique to estimate kinetics terms in a polymerization 
reactor, with good results and following this research line Aguilar, et. al. [5] using filtering techniques, design a 
nonlinear controller based on observer for the regulation of temperature in a CSTR with complex behavior. In 
this kind of estimation methodologies based on observer Kalman structures, the convergence analysis of the 
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observer is difficult because the observer gain is based on an approximation of the covariance matrix related 
with the estimation error. 
 

2. MATHEMATICAL BACKGROUND 

In the beginning of the century Ritt [6] introduced the differential algebra with the main idea related to bring the 
theory of systems of differential equations which are algebraic in the unknowns and their derivatives some of 
the completeness enjoyed by the theory of systems of algebraic equations. This mathematical approach has 
recently been shown to be a most effective tool for understanding basic questions such as input-output 
inversions and realizations [7]-[9]. Now, before to show the estimation methodology proposed, the following 
definitions must be considered [10], [11]: 
 
Definition 1.-  A differential field extension L/K is given by two differential field, L and K, such that: 

         K ⊆ L The derivation of K is the restriction to K of the derivation of L. 
Definition 2.- Let u be a differential scalar indeterminate and let k be a differential  field, with derivation  
                      denoted by d( )/dt. 
Definition 3.- A dynamics is a finitely generated differentially algebraic extension ℑ/k<u>. This means that any  
                     element of ℑ satisfies a differential algebraic equation with coefficients, which are rational  
                     functions over k in the components of u and a finite number of their time derivatives. 
Definition 4.- Let a subset {u, y} of ℑ in a dynamics ℑ/k<u>. An element in ℑ is said to be observable with 
                      respect to {u, y} if it is algebraic over k<u, y>. Therefore a state x is said observable if, and only 
                      if, it is  observable with respect to {u, y}. 
Definition 5.- A dynamics ℑ/k<u> with output y is said to be observable if, and only if, any state is so. 
 
3. PROBLEM STATEMENT 
 
Consider the following nonlinear dynamic system, related with a mathematical model of a continuous 
stirred tank reactor [12]: 
 
Mass Balance: 
 

( ) 2
oooeo KXXXX −−= θ&         (1) 

Energy Balance: 
 

( ) ( 12111 XuXXXX e −++−= γθ&           (2) 
  
Uncertainty dynamics (reaction heat): 
 

( 212 , XXfX =& )             (3) 
 
System output: 

 
Y = X1             (4) 

 
where Xo is the reactive concentration, K is the kinetic constant, X1 is the reactor temperature, X2 is the 
uncertain term related with the heat generation by chemical reaction, Y  is the system output, u is the 
system input (temperature of the cooling jacket) and θ and γ are the inverse of the residence time and 
the heat transfer global coefficient, respectively. 
 
We consider the subsystem given by equation (2)-(4). From this, the following differential-algebraic 
equations can be obtained: 
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X1 – Y = 0                                          (5) 

0)( 21 =−−−++
•

XuXYY e γθγθ                  (6) 
 
Now, It is introduced a new concept called uncertainty algebraically observable: 
 
Definition 6.- An element Xu in ℑ is said to be uncertainty algebraically observable if Xu satisfies a 
differential algebraic equation with coefficients over k<u, y>. 
 
From definitions 5 and 6, along with the differential algebraic equations (5)-(6), the pair uncertainty-
temperature i. e. {X1, X2} is universally observable in the Diop-Fliess sense [11]. 
 
The corresponding Input-Output representation of the system (2)-(3) is given by: 
 

),()( 21 XXfuYY +=++
••••

γγθ                   (7) 
 
which can be represented in a generalized observability canonical form, using the following change of 
variables: 
 

1

1

−

−
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i

i dt
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to obtain: 
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         (9) 

 
Now, as can be seen from the nature of the system given by equation (9), a standard structure of a 
Luenberger type observer based with a copy of the system plus measurement error correction is not 
realizable since the term Φ is unknown.  
 
The following dynamic system is proposed as an observer of system (9) to obtain filtered estimates of η1 
and η2: 

 

( 1
1

21 ˆˆˆ ητηη −−= −
•

Yl )           (10) 

( ) )ˆ(ˆˆ 1
12

1
12

2 ητητη −+−−= −−
•

YsignlYl         (11) 
 
where 0>eτ  is an estimation time-constant and 
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finally from equation (6), the reaction heat is evaluated by the following equation: 
 

( ) ( 11122 ˆˆˆˆ ηγηθη −−−−= uXX e )             (12) 
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the idea to estimate η1 and filtering it, is that this variable is directly the reactor temperature (system 
output) and in accord with the equation (12) if the temperature measurements are noisy, the noise would 
be transmitted to the estimation of the reaction heat, which can lead to poor performance, In this work, it 
is supposed that the reactor temperature X1 ≥ 0 is bounded for all . Consequently, the 
concentrations inside the reactor are bounded input to bounded output state. It is assumed too, that the 
uncertain term remains bounded. The restraint of the heat of reaction (uncertain term) is common for a 
wide class of chemical reactions and is consequence of characteristics of the mathematical modeling 
commonly employed; chemical reactions are usually Lipschitz with respect to temperature. It is not hard 
to see that global Lipschitz of  property is found if the functionality  with respect to 
temperature is of Arrhenius type. 

0t >

( rff T.yRHΔ ( rf T,yR

 
Defining the estimation errors as: 
 

111 η̂η −=e               (13) 

l
e 22

2
η̂η −

=             (14) 

 
Considering the above equations (13) and (14), the dynamic of the estimation error is defined as: 
 

),( 21 ηηΩ+= lAEE&                          (15) 
 
Where:                                  
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In principle, the presence of the term sign(e1 + δ) deserves a stochastic study. Useful insight can be 
obtained using the following simplifying approximations [13]. 
 

A1.- the additive noise δ is a deterministic signal of bounded spectrum, i.e., 0 ≤ ω < ω_ or ω > ω+ ⇒ Fδ(ω) 
= 0, where Fδ(ω) is the Fourier transform of δ. 
A2.- The measurement noise is bounded by some constant δ0 (i.e., [ ]00 ,δδδ −∈ ). 
Considering the average closed-loop error Ea of the system, its dynamics can be approximated by the 
following equation: 

( )( ) aaaa

aaa

esignaveragememe

eeme

Φ+++−=

+−=
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•
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1
1

1
1
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1

         (16) 
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where average (sign(e1a + δ)) is computed over short time periods during which Ea is treated as a 
constant and Φa is defined as average[Φ]. Considering that δ is white noise, then Average (sign(e1a + δ)) 
= Expectation (sign(e1a + δ)), which lead to the following expression: 

( )( ) ( ) ∫∫ =+=+
∞

∞−

1

0
11 )(2)(sgn

e

aa dPdPesignenExpectatio δδδδδδ          (17) 

where the last equality assumes that the probability density function P(δ) is symmetric. Thus, the 
average value is an odd continuous function of e1. Considering Assumption A2, the following expression 
is obtained: 

0

1a
1a

e
) )  (sign(en Expectatio

δ
δ =+              (18) 

In this way, the average equations for the estimation errors of the observer are given by: 
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or, in vector notation, 

),( 21 ηηΛ+=
•

aa lAEE                           (20) 
where: 
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Considering the following assumptions: 
 
A1.- Ω  is bounded, i. e. Γ≤Ω  

A2.- There exist two positive constants j > 0 and λ > 0, such that: 
( ) ( ) aa EtljElAt λ−≤ expexp  

 
Now, solving the equation (15), the next expression is obtained: 
 

{ }∫ Ω−+=
t

aa dsstlAElAtE
0

0 )(exp)exp(          (21) 

 
Considering the assumptions A1, A2 and taking norms for both sides of the eq. (16), the following 
equation is generated: 

14 
Vol. 5 No. 1 April 2007 

 



 
Tracking unmodelled signals of nonlinear systems via robust sliding mode observer: Application to reacting systemsr,  

R. Aguilar López, et al, 10-21 

 
 

λλ
λ 220)exp(

l
j

l
jEtljE aa

Γ
+⎥⎦

⎤
⎢⎣
⎡ Γ

−−≤          (22) 

 
in the limit, when t→∞: 
 

λ2l
jEa
Γ

≤             (23) 

 
The above inequality implies that the estimation error, in average, can be as small as is desired, if the 
observer gain l is chosen large enough. 
 
4. NUMERICAL EXPERIMENTS 
 
In this section, numerical simulations were carried out in order to show the performance of the proposed 
observer. The reaction heat generated in a continuous stirred tank reactor is estimated via temperature 
measurements, which are corrupted with a white noise of ± 2 K around the current temperature value. 
The observer filters adequately the noisy temperature measurements as can be observed in the figure 1,  
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Figure 1. Filtering process of the reactor temperature measurements. 
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which are used in the estimation of the reaction heat although the differential algebraic corresponding 
structure. The observer, is able to infer the reaction heat with a good performance as is shown if the 
figure 2.  
 

0 50 100 150 200 250 300 350 400 450 500
-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

 Real
 Estimated

U
nc

er
ta

in
ty

 [K
/S

]

Time [s]

Figure 2. On-line estimation of the reaction heat. 
 

Additionally to the noisy temperature measurements, a sustained disturbance in the reactor temperature 
inlet X1e = X1eo + 4 Sin (Π t) is now introduced to the system and the observer proposed is able to 
estimate the corresponding terms. As can be seen in Figure 3 corresponding to noisy reactor 
temperature measurement and the related temperature filtered. Figure 4 shown the performance of the 
observer to infer the reaction heat in the chemical reactor For Figures 1 to 4 the value of the observer 
parameter gain l is l = 0.01 and the parameter τ = 1.0 
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Figure 3. Filtering process of the reactor temperature measurements considering sustained 

disturbances. 
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Figure 4. On-line estimation of the reaction heat considering sustained disturbances . 
 

 
 
5. CONCLUDING REMARKS 
 
A sliding-mode observer to infer reaction heats in a continuous stirred tank reactor via temperature 
measurements is designed using differential algebraic tools. The concept of uncertainty algebraic 
observability condition was introduced to estimate the uncertain term from the output selected and is 
easily obtained from this approach, besides the implementation of the observer is very simple with the 
transformation proposed. The performance of the observer developed is satisfactory in spite of noisy 
temperature measurements and sustained disturbances under the high gain condition. 
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