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ABSTRACT 
   
The calculation of the pseudo inverse of a matrix is intimately related to the singular value decomposition 
which applies to any matrix be it singular or not and square or not. The matrices involved in the singular 
value decomposition of a matrix A are formed with the orthogonal eigen vectors of the symmetric 
matrices ATA and AAT associated with their nonzero eigenvalues which forms a diagonal matrix. If 
instead of using the eigenvectors, which are difficult to calculate, we use any set of vectors that span the 
same spaces, which are easier to obtain, we can get simpler expressions for calculating the 
pseudoinverse, although the diagonal matrix of eigenvalues is filled. All numerical work to obtain the 
pseudo inverse whose components are rational numbers when the original matrix is also rational 
reduces to elementary row operations. We can, thus, generalize the least-squares/ minimum-length 
normal equations for full-rank matrices and solve said problems and obtain the pseudo inverse in terms 
of A and AT. without solving any eigen problems or factoring matrices.   
     
KEY WORDS: pseudo inverse, singular values, normal equations, least-squares, minimum-length. 
 
RESUMEN 
   
El cálculo de la seudo inversa de una matriz está íntimamente relacionado con la descomposición de 
valores singulares aplicable a cualquier matriz, singular o no y cuadrada o no. Las matrices involucradas 
en la descomposición en valores singulares de una matriz A están formadas con los vectores 
característicos ortogonales de las matrices simétricas ATA y AAT asociados con los valores 
característicos no nulos, los cuales forman una matriz diagonal.  Si, en lugar de usar los vectores 
característicos, los cuales son difíciles de calcular, se usa cualquier conjunto de vectores que generan 
los mismos espacios, que son más fáciles de obtener, se pueden obtener expresiones más simples para 
el cálculo de la seudo inversa, no obstante que la matriz diagonal se llena. Todo el  trabajo numérico se 
reduce a operaciones elementales de filas obteniéndose seudo inversas con componentes racionales 
cuando la matriz original tiene componentes racionales.  De esta manera podemos generalizar las 
ecuaciones normales de mínimos cuadrados / longitud mínima de matrices de rango completo, resolver 
el problema  y obtener la seudo inversa en términos de A y AT sin resolver problemas de vectores 
característicos o factorizar matrices.  
 
PALABRAS CLAVE: seudo inversa, valores singulares, ecuaciones normales, mínimos cuadrados, longitud 
mínima.   
 
 
1. INTRODUCTION 
 
The pseudo inverse of an m×n rectangular matrix, where m and n are any natural numbers, is a 
generalization of the inverse of a square matrix and may be used to solve systems of simultaneous 
linear equations of any sort. In the case in which the system has a unique solution, the result obtained 
with the pseudo inverse coincides with the one obtained with the standard inverse. In the case in which 
there are many (an infinity) of solutions, the pseudo inverse obtains the shortest solution in the euclidean 
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sense. In the case there is no solution, the pseudo inverse obtains a vector which has minimum residue 
and of all the ones that have the given minimum residue obtains the shortest.  
 
When the rank of the matrix of coefficients A of the system of equations is equal to the minimum of the 
number of rows or columns the matrix is said to be of full rank. In such cases there are simple formulas 
to calculate the pseudo inverse A+, namely 
 
Rank of A is equal to the number of rows:            A+ =  AT(AAT)−1                                     
 
Rank of A is equal to the number of columns:      A+ = (ATA)−1AT        

 

 When the rank of the matrix is neither equal to the number of rows nor of the columns, the calculation of 
the pseudo inverse is more involved. The best-known manner of calculation (see Dahlquist and Björk [1]) 
obtains the singular value decomposition of matrix A and exchanges the nonzero singular values for 
their reciprocal, leaving the zero singular values untouched. This, however, requires the solution of the 
eigenvalue and eigenvector problem of the symmetric matrices ATA and AAT. Golub and Reinsch [2] 
give an alternative method together with listings of computer programs for obtaining the singular value 
decomposition. Other methods require factoring the matrix A into factors of full rank and apply to each 
factor one of the formulas above. Noble [3] provides a method for doing the factoring. Murray – Lasso [4] 
gives a method which involves inverting a matrix obtained by pre and post multiplying matrix A on the 
right and the left with matrices formed with bases for the spaces spanned by the columns and rows of 
matrix A and post and pre multiplying the resulting inverse with the same matrices.  
                                            

To solve a shortest-length / minimum-square linear equation problem in general it is not necessary to 
compute the pseudo inverse explicitly since it is more efficient to multiply the right-side vector by the 
succesive matrices to its left and the part of inverting a matrix can be obviated by factoring the matrix to 
be inverted in triangular factors LU (known as the LU-decomposition) and applying a forward and 
backward substitution process to obtain the solution for each different right side. In the case of large 
matrices, this process requires a smaller number of operations than obtaining the inverse and multiplying 
it by matrices on the right and left and finally multiplying the resultant matrix by the right side vector.  
 
In this paper, we present a method for the calculation of the pseudo inverse which is based on the same 
ideas as that of [4] but which does not require the previous analysis of the ranks and determination of the 
bases of the spaces spanned by the rows and columns of A, nor the calculation of a standard inverse, 
but relies on the row-reduction to echelon form of a matrix with a number of rows equal to the smaller of 
m or n. Only k columns need to be processed, since the matrix has rank k and as soon as the k-th 
column is processed, zeros will appear in all succeeding rows and the computation can be stopped. To 
process one right-side vector, the matrix to be reduced has n + 1 columns; if the explicit pseudo inverse 
is desired, the number of columns is 2n. The most labor intensive part of the whole process is the 
multiplication of the matrices.   
 
 
2. THE SPACES OF THE ROWS AND COLUMNS OF A 
 
The space spanned by the columns of an m×n matrix A is its range. The range is a subspace of the co-
domain of A. The dimension of the range is equal to the rank of A, which is also the number of linearly 
independent columns of A. The orthogonal complement of the range space is the null space of AT. The 
sum of the dimensions of the range of A and the null space of AT is equal to the number of columns of A. 
The space spanned by the rows of A, which is the same space as that spanned by the columns of AT, is 
the range space of AT, which is a subspace of the domain of A. The rank of AT is equal to the rank of A, 
since both matrices have the same determinants of different orders, therefore, both, the ranges of A and 
AT have the same dimension. The orthogonal complement of the range of AT is the null space of A. This 
information is condensed schematically in Figure 1. 
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Figure 1. 
 

In Figure 1, R and N stand for the range and null space of its argument. The superscript ⊥ stands for the 
orthogonal complement of the subspace it refers to. The two pieces separated by a thin line of the 
domain and co-domain of A,when direct summed (⊕) give the whole space in question. The doble 
arrows on the extreme left and right of the figure are the dimensions of the subspaces inquestion. The  
0’s  in the ovals are the zero vectors of the spaces. The arrows denote the direction of the mapping and 
the symbols next to the arrows refer to the operators doing the mapping. AT corresponds to the adjoint of 
operator A, which is represented by the transpose of the matrix representing A.  
 
Although there are four spaces involved, namely: the domain of A, the domain of AT, the co-domain of A 
and the co-domain of AT, we have assumed the co-domain of A and the domain of AT is the same 
space, and the domain of A and the co-domain of AT is also the same, since the dimensions coincide. 
Some authors (Zadeh and Desoer [5]) reduce, without loss of generality, all spaces to one, by adding 
zeros to the matrix and the shorter vectors to make the matrix square and all vectors equally long. When 
this approach is used, some facts such as the assertion that the nullity of A and AT are equal are true. 
For calculation purposes, which is our aim, the padding with zeros is cumbersome, hence we will not 
take this approach. However we quote many facts from Zadeh and Desoer [5] because most of them 
apply to both approaches.     
 

When treating the problem  
Ax = b                                                                         

 
where A is an m×n  matrix of known rational numbers, x is an n-vector of unknowns, b is an m-vector of  
known rational numbers, and we wish to find the unknown vector x,  we will assume that A represents a 
linear operator mapping an n-space to an m-space  and that the vectors and operator are represented 
with respect to so called natural orthonormal bases represented by [1, 0, 0, ... , 0], [0, 1, 0, ... , 0], ..., [0, 
0, 0, ..., 1],  with the proper number of components to correspond to the dimensionality of the space in 
question. We assume all spaces are Euclidean, thus, the inner product of two vectors {xi} and {yi}, i = 1, 
2, ..., r, is given by     

x.y = x1y1 + x2y2 + x3y3 + ... + xryr  
 
 
and two vectors are orthogonal if their inner product is zero. The Euclidean length ||x|| of a vector x is 
equal to the positive square root of the inner product of the vector with itself.  
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||x|| = xx.  = 22
2

2
1 ... nxxx +++  

 
If the length of a vector is zero, the vector must be the zero vector [0  0  ...  0]. 
 
3. THE SPACES OF ATA AND AAT 
 
There is a close connection between the spaces of A and AT and the ones of ATA and AAT.  First, the 
null space of A is the same as the null space of ATA. This can be shown by noticing that any vector x 
which satisfies  Ax = 0 also satisfies  ATAx = 0, that is any vector in the null space of A is in the null 
space of ATA.  Likewise, for any vector  y that satisfies  ATAy = 0, also satisfies Ay = 0, since we must 
have xTATAy = 0  which can be written  (Ay)T.Ay =  ||Ay||2 = 0 which implies  Ay = 0. Hence, all the 
vectors in both null spaces are the same. In a similar fashion, it can be shown that the null spaces of 
AAT and AT are the same. From the diagram of Fig. 1, since the range of a matrix is the orthogonal 
complement of the null space of its transpose, we can deduce that the ranges of A and AAT are the 
same and also that the ranges of AT and ATA are the same.     
 
4. DEDUCTION OF FORMULAS FOR THE CALCULATION OF THE PSEUDO INVERSE 
 
  The singular value decomposition of a rectangular matrix can be expressed as  
 

A=U ΛVT                                                       (1) 
 
 
where A is any  m×n  matrix of rank  k  (we assume k < m < n.)  U is a matrix whose columns are the m 
orthonormal eigenvectors of the m×m symmetric matrix AAT, (the sperscript T denotes the transpose of 
the matrix), and the matrix V is formed with the n orthonormalized eigenvectors of the symmetric matrix 
ATA. The non-zero eigenvalues of both matrices are equal.in number and value and the order of the 
eigenvectors must be such that both the i-th column of U and the i-th column of V correspond to the 
same eigenvalue. The m×n matrix  Λ is of the form 
 

Λ= ⎥
⎦

⎤
⎢
⎣

⎡Λ

32

11

00
0

                                                            (2) 

 
 
where Λ1  is a  k×k diagonal matrix whose  k diagonal elements are the real positive square roots of the 
comon eigenvalues of  AAT  and ATA  ordered in the same order as the eigenvectors of U and V. The 
matrices  01, 02, and 03 are zero matrices of orders k×(n − k), (m−k)×k, and  (m – k)×(n – k),  respectively.  
03 is associated with the eigenvalue zero, which must appear in both ATA and AAT  if they both have 
rank k < m, n. (Lanczos [6], pp. 120 –124.)   The pseudoinverse A+ of A is  
 

A+ = VΛ+UT                                                                           (3) 
 
 
where the pseudo inverse Λ+  is of the same form as Matrix  Λ and the non-zero  diagonal elements of  
Λ1  are replaced by their reciprocals. (Dahlquist and Björk [1],p.144.)   The calculation of eigenvectors 
involves difficulties, more so when there are repeated eigenvalues (as it often happens with the zero 
eigenvalue) and the corresponding eigenvectors have to be orthogonalized. In some of the methods for 
calculating eigenvalues and eigenvectors, irrational numbers are introduced, whereas the exact 
pseudoinverse of a matrix of fractional numbers also has fractional numbers. 
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Equation (1) can be simplified if we take out the eigenvectors corresponding to the eigenvalue zero. In 
such a case equation (1) becomes 
 

A = UpΛ1Vp
T                                                             (4) 

 
 
where Up and Vp  are semiorthonormal matrices whose columns are the eigenvectors which correspond 
to the non-zero eigenvalues of ATA  and AAT , respectively, ordered as before, that is, in such a way that 
the i-th eigenvector of each matrix corresponds to the same eigenvalue. The pseudo inverse of A is now  
 

A+ = VpΛ1
−1Up

T                                                        (5)  
 
 
If in equation (5) we sacrifice the condition that Λ1 be diagonal, we can replace the work of solving 
eigenproblems for matrix inversion of a square non-singular matrix of the same size as  Λ1  which is a 
considerable saving. All that is necessary is to replace matrix Up with a matrix P with a minimum number 
of columns (which does not have to be orthonormal) that spans the same space as U, which is the same 
space as that spanned by AAT, and replace  Vp  with a matrix Q with a minimum number of columns 
(which does not have to be orthonormal)  that spans the same space as V which is the same space as 
that spanned by  ATA.  
 
It is easy to get a set of vectors that spans the same space as ATA, all we have to do is find a set of k  
linearly independent vectors of ATA, where  k  is the rank of ATA.  Similarly for AAT.  A possible method 
is to column reduce the matrices which are equivalent  to row-reducing them since they are symmetric, 
and then taking the non-zero rows of the reduced matrix as columns of  the matrices P and Q that will 
replace them. 
 
From Equation (1) we can isolate Λ by premultiplying both sides by UT and postmultiplying by V. Since 
matrices U and V are orthonormal, their transposes are their inverses and we obtain 
 

Λ = UTAV                                                      (6) 
 
and in a similar fashion, because of the zeros in Λ, we can arrive at   
 

Λ1 = Up
TAVp                                                  (7) 

 
replacing Up with P and Vp with Q, which are not formed with eigenvectors but span the same space as 
the corresponding eigenvectors, Equation (7) becomes 
 

Φ =  PTAQ                                                     (8) 
 
where the  k×k matrix  Φ  is not diagonal, but it has rank  k  and is therefore non singular and can be 
inverted. Thus, the equation that corresponds to Equation (5), which gives the pseudoinverse of A, is    
 

A+ =  QΦ−1PT                                                 (9) 
 
where  A+  is an  n×m  (the dimensions of AT) matrix of rank  k, Q is an n×k  matrix  of rank  k, and PT is a  
k×m  matrix of rank  k. 
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5. ILLUSTRATIVE NUMERICAL EXAMPLE     
  
 Let us take the  6×4  matrix A representing an overdetermined system, (taken from Noble [3], p 145) 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−

−−
−

=

2101
1011
3110

3110
1011

2101

A
 

 
The symmetric matrix  ATA  is  
 

4    -2   -2   -2 

-2   4    -2   -8 

-2   -2   4    10 

-2   -8   10   28 

 
Row reducing the previous matrix, we obtain the two columns of Q from the non-zero rows of the row 
reduced matrix giving 
 
 

1    0 
0    1 
-1   -1 
-2   -3 

 
and doing the same with AAT   we get 
 

6     -1    7     -7    1     -6 

-1    3     -4    4     -3    1 

7     -4    11    -11   4     -7 

-7    4     -11   11    -4    7 

1     -3    4     -4    3     -1 

-6    1     -7    7     -1    6 

 
 
 
 
 
 
 
 
 

AAT = 

Q =

ATA = 
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and after row-reducing it, we obtain for P   
 

1    0 
0    1 

1    -1 

-1   1 

0    -1 

-1   0 

 
Using Equation (8), we obtain 
 

Φ = PTAQ = ⎥
⎦

⎤
⎢
⎣

⎡ −−
3016
3626

 

   
From which   
 

Φ−1 = ⎥
⎦

⎤
⎢
⎣

⎡ −−
102/1351/4
17/334/5

 

 
We now apply Equation (9) 

 

A+ = QΦ−1PT = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−

−−−

17
1

34
1

34
3

34
3

34
1

17
1

102
7

102
5

51
1

51
1

102
5

102
7

51
4

102
13

102
5

102
5

102
13

51
4

34
5

17
3

34
1

34
1

17
3

34
5

  

  
 
We notice that the exact pseudo inverse of A has only rational numbers. This result coincides with 
the one obtained from the program Matematica through the function PseudoInverse[A]. (Wolfram 
[7], p.850.) 
 
6. SOME EXTENSIONS 
 
Matrices P and Q of Equations (8) and (9) are formed with columns that represent  linearly indpendent 
vectors that span the ranges of matrices  AAT and ATA, respectively.  We can save some effort if we 
note that an arbitrary vector  η which lies in the range of A, can be represented by  η = Ay where y  is a 
vector in the domain of A.  Now  η  is a vector in the co-domain of A, which is the direct sum of N(AT),  
the null space of AT,  and R(A), the range of A  The rank  k  of A, which we assume is less than m, n (the 
number of rows and columns of A), implies that A has a null space which is orthogonal to R(AT). When 
we multiply η by AT, that is ATAx,   the resultant vector, which in general belongs to both N(AT) and R(A), 
is completely in the range of  A, because the component that belongs to N(AT) has been annihilated. The 
same result is achieved by a P which contains only linearly independent vectors that span the column 
space of ATA or that of A. A dual argument can be given for insuring that a vector lie completely in the 

P =  
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range of AT. Either we premultiply an arbitrary vector by AAT or we multiply it by a matrix  Q  whose 
columns are linearly indpendent vectors that span the column space of AAT or that of AT. A useful 
conclusion of this discussion is that we need not find the products ATA and AAT to search for linearly 
independent vectors that span their ranges. It is sufficient to find k linearly independent vectors among 
the columns of A to form the columns of P; and it is sufficient to find k linearly independent rows of A  
(equivalent to finding linearly independent columns of AT).to form the columns of  Q. This result was 
obtained by Murray-Lasso [4] using a different line of reasoning.  There, using the same example, he 
row-reduced A and  AT  to obtain the matrices  
 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

011110
101101TP                  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

=

32
11

10
01

Q  

 
which when used in Equations (8) and (9) give identical results for the pseudo inverse of A.  
 
In the theory of Linear Operators in Infinite Dimensional Spaces it may not always be clear what 
corresponds to the linear independent rows and columns and, in some cases, we have to deal with the 
whole linear operators. It is therefore convenient to have formulas for the calculation of the pseudo 
inverse in which only the operators A and AT appear and not pieces of them.  When the rank  k  of matrix 
A coincides with the minimum of m, n (the dimensions of A) the expressions for the pseudo inverse are  
 

A+ =  AT(AAT)−1       and         A+ = (ATA)−1AT                                             (10) 
 
(Noble [3], pp.142-143.)  This is the kind of formulas we are seeking to attempt to apply to more geneal 
linear operators.  
 
Using the same ideas that we used for deducing Equations (8) and (9), we postulate the following 
equation with  A  an  m×n  matrix of rank  k < m, n. and  AT  playing  the role of Q. and  A  playing the 
role of  P.   
 
       (ATAAT) ξ = ATb   
 
What we have done is lifting the restriction of matrices P = A and Q = AT   to have rank k equal to one of 
their dimensions. This leaves matrices P and Q with a null space and, hence, the solutions are not 
unique. Matrix (ATAAT), which would correspond in Equation (8) to  Φ  which has to be inverted, is not a  
k×k  matrix of rank  k  which can be inverted. Instead, it is an n×m matrix of rank k necessarily singular. 
Instead of inverting it, what we can do is to obtain one of the solutions by the method of row-reducing it. 
Because the right side is in the range of A, which is also the range of ATAAT, the system of equations 
has an  infinity of solutions. Any one of the solutions when pre-multiplied by AT to return to the original 
variable x will result in the same vector, since the portion of the answer that is in the null space of AT will 
be annihilated by AT. An illustrative example will clarify this: 
 
7. AN ILLUSTRATIVE NUMERICAL EXAMPLE OF THE EXTENDED CASE 
 
Let us take again matrix A used in the previous example and consider the problem Ax = b. Let b 
=Column [1  2  3  4  5  6]. Vector   b  is not in the range of A, (we can ascertain this by forming the 
augmented matrix [A | b], row- reduce it to normal echelon form and verify that the right side becomes 
one of the unit columns, showing that the augmented matrix has rank  k + 1  so the system has no 
solution.)   By multiplying both sides of the equation by AT, we assure that both sides of the equation are 
in the range of A  and, therefore, there is a solution. If we solved the problem as it stands, we would 
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obtain an infinity of solutions, all having the property that they minimize ||Ax – b|| in the euclidean sense. 
To obtain a solution that is in the range of AT which would be orthogonal to N(A), and, therefore, the 
shortest of all the solutions, we make x = ATξ;  the vector ξ is the set of coefficients of the columns of AT  
which are forcing the vector x to lie in R(AT). The products ATAAT  and ATb  are  
 
 

-10    -4      -6      6       4      10 

-16    14     -30    30     -14    16             

 26     -10    36     -36    10    -26 

 68     -34    102   -102   34   -68 
 
We should point out that ATb does not have the appearance of being the projection of vector b which is 
in a six-dimensional space on the range of A. What happens is that b is represented with respect to the 
column vectors of matrix A which has four columns, therefore, there are four coefficients. Because the 
vectors are not linearly independent, the representation is not unique. We shoud not worry, however, 
because we have subjected the left side vector Ax to the same transformation, making the equality 
between both sides valid. . Recall that the rightmost AT has to do with the fact that we have made the 
transformation x = ATξ.  When we augment the matrix with the vector and row-reduce the augmented 
matrix, we obtain 
 

[ATAAT | ATb]row reduced.= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−
−−−

0000000
0000000

51/37011110
51/26101101

 

 
From the row-reduced matrix we obtain an obvious solution (which we will call “the natural solution.”)   
 

ξ = Column [-26/51   -37/51   0   0   0   0] 
 
There are many other solutions given by  ξ = Column [ξ1  ξ2  ξ3  ξ4  ξ5  ξ6]  with the components ξi  
satisfying  
 

ξ1 = -26/51 - ξ3 + ξ4 + ξ6 
ξ2 = 13/102 + ξ3 - ξ4 + ξ5  

 
where the values of ξ3, ξ4, ξ5 and ξ6  are arbitrary.  We see that the solution for ξ is undetermined, 
however, when we return to the original variable x,  all the solutions collapse into one.  For example, if 
we take the natural solution ξn (all the arbitrary components are zero), we have  
 

xn = AT ξn  = Column [ 21/17   -37/51   -26/51   -5/17 ] 
 
Let us now take another solution ξm by choosing  ξ3 = 1, ξ4 = -1, ξ5 = 0, ξ6 = 2. The corresponding vector 
is  
 

ξm = Column [ -26/51   65/51   1   -1   0   2] 
 
 

ATAAT = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

10
6
2

8

bAT  
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and the corresponding xm is 
 

xm = AT ξm = Column [ 21/17   -37/51   -26/51   -5/17] 
 
which coincides with the previous answer. The same thing would happen with any solution to the linear 
system that we choose. The reason that the answers are the same is that the general solution obtained 
from the row reduction consists of a particular solution plus any solution in the null space of the matrix 
that was row reduced (which coincides with the null space of A.)  When any of those solutions is 
multiplied by AT, the resulting vector will have its portion in the null space of A  annihilated (including the 
portion in the null space of A that the particular solution may have.)  Thus, the result is a vector in the 
orthogonal complement of N(A) which is R(AT).  The vector is unique and the shortest of all the solutions. 
(See Zadeh and Desoer [5], Theorem 6, p. C.15.) 
 
Our conclusion is that it is not necessary to have matrices P and Q in Equations (8) and (9) that have 
linearly independent vectors as long as, instead of inverting matrix Φ, what we do is obtaining any 
solution given by matrix  Χ  to the following problem with many right sides  
 

(ATAAT)Χ = AT,          A+ = ATΧ                                        (11) 
 
The right hand side of the equation on the left is obtained by letting the b vector adopt all the values of 
the columns of the unit matrix so that the resulting  Χ  when multiplied by matrix AT produces the pseudo 
inverse.  Equations (11) is the formula we were seeking for calculating the pseudo inverse of an arbitrary  
m×n  matrix containing only operators A and AT.  
 
The first of the equations (11) can be solved by adjoining to the matrix ATAAT the matrix AT; row-
reducing the adjoined matrix, considering only the natural solution (making zero all the variables not 
belonging to unit columns) and, according to the second equation (11) , multiplying the resulting matrix 
(adding the zero rows that are necessary to really have a solution, not only copying the result in the 
reduced matrix AT that was adjoined) by AT. 
 
8. NUMERICAL EXAMPLE ILLUSTRATING THE USE OF EQUATION (11) 
 
A numerical example using the same matrix A follows:  From a previous example we already have matrix 
ATAAT. When matrix AT is adjoined on the right, we have matrix  
 
 

-10    -4      -6      6       4       10     -1    -1    0    0     1     1 

-16    14     -30    30     -14    16      0     1    -1    1    -1    0       

 26     -10    36     -36    10    -26     1     0     1    -1    0    -1 

 68     -34    102   -102   34   -68     2    -1     3   -3     1    -2  

  
 
When this matrix is row-reduced, we obtain 
 

[ ATAAT | AT ] = 
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from which we obtain Χ, adding two rows of zeros to the last 6 columns of the last matrix. 
 

Χ = 
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and when Χ is pre-multiplied by AT ,we get the pseudo inverse A+, which coincides with the one obtained 
before. 
 
9. MAIN RESULT 
 
From the previous discussion we can make the following statement: 
 

If  matrix P is formed with columns which include a set of linear independent vectors spanning the 
space of the columns of  A,  and  matrix  Q  is formed in the same way but with columns that span 
the space of the rows of A,  then the pseudo inverse A+ of A can be calculated by    

A+ = QΧ, where matrix Χ is any solution of the matrix equation PTAQΧ=PT      (12) 
 
 
10. NUMERICAL EXAMPLE APPLYING THE MAIN RESULT 
 
A simple example illustrates the statement. We again use matrix A employed before. The first two 
columns of A are independent as are the first two rows, if we include them in P and Q and add the 4th, 
column and row,  we get the following P and Q matrices 

    

   =P
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,   Q = 
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Solving the equation (PTAQ)Χ = PT for X and using the “natural solution” obtained by row-reduction we 
get  
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Χnatural = 
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The product  QΧnatural gives the pseudo inverse A+, which coincides with the ones obtained before. 
 
11. MATHEMATICA PROGRAMS 
 
We now supply Mathematica programs to calculate the least-square/minimum- length solution when k < 
n < m for a single right side and for the calculation of the pseudo inverse A+.( For the case k < m < n, 
one can calculate the pseudo inverse of the transpose and transpose the result)  
 
For a matrix A and right side vector b  (which we assume have already been entered into Mathematica 
in the arrays a  and  b,  respectively. The solution is stored in the array x.) 
 
at = Transpose[a]; x = at.LinearSolve[at.a.at],at.b] 
 
For the calculation of the pseudo inverse which after execution is displayed and stored in the array  psinv  
(we assume matrix  A  has been input; this is not shown.) 
 
at=Transpose[a]; 
M=at.a.at; 
DD={};Do[DD=Join[DD,Join[M[[i]],at[[i]]]],{i,1,Dimensions[a] 
[[2]]}]; 
DD=Partition[DD,2 Dimensions[a][[1]]]; 
DDrr=RowReduce[DD]; 
p=DDrr[[Range[1,Dimensions[a][[2]]],Range[Dimensions[a][[1]]+1,2 Dimensions[a][[1]]]]]; 
p0=Join[p,Table[0,{Dimensions[a][[1]]-Dimensions[a][[2]]}, 
{Dimensions[a][[1]]}]]; 
psinv=at.p0 
 
The explanation to the listing is as follows:  The first line calculates the transpose of A and calls it at. In 
the next line, product ATAAT is calculated and called M. The next two lines do the job of setting up the 
partitioned matrix [ATAAT | AT] by extending each row of M with the corresponding row of at, and then 
declaring that a new matrix with rows with a number of componentes twice the number of columns of 
ATAAT (which is the same as twice the number of columns of AT) components is to be called DD. In the 
next line DD is row-reduced and called DDrr.  In the next line, we take the piece of DDrr including rows 1 
to the number of rows of A, and columns from 1 + the number of rows of A  to twice the number of rows 
of A and call that matrix  p. In the next line, we append to the bottom of  p a matrix with a number of rows 
equal to the difference between the number of rows and columns of A and a number of columns of zeros 
equal to the number of rows of A, and call it  p0.  In the last line, we define the matrix psinv  with the 
product of  matrices AT and p0. No output is displayed for all the lines that end with a “;”. But because 
the last line does not end in a “;” it displays the output of the last operation and, thus, displays the 
pseudo inverse of A.  
 
It should be mentioned that Mathematica has a primitive function PseudoInverse, thus the listings shown 
are for the purpose of formally documenting the method given in the paper. 
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12. CONCLUSION 
 
We have presented additional methods of calculating the Moore – Penrose Pseudo Inverse of a general 
matrix, (Moore [8], Penrose [9]),  particularly useful when the matrix is not full rank. The methods 
presented are extensions of the ones presented by Murray – Lasso [4] and the normal equations (Davis 
[9]); the last of which is valid for full rank matrices. The author hopes the methods presented can be 
generalized to linear operators in infinite dimensional spaces (Lanczos [10]) where in some cases it is 
not easy to distinguish rows and columns but the linear operator and its adjoint may be available. 
Several numerical examples are provided to clarify the discussion and Mathematica programs are 
provided.  
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