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ABSTRACT 
 
The use of several techniques for non-destructive testing is a common strategy for detecting and 
classifying flaws in aluminium material. Techniques like multiresolution data analysis and data classifiers 
are valuable for obtaining as much information as possible from the flaws. The combination of both 
techniques allows the clear definition of several characteristics like localization, size and form. In this 
study, localization using Time-Frequency Distribution feature extraction and an ART2 neural network as 
a classifier is the main goal.  
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1. INTRODUCTION 
 
The use of Ultrasonic Non-Destructive Evaluation presents a suitable scanning procedure for different 
materials. This technique consists of a pulse-echo system integrated in a single transducer. The 
receiving transducer is excited by scattered waves, and a transient change appears across the 
transducer faces and generates an electrical pulse in the receiver section (Lester et al., 1998). The 
transducer is moved along a linear scan path where the temporal distance of a particular flaw, the 
bottom part of the material, and the inherent grain thickness are monitored. This strategy is known as B-
scan display.  
 
The aim of this paper is to detect flaws using ART2 networks and Time-Frequency Distribution 
approaches. In order to process this information, the use of pattern recognition for signal processing 
presents a novel approach to determine temporal distance based upon echoes analysis, without using 
classical signal processing techniques. The use of model building instead of data acquisition is a 
significant step, which involves characterization and abstraction of the process (Legendre et al., 2001). 
Flaws are detected within a material by pulse echoes using ultrasonic measurements. This approach 
consists of processing a signal using time-frequency distribution and ART2 neural network (Lester et al., 
1998 and Kirby, 2001). In particular, Time-Frequency Distribution such as Wigner-Ville, Choi-Williams, 
and Bessel (Martin et al., 1985; Garcia-Nocetti et al., 2001) presents a feasible approach. Moreover, this 
study classifies the response of different levels of this type of Time-Frequency Distribution under the 
evaluation of a sample of aluminium material. It uses the speed of sound elapsed in a time difference 
between two reflections within the same propagation medium. Those echoes may represent the type of 
grain, thickness of the material, and different sorts of flaws within the material. 
 
In order to determine pattern behaviour of temporal distance, the use of neural networks is pursued. 
Different strategies have been proposed up to this stage. Vachtsevanos et al. (2001) present a wavelet 
neural network based upon Radial Basis Function Neural Network and basic cost rap wavelet 
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decomposition in order to extract different features related to flaw presence. Fang et al. (2000) present 
the use of a more efficient orthogonal-neural network based on the behaviour of scaling function and the 
corresponding mother wavelet, referred to as orthogonal wavelet neural network. Moreover, Ciftcioglu 
(1999) shows an analysis from neural networks to wavelet networks by means of a neural network as a 
multivariate function approximation. Yu et al. (1996) built the wavelet decomposition by using a B-Spline 
as the scaling function. Alternatively, Tang et al. (2000) present a dynamic neural network with the 
hidden layer that consists of wavelets for non-linear system identification. In the study, the use of auto-
regressive connection is introduced into wavelet based neural network. Angrisani et al. (2001) and Solis 
et al. (2001) present a combination of wavelet decomposition and artificial neural networks that combine 
analysis of non-stationary signals and classification abilities. Related techniques to nondestructive 
evaluation have been presented by Demirli et al. (2001a,b). Similar work to achieve flaw localization and 
characterization has been developed previously, as presented by Moisen et al. (2004), Benitez-Perez et 
al. (2002) and Solís et al. (2002)   using diverse neural networks and multiresolution wavelets. 
 
In terms of flaw detection, the strategy proposed here is named Flaw Classification and Localization. In 
fact, this flaw classification and localization enhances the availability of the system to localize abnormal 
behaviour rather than enhancing the safety of the system. Different approaches have been followed by 
the use of neural networks, Principal Component Analysis (PCA) (Moya et al., 2001), and statistical 
approaches.  
 
The approach taken in the current study is based upon on-line pattern recognition cluster classification 
techniques (Baraldi et al., 1999) which are enhanced by Time Frequency Distribution (TFD) as pre-
processing module of pulse-echo signal. The resultant winning pattern vector shows which TFD level 
presents the echo pulse without disturbances. Therefore, the associated weight vector represents the 
response of this decomposition.  
Following this brief description, this paper presents a review of these Time-Frequency Distribution 
algorithms used in this work, the ART2 network approach, the current approach based upon these TFD 
algorithms and ART2 networks, and preliminary results.  
 
2. TIME-FREQUENCY DISTRIBUTION (TFD) 

Several types of Time-Frequency Distributions are based upon the Cohen proposal (Cohen, 1989, 
Forberg et al., 1999), such as Choi-Williams, Bessel, Wigner-Ville or Born Jordan, among others. In this 
work, three distributions are described: Wigner-Ville, Bessel, and Choi-Williams, as each defines 
particular characteristics suitable for flaw detection. Wigner-Ville TFD is used to estimate the mean 
frequency quasi-instantaneous of current echo-pulse signal. This TFD is used due to its computational 
simplicity (Garcia-Nocetti et al., 2001). The goal of TFD is to represent a signal based upon its frequency 
and power components by a structured decomposition.  
Time-Frequency Distributions of Cohen class can be represented by (Cohen, 1989) 
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where ω is the angular frequency, x(t) is the analytical signal and x*(t) its complex conjugate, and φ(θ,τ) 
is a two dimensional kernel, in the correlation plane θ-τ, that determines the distribution and its 
properties. The analytic signal is defined as a complex time function having a Fourier transform that 
vanishes for negative frequencies (Oppenheim et al., 1999 and Mitra, 2001). 
The kernels and TFD equations of Wigner-Ville, Bessel and Choi-Williams’s Time-Frequency 
Distributions are defined in Table 1.1.  
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Table 1.1 Time frequency kernels and their continuous form representation. 

 
Since the acquired experimental signals are real, discrete and finite, the time frequency distribution has 
to be represented as a windowed discrete version of the time frequency representations defined in Table 
1.1. 
 
The windowed Wigner-Ville Time-Frequency Distribution in a discrete form is expressed as 
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where the index 1 1N n N− + ≤ ≤ −  represents the discrete time; 0 1k N≤ ≤ −  represents frequency 
vector; ( )W n  is a sampled time window (Hanning), and vector ( )x n  is the analytical signal of the 
measured signal.  
 
The Bessel  TFD in a discrete from can be expressed as 
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In a similar manner, Choi-Williams distribution in a discrete form is presented. 
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It is important to note that index μ  produces the correlation over the analytical signal ( )x n , with respect 
to τμ ++ n  window length. For the last two cases, there is a constant value named α   that is related to 



 
Diverse Time-Frequency Distributions Integrated to an ART2 Network for Non-Destructive Testing, Benítez-Pérez H. et al, 14-32 

 

17 
Journal of Applied Research and Technology 

 

the variance of the data, σ is the time division per frequency. A complete review of this technique can be 
found in Cohen (1989).  
 
3. ART2 NEURAL NETWORK 

This neural network has been proposed since it is a powerful classifier that can be adapted fairly quickly 
(Carpenter et al., 1996), when a new pattern is presented,  preprocessing procedure extracts enough 
information to be classified without glitches. Other neural networks can be used, however, the 
computational cost is increased exponentially and no additional advantage is obtained in comparison to 
ART2A. 
 
Having defined the group of TFDs, a review of the neural network algorithm is given here. Adaptive 
Resonance Theory (ART) network was originally proposed by Carpenter et al., (1996). This network 
works as a pattern classification non-supervised network. The objective of this technique is to define 
certain groups (from actual data) around specific data points named as cluster centres. When a new 
group appears, its centre is identified in order to be defined as a cluster (Whiteley et al., 1996). This new 
centre works as an identifier of this group. The output of the fuzzy system shows the presence of this 
new cluster as a new combination of values (zero and one). 
 
The ART2 network has been implemented following the approach presented by Frank et al., (1998), 
shown in Fig. 3.1. The idea is to identify already-classified material patterns and categorize new 
temporal distances based upon the classification of new patterns. The use of a new group of patterns 
does not overcome the identification of the physical meaning of the new classified pattern. This work still 
should be performed off-line by the expert.  
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Input Vector, Neurons
Array

Output Vector
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W54
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Figure 3.1. Typical ART2 network 

 
The current input of the network is stated as vector A. This is normalized using the Euclidian media 
shown in eqn. 5. 
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where m is the number of elements from non-normalized input vector A. The new generated vector I is 
used to perform another vector named as t based on eqn. 6. 
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where ijw is an element of weight matrix. This matrix is generated by previous pattern classification. 
From jt  element, a new matrix is performed stated as T, which represents the interaction between the 
already known weight matrix and the input vector. The maximum element from current t vector becomes 
the winner for this input vector. Having defined this interaction, the stage bottom-up is completed. The 
maximum value of current t vector is compared against the vigilance parameter, ρ, in order to determine 
if this current minimum value is close enough to the vigilance parameter. If so, the related winning Wj 
vector is declared as a representative pattern of this input vector. The winning Wj vector is modified 
following eqn. 7. 
 
where η  is defined as a learning parameter. 
Alternatively, if a comparison between current maximum jt  element and the vigilance parameter is not 
enough, a new pattern has been identified. Then, a new Wj vector is concatenated to the weight matrix. 
This new vector is the current input vector I. 
 
4. THE PROPOSED ALGORITHM 

Having reviewed both strategies used in this paper, it is necessary to define the proposed algorithm. This 
is a combination of two techniques in a cascade mode (Fig. 4.1). The algorithm has two stages, and the 
first is a learning stage where the ART2 network is trained using several input vectors that are 
decomposed through the TFD procedure. Each vector produces a decomposed matrix processed by the 
ART2 network, which classifies each vector from the decomposed matrix. This procedure is performed 
until all selected vectors have been processed.  
 

Input
Vector

TFD
Decomposition

Procedure

ART2A
Network

Decomposed
Matrix

Each Vector is
Processed from

Decomposed
Matrix

 
 

Figure 4.1 Schematic procedure of learning stages from the proposed algorithm 

The second stage is a classification stage in which the ART2 network performs classification without the 
use of “TFD Decomposition Procedure”. Eventually, if none of the current patterns are declared winners, 
the learning stage is used for those un-committed prototypes. Fig. 4.2 shows the implementation of the 
second stage (Classification Stage), considering the eventual incorporation of the learning stage. 
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Figure 4.2 Schematic procedure of classification stages from the proposed algorithm 

The advantage of the second stage is in terms of non-processing the “TFD Decomposition Procedure” 
due to those already known patterns. The impact of this second stage is in terms of computing cost. A 
review of how this proposed algorithm is used for Non-Destructive Testing is presented in the next 
sections. 
 
5. CURRENT APPROACH 

The approach proposed in current study is described by a case study that is concerned with the 
evaluation of an aluminium sample material. Previous work related to the definition of this approach has 
been presented by Solis et al. (2001). The schematic diagram to evaluate materials is shown in Fig. 5.1. 
Fig. 5.2 shows the block diagram of the setup experiment where the movement of the transducer is 
lateral and the inspected material is within the water tank. The proposed strategy has been developed 
under MATLAB using Time Frequency Distribution and ART2 network. The result of the generic Time 
Frequency Distribution approach is a matrix in which the elements are the energy associated to a 
specific time and frequency pair. This matrix is processed by ART2 network in order to classify a finite 
number of patterns.  
 

time frequency
distribution
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Evaluated Material
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Generator and

A/D, D/A
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Figure 5.1  TFD-ART2 Approach 
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Figure 5.2 Schematic diagram of setup experiment 

From this pattern matrix, different features of the same material can be evaluated without the TFD 
technique. The evaluation of the sample material is performed in one axis, which is named “face one”. 
During this evaluation, if there is a flaw without a related pattern, this is processed using Time Frequency 
Distribution such as Wigner-Ville or any other in order to generate a decomposed matrix. A new pattern 
is declared by ART2 network as soon as this is processed using the decomposed matrix.  
 
The information presented as input of this approach is the normalized sample of the signal obtained from 
the pulse echo generator (Fig. 5.2). The flow chart shown in Fig. 5.3 depicts these two stages: (1) the 
training procedure using Time Frequency Distribution and neural network processes, and (2) named as 
classification procedure without using the Time Frequency Distribution process.  
 

 

Figure 5.3  Training and classification processes 
 
Following training and classification strategies, it is possible to determine which temporal distance (out of 
the knowledge database) is the most suitable and represents the evaluated section of the material 
without using the Time Frequency Distribution process. The temporal distance is represented by the 
patterns database.  
 
This approach is used to B-Scan an aluminium material in order to make a pattern database of different 
characteristics with several flaws and borders of the material named as scenarios. Each sample is 
captured and discretized by an oscilloscope;  it is passed to the MATLAB environment in order to be 
processed. Each sample depends on each step from the linear movement of the transducer. Each step 
along the B-scan has a distance of 0.635 mm. The sampled material is made of aluminium with a volume 
of 7x7x4 cm, as shown in Fig. 5.4. 
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7 cm

7 cm

4 cm

 

Figure 5.4  Sampled material 
 
The sampled material is composed of 90% aluminium and has (Fig. 5.5.a) three determined flaws of 2-
cm depth and a diameter of 0.5 cm (flaw1, flaw 2 and flaw 3). Positions of these flaws are shown in Fig. 
5.5.b.  

1

2

3

4 Flaw 1
Flaw 2

Flaw 3

3.335 cm

4.168 cm

5.138 cm

Fig. 5.5.a Fig. 5.5.b  

Figure  5.5  Sampled material with flaws 
 

6. CURRENT APPROACH 

Preliminary results show how this approach performs to generate a B-scan pattern database. In order to 
determine the temporal distance of the flaws in the sampled material, the following experimental setup 
was used: 
 

• Oscilloscope MATEC 25msamples/second. Time base of 20 microseconds. 
• SR-9000 MATEC card with a 22.5db gain no damp. 
• Krautkrammer transducer with a central frequency of 3.5 Mhz. 
• Lab Scanner (water tank) trademark MATEC. 

 
In order to evaluate the aluminium material without using the Time Frequency Distribution approach, it is 
necessary to normalize each sample from a range of values between 0 and 1 (Eq. 5). Furthermore, the 
length of the input vector  (captured through the transducer) consists of 1000 points, whereas just 499 
points are used in the TFD approach. Moreover, neural network learning and vigilance parameters are 
set to 0.85 and 0.3, respectively. The number of neurons is 50 at the second layer and the size of the 
neural network is 260 neurons. 
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Figure  6.1  Echo-pulse signal processed using TFD without flaw 

 
Fig. 6.1 shows the result of an echo-pulse signal processed by Wigner-Ville TFD.  In this case, a matrix 
of 499x350 elements has been formed. The y-axis (Frequency) represents those frequencies selected 
during Time Frequency Distribution. This graphic shows the bottom part of the material at the main 
frequency of the chosen transducer.  
 
The x-axis (Distance) is the temporal distance of the echo-signal. It is essential to note that this 
distribution is centred with respect to the main frequency of the transducer. The neural network 
processes this matrix in order to generate a number of representative patterns. 
 
Thereafter, Fig. 6.2 shows the result of another echo-pulse signal where the first flaw is shown, as well 
as the bottom part of the material. The main frequency presents the location of this flaw. In this case, the 
temporal distance shown between the first flaw and the bottom of the sampled material is the actual 
distance among them.   

 
 

Figure 6.2  Echo-pulse signal processed using TFD with first flaw 
 
Figs. 6.3 and 6.4 present similar information with respect to flaw 2 and flaw 3, respectively. However, 
both present a small “spot” of a flaw between the bottom and the current flaw. This “spot” is due to 
inherent crossing terms within Wigner-Ville TFD. 
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Figure 6.3  Echo-pulse signal processed using TFD with second flaw 
 

 
 

Figure  6.4  Echo-pulse signal processed using TFD with third flaw 
 
The ART2 network processes ten of these matrices in order to generate a confident pattern database, 
which characterized the sampled material. The total number of sample echo-pulse signals obtained 
along the path is 100. 
 
Having trained the network with those selected signals and their respectivematrices, a transversal view 
of sampled material is constructed based upon the weight matrix of the ART2 network. Fig. 6.5 depicts 
this information, where the y-axis presents the number of patterns and the x-axis presents the temporal 
distance in terms of points.  
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Figure 6.5  Transversal view of whole sampled material based upon the ART2 network approach 

 
Fig. 6.6 shows one signal used to test the ART2 network without having been processed by the TFD 
module. In this case, one of the patterns (no. 47) has been selected. The number of patterns remains 
constant (130).  

 
 

Figure 6.6  Evaluated database based upon another pulse-echo signal with same flaw at different scan 
position 

 
Having explored the response of Wigner-Ville TFD in combination with the ART2 network, the next TFD 
(Bessel) is reviewed. The following group of results show its performance. First, the Bessel TFD of the 
processed signals are shown in Figs. 6.7, 6.8, 6.9, and 6.10. Next, global results processed by Bessel-
ART2 algorithm generating the B-scan pattern database are shown in Figs. 6.11 and 6.12.  
It is necessary to normalize each sample from a range of values between 0 and 1, as done for the 
Wigner-Ville approach. Furthermore, the length of each vector consists of 1000 points, but only 499 of 
them are actually taken into account. Moreover, neural network learning and vigilance parameters are 
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set to 0.92 and 0.3, respectively. In this case, these parameters have changed in order to obtain the best 
possible response. 
 

 
 

Figure 6.7  Echo-pulse signal processed using TFD without flaw 
 
Fig. 6.7 shows the result of an echo-pulse signal that has been processed by Bessel TFD. The y-axis 
shows the frequencies, and the x-axis represents the temporal distance. The selected echo-pulse signal 
and TFD response show the bottom of the tested material. It is essential to note that this distribution is 
centred with respect to the main frequency from the transducer. The neural network processes this 
matrix in order to generate a number of representative patterns. Thereafter, Fig. 6.8 shows the result of 
another echo-pulse signal, where the first flaw is shown. The frequency associated with the transducer 
presents the location of this flaw.  
 

 
 

Figure  6.8  Echo-pulse signal processed using TFD with first flaw 
 

Figs. 6.9 and 6.10, present similar information with respect to flaw 2 and flaw 3, respectively. 
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Figure 6.9  Echo-pulse signal processed using TFD with second flaw 

 
 

 
 
 

Figure 6.10  Echo-pulse signal processed  using TFD with third flaw 
 

 
The scenarios related to each flaw and the bottom parts are used to train the ART2 network. It is 
important to state that this training stage is not mixed with other TFD choices. The Bessel-ART2 
algorithm processes the B-Scan information, which characterizes the sampled material. The neural 
network has been trained using the Bessel TFD. At the end of this procedure, it is a weight matrix that 
represents the B-scan of the sampled material. A transversal view of sampled material is constructed 
based upon the weight matrix of ART2 network. Fig. 6.11 depicts this information, where the y-axis 
presents the number of patterns, and the x-axis presents the temporal distance in terms of points.  
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Figure  6.11 Transversal view of whole sampled material based upon the ART2 network approach 
 

Fig. 6.12 shows one signal used to test the ART2 network without having been processed by the TFD 
module. In this case, one of the patterns (no. 95) has been selected. The number of patterns remains 
constant (250).  

 

 
 

Figure  6.12  Evaluated database based upon a pulse-echo signal 
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The last part of the experiment is presented in terms of the Choi-Williams TFD. In this case, pre-processing 
information is performed as for the Bessel TFD. The number of points taken into account is 499. As 
presented in Wigner-Ville and Bessel experiments, all scenarios used to train the ART2 network are shown in 
Figs. 6.13, 6.14 and 6.15. Each of them represent first, second, and third flaw, respectively. For every case, 
half of the TFD response is presented due to the length of the sampled vector sub-sampled to fifty percent. 
This is possible because the central frequency of the transducer is similar to the sampling strategy. 
Therefore, no main information is lost. Nevertheless, this solution is ad-hoc to the used transducer; this 
approach allows a faster computation even though this was not the goal of the study. 
 

 
 

Figure  6.13  First flaw and echo-pulse signal processed using Choi-Williams TFD 
 

 
 

Figure 6.14  Second flaw and echo-pulse signal processed using Choi-Williams TFD 
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Figure 6.15  Second flaw and echo-pulse signal processed using Choi-Williams TFD 
 
 
Integration of the pattern matrix is performed next with learning parameters of 0.3 and vigilance 
parameter of 0.95. In this case, 140 patterns are classified as shown in Fig. 6.16.  
 
As a result of these three evaluations, it has been found that Choi-Williams presents the best pattern 
selection in terms of number of the patterns and the quality of those patterns that depict the current 
flaws. It is important to mention that this matrix (Fig. 6.16) only shows a one-dimensional map of the 
flaws and the bottom part of the element. Therefore, the axes which depict the number of selected 
patterns are not related to the other lateral dimensions of the sampled material. This matrix has a similar 
form of the sampled material due to the fact that the neural network is performed following the B-Scan. 
Ten samples from the B-scan are chosen for training stage for all of the TFD used in the study. 
 

 
 

Figure 6.16 Transversal view of whole sampled material 
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7. CONCLUSIONS 
 
This work has shown the use of a Time frequency Distribution strategy combined with a neural network 
for Non-Destructive Evaluation. This strategy has shown to be an alternative approach for classification 
of flaws with no physical information from the current case study. Furthermore, pattern databases have 
been constructed based upon several selected echo-pulse signals, which have been obtained off-line.  
 
This initial information is basic in order to obtain an accurate model of the inspected material. A key point 
of this strategy is the use of two algorithms, the TFD algorithms and the ART2 network – which are not 
separate algorithms with respect to the whole process. This approximation enhances the capabilities of 
the simple use of neural network for pattern classification. This strategy has shown an alternative 
approach for classification of abnormal situations with no information from current case study.  
 
Furthermore, pattern databases have been constructed based upon several selected echo-pulse signals, 
which have been obtained off-line. This initial information is basic in order to obtain an accurate model of 
the inspected material. 
 
Further work is required to justify the use of one specific Time Frequency Distribution approach over the 
rest of the current algorithms. Moreover, this strategy could address a proper dynamic non-linear system 
for on-line classification of unknown scenarios. 
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