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ABSTRACT

In this work, we present a fuzzy electronic neuron that has a Dubois fuzzy integration method, an activation function with a
fuzzy threshold, and a fuzzy response. We generated a fuzzy sum of the input signals and a shooting threshold value defined by
means of a triangular or sinusoidal membership function. We present the electronic circuits, the oscilograms of the neuron
responses, the value of the fuzzy integral, and we compare their behavior with those of a conventional leaky integrator neuron.

RESUMEN

En este trabajo presentamos una neurona electronica borrosa que contiene un integrador tipo Dubois, una funcion de
activacion con umbral borroso y respuesta borrosa. Generamos un sumador borroso de sefiales de entrada y un valor de disparo
de umbral definido por medio de una funcién de membresia triangular o sinusoidal. Presentamos los circuitos electrénicos, los
oscilogramas de la respuesta de la neurona, el valor de la integral borrosa, y comparamos estas caracteristicas con una neurona

integradora con fugas convencional.
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1. Introduction

Since the first publication on neurons by Mc
Cullock and Pitts in 1943 [1], many authors have
tried to create physical models for neurons. The
work of Pozin in 1970 [2], Deuth in 1967 [3] and
Mitchell in 1963 [4] stand out among them. In the
first work of Horman in 1965 [5], the neuronal
model was capable of simulating only some of the
properties of the biological neurons such as input
signals sum, threshold, delay period, some models
of neurons include some of the biological neurons
adaptive properties e.g. Rosemblatt in 1960 [6],
Caianiello in 1961 [7], and Widrow in 1962 [8].

Instead of using a conductance model as used by
Lewis in 1977 [9], we employ a membrane
potential model similar to that employed by
French in 1970 [10] and Michell in 1981 [11]. The
advantages of this model are simplicity in the
design, simplification of the input-output
relationships, facilities to establish an electronic

analog model as interconnecting networks. The
classical neuron model showed some of the
properties of a biological neuron, such as the
capacity of adding inputs, it has a variable
threshold, a refractory absolute period, a relative
refractory period, excitatory and inhibitory
outputs, and it can have transitory response
states.

As our understanding of the actual processes in
the brain increases, our models will become more
and more detailed. A serious problem with this
kind of development is that the computer models
are becoming more and more computationally
intensive and memory demanding. Current
models threaten to take the simulation of these
models beyond the actual range of the most
powerful digital computers.

An alternative leads to using analogue electronic
circuits to model those neural structures; this way
enables to create small, but imprecise building
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blocks [12], corresponding to, for example,
individual neurons. These neurons can then be
replicated many times and put on a single chip.
The imprecision of the building blocks is
compensated by the large number of units used
and it is, therefore, not an issue in neural
architectures. One advantage of conserving the
architecture of neural electronic implementations
is that all processing happens in parallel and in
continuous time. Since there is no time-
multiplexing in order to simulate multiple
neurons, the circuits can function in real time. One
chip models only a small number of neurons, but
multiple chips can be used in parallel, so there is
no obvious limit to the number of neurons in an
analogue VLS| model.

There are two main reasons for building hardware
models of neural models. First, a faithful neural
model will allow the study of neural processing
without the need of living neural tissue and
without the need of simultaneously probing
hundreds or thousands of neurons in the brain.
Once we have neuron models with the same
transfer function as biological neurons, and
knowledge of their input and output connections,
we can build a hardware model that allows us to
study the collective behaviour of such a neural
network and the individual behaviour of single
neurons in the network. Finally, we can expect
that neuron models might not need to replicate
the biological neuron as faithful as in the first
case. Once a functional model is built it will allow
us to refine the amount of detail needed for a
certain function and thus to create a simpler
model. This is the current tendency as we can see
in the following papers [13 -24].

2. Circuit description

The neuronal model is composed of two systems:
a synapses system and an axon system. The
synapses system contains two circuits: analog
synapses and a synapses delay circuit. The

synapses analog circuit is made up of an input
adder circuit, an integration circuit with variable
integration time. The axon system contains the
following circuits: a variable threshold circuit, an
axon transmission delay circuit and a spikes
output circuit. The delay circuit is made up of an
oscillator, a shift registers circuit, a variable
frequency astable circuit.

The classical input adder circuit was constructed
using two operational amplifiers as input adders,
one positive and the other negative. The output
from these two adders is added in another
positive circuit, which adds a membrane variable
potential.

The variable threshold circuit was based on a
voltage comparator circuit, with one of the
voltages as threshold. The axon transmission delay
circuit was constructed with a delay circuit
designed from a variable time monostable. The
signals blast circuit is built using an oscillator, a
gate commanded by the excitatory signals. The
neuron circuit achieves response transitory states
as a function of the input threshold. This is
achieved rising the threshold level in order to
avoid the response of the circuit.

Another of the possibilities for the neuronal circuit
is the frequency response change depending of
the input pulse duration. This is achieved by
connecting an astable circuit to the threshold, in a
way that controls the time in which it is applied to
the input adder. This circuit allows us to simulate
the response during maintained stimuli or a
maximum response and if the threshold voltage is
surpassed in the adaptation circuits, it presents
only a train of pulses. By controlling the threshold
level, it is possible to generate an asynchronous
train of response pulse. This train can be
controlled by the waveform and the frequency of
the input signals. In Figure (1), we show the block
diagram of this classical neuron.
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Figure 1. Block diagram of the classical neuron.

In the last five decades, since the publication of
the original work of McCulloch and Pitts, there has
been great interest in the neuronal networks
development. The McCoulloch-Pitts model helps
us to understand the characteristics of neurons as
systems. It reveals the fact that the behavior of a
simple nervous cell occurs not only in uncertain
behavior, but also in transitions in the occurrence
or absence of an event.

It is possible to consider that a model of the
nervous cell behavior that satisfies these previous
considerations could be the fuzzy neuron, as
suggested by the generalizations of Mcculloch-
Pitts [1] and Pérez-Calva’s [25 and 26] models. The
concept of a fuzzy neuron employs some concepts
and techniques of a fuzzy sets theory, published
by Zadeh [27] and applied to robots theory by
Wee and Ugh [28].

Introducing the fuzzy idea within a neuron model
allows electronic simulations adapted to systems
that are imprecise by definition, or that have an
enormous grade of complexity. Many biological
systems belong to this category.

In the classical neurons, each neuron is defined by
a transfer function that changes their inputs in an
output. This function can be or not lineal, but if it
is lineal with form f(x) = ax the output is the same
input modified by factor a. Input signals x; and
weight ®; are real numbers. The input signals
modified by their weight are added and could be
transferred by means of several output techniques
like step, ramp or sigmoidal, but they could also
integrate this sum before applying the response
function, resulting in the typical integrator
neuron.

C. Lee was first to introduce fuzzy sets in neural
networks [29] and proposed a Mc Cullock and
Pitts model generalization employing an
intermissions value between zero and one. In
1990, Keller and Hunt [30] proposed adding a
membership  function to the perceptron.
Yamakawa [31] introduced the idea of substituting
the simple weight for a real numbers weight fuzzy
set. Delgado [32] thinks that neurons have fuzzy
thresholds.

Vol.7 No. 1 April 2009, Journal of Applied Research and Technology




Electronic model of a dubois fuzzv integration neuron. J.L. Pérez S. et. al.73-82

3. A fuzzy neuron model.

For our model, we will start from the fundamental
assumption that the neuron is a kind of fuzzy
process, and that it should satisfy, therefore, the

following requirements; a neuron is fuzzy,
according to Kandel [33], if the following
conditions are satisfied:

€] (k) ij (k) <1 (1)

Where e; (k) is the j'th excitatory input at time k,
and i; (k) is the j'th inhibitory input at time k. The
threshold of the neuron is a real number.

The shooting neuron rules are the following:

1. All the inhibitory inputs should be zero, and

2. The sum of excitatory inputs should be greater
than or equal to the neuron threshold (T).

Sel 4 Vit 2T 2

3. When rules (1) and (2) are satisfied at time t =
k, the neuron is discharged at time t = k+1, in
any another situation the neuron will remain in
state of rest.

Kl

)
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]
lﬁ'll
X

4. Neuron output T; is equal to zero if not
discharged and any value ®; where: 0 < p; < 1if

is discharged.

So we can define a fuzzy neuron as one that has
fuzzy weight and thresholds and drives fuzzy
signals, fact that in the literature is recognized by
the FNN3 term. In _Figure (2), a fuzzy neuron
schematic model, as previously expounded, is
presented.

In this work, an electronics neuron that extends
the fuzzy neuron definition, generating an input
signals fuzzy sum and having shooting threshold
value defined by means of triangular membership
functions is presented.

The input fuzzy adder is definite for our fuzzy
logical equation:

Min{1-min (a, b), max (a, b)} (3)

Where a = ej(k) yb= ij(k), given that in fuzzy logic
the tautology P A —P is valid.

In Figure (3), the proposed fuzzy neuron block
diagram is shown:

Response
Function

Output

Figure 2. A fuzzy neuron blocks diagram.
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Figure 3. Proposed fuzzy neuron block diagram.

Also, the threshold condition is modified to be a
time dependent function and not a fixed value, or
the possibility of being biased by other neurons
fuzzy values both in amplitude and frequency.

Due to the Zadeh’s extension principle, it is
possible to perform arithmetic operations on real
fuzzy sets. In this sense, finite sums of fuzzy
numbers are feasible and easy to perform, and
then the problem of infinite sums (integration) of
fuzzy functions may be considered. Such
integration can be used to evaluate, by means of
fuzzy numbers and functions, the surface of an
area delimited by an ill-defined borderline. In this
sense, it is possible to think of a neuron model
that includes in his processes the fuzzy integration
of the input signals.

We present an electronic neuron that has a
Dubois fuzzy integration method [34], a fuzzy
activation function with a fuzzy threshold, and a
fuzzy response. The electronic design s
conformed by the following circuits: the input
adder circuit implementing a sum of membership
functions; next, the max-min operators circuit
which generates the fuzzy planes. The outputs of
these operators are applied to a parallel array of
electronic voltage comparators with variable

thresholds. These circuits cut the fuzzy planes. The
outputs of these circuits are added and then
integrated to obtain the fuzzy integral.

Dubois defines the fuzzy integral as

ity =SUP |urg e [g(u)], where, V = '[g (4)
gep ,

If we apply the Zadeh’s extension principle, we
can obtain

Mys = SUppe[o(u)], with [g=v. (5)
gep |

The activation function of the fuzzy neuron is

supp [o(u)] sfg>h

Mj,f(\,) - (6)

minuglg(u)] sifg<h

The block diagram of the fuzzy electronic model is
shown in Figure (4). The fuzzy integrator circuit is
shown in Figure (5).
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Figure 4. Block diagram of the fussy electronic neuron
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Figure 5.Fuzzy integrator circuit

The fuzziness of the neuron could be included in
several levels:

1. We can say that the response is variable in
accordance with the membership function that
will electronically be simulated by the
management of the threshold response as a
function of the neuron excitement. Instead, to
do that, the fuzziness resides in the neuron
response, it is included by managing the

3. One could also simulate fuzziness in the
response of pulse train, by commanding the
train via a membership function that controls
an output gate.

As the simulation possibilities permit us to
simulate the fuzzy response, using the neuron
response coupled to a synapses function, we can
establish fuzziness both on the delay time and on
the shape of the transitory states response.

L . The neuronal model is composed of three
threshold variation of the neuron to be excited.
. . . fundamental systems: synapses, axon and
2. One could also include the neuron fuzziness in .
- o fuzziness generator systems.
the delay circuit of the axon transmission,
producing delays in a fuzzy form, by In Figure (6), the Neuron blocks diagram is
membership functions in the oscillator. presented.
Inputs Exci
o Xcitatory
Inputs " N )
Fuzzy | | Plane | | Fuzzy | | Fuzzy
Inputs Adder Cutter | |Integrator| |Threshold
P | Inhibitory | I
Inputs
Fuzzy Spikes | | PIJIS:E | Delay
OQutput Generator Train v

Figure 6. Fuzzy neuron blocks diagram
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The axon system is composed of the following
circuits: an input fuzzy adder circuit, a Dubois
fuzzy integral circuit, an axon transmission delay
circuit, a signal frequency change circuit, an
output circuit.

The input adder circuit is designed with two fuzzy
adder circuits, one of positive inputs (excitatory),
and the other of negative inputs (inhibitory). The
output from these two adders is added in another
fuzzy adder circuit. In Figure (7), the fuzzy adder
schematic diagram is shown. Voltage is generated
by a certain function in such a way that the
applied voltages vary according to this function.
The output from these two adders is added to
another fuzzy adder circuit.

Figure 7. Schematic diagram of the fuzzy adder.

The axon transmission delay circuit is based on an
astable circuit of variable time that is driven by a
voltage controlled oscillator or by a signal
generator. If we generate monostable control
stochastic pattern, it is possible to generate
fuzziness in the axon transmission speed. This
allows the speeds in temporal logic neural
network to have the possibility of indefinite
couplings, which generates varied impulses
responses.
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In Figure (8), we show the delay circuit schematic
diagram.

o V+
= 9 &
TW o %
T

Figure 8. Circuit for an axon transmission.

We can generate the fuzziness in the generator of
pulses train circuit by means of a triangular
membership  fuzzy pulses generator that
commands the oscillator system gate. This permits
us to generate asynchronous responses. In this
case, the fuzziness of the system is even more
difficult to drive, but it does allow the simulation
of asynchronous responses. In Figure (9), we show
the train pulse generator and spikes circuit
schematic diagram.

Figure 9. Spikes generator

4. Results

In this work we compare, with the same input
signals, the classical leaky integrator neuron
responses against the fuzzy neuron proposed. Two
sinusoidal input signals, with the same amplitude
and frequency, one for the inhibitory and the
other for the excitatory inputs, were provided.
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The threshold fuzziness was driven by means of a
triangular signal, and they got the following
results. The classical leaky integrator neuron
response graphs and the integrator phase plane
will be shown. In Figure (10), the response graph
of a classical leaky integrator neuron is shown.

Aol
n /mjﬂumji
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Figure 10. Classical Leaky integrator neuron response
with two sinusoidal and two triangular inputs
For the same input signals and threshold
conditions, the fuzzy neuron response is shown in
Figure (11).

Volis

4

0 20 40 60 80 100

Figure 11. The fuzzy neuron response for the same
input signals and threshold conditions

In Figure (12), the response of the fuzzy leaky
integrator neuron with the same inputs, but with
ten times the frequency, is shown:

o

Figure 12. Response of the classical leaky integrator
neuron with two square inputs, one excitatory and the
other one inhibitory with triangular threshold signal.

In Figure (13), the fuzzy neuron with two square
inputs, one excitatory and the other one

inhibitory, with triangular threshold signal is
shown:

Volis
5

2 -1 1] 1 2 3 Volis ¢

Figure 13. Fuzzy neuron input output relation.

In Figure (14), we show an operator response.
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Figure 14. An operator response of the fuzzy neuron in
the same conditions of input signals.

In Figure (15), we show the schematic diagram of
the complete fuzzy neuron.

Figure 15. Schematic diagram of the fuzzy neuron
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