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ABSTRACT

This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters of
the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solve this equation, we use the
FEA method. The neural network (NN) uses the Levenberg-Marquardt (LM) method for training the system to have a more
accurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. The
simulation results are very promising.
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RESUMEN

Este trabajo presenta un modelo no lineal para un acelerémetro microelectromecanico de tipo capacitivo (MEMA). Asimismo,
en él se desarrollan parametros de sistema de el acelerémetro utilizando el efecto del término cubico del resorte de flexion
plegado. Para resolver esta ecuacion, usamos el método FEA. La red neuronal (RN) usa el método Levenberg-Marquardt (LM)
para entrenar al sistema a fin de que tenga una respuesta mas exacta. La RN disefiada puede identificar y predecir el
desplazamiento de la masa movil del acelerémetro. Los resultados de la simulaciéon son muy prometedores.

Palabras clave: Acelerémetro, MEMS, rigidez cubica, red neuronal.

1. Introduction

Nonlinearities in Micro Electro Mechanical System
(MEMS) can arise from various sources such as
spring and damping mechanisms [1-4], capacitive
circuit elements [5], nonlinear coupling between
the electrostatic force and displacement on the
MEM structure [6], therefore, electrostatic MEMS
have nonlinear regions[7].

Several researchers have developed various
capacitive MEMS accelerometers [8-11], however,
the circuitry design behind the sensing plate of all
those accelerometers is based on buffers and
demodulators (with low frequency sampling),
which is not a suitable response for high accuracy
applications. This paper presents a new method to
sense the motion of movable plates to have a high

accuracy and prevent the device from damage at
high accelerations wusing an artificial neural
network [17]. First, a nonlinear dynamic equation
with mechanical nonlinearities is obtained. Solving
this nonlinear equation can help to determine the
displacement of a movable plate with high
accuracy, then the applied acceleration at the
specific time is sent to the NN to identify and
predict the displacement of the movable plate. For
training the neural network, the Levenberg-
Marquardt algorithm is selected.

The accelerometer sensor is a combination of
springs, masses and motion sensing and actuation
cells as shown in Fig.1 (a). It consists of a variable
differential air capacitor whose plates are etched
into the suspended polysilicon layer. The moving
plate of the capacitor is formed by a large number
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of fingers extending from the beam, a proof mass
supported by tethers anchored to the substrate.
When responding to an applied acceleration (Fig.1
(b)), the proof mass’s inertia causes it to move
along a predetermined axis. As the fingers
extending from the beam move between the fixed
fingers, capacitance change is being sensed and
used to measure the amplitude of the force that
led to the displacement of the beam.

In Section 2, the analytical model of the MEM
accelerometer (MEMA) is obtained. In Section 3, a
nonlinear model using the neural network is
proposed. Simulation results are given in Section 4.
Finally, Section 5 includes the conclusions.
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Figure 1. Schematic diagram of the accelerometer
model.

2. Analytical Modeling of MEMA

An accelerometer can be modeled as a spring-
mass-damper system in the x-direction. Physics-
based models for the effective spring stiffness of
the folded-flexure suspensions, the effective
masses of the proof mass and viscous air damping
are used in the synthesis tool [12].

Approximations to the nonlinear rod theory
provide formulas for the coefficients of linear and
cubic stiffening, which enable predictions of spring
hardening behavior [1]. Considering the folded-

flexure spring and lumped element modeling, the
following expression for the spring is obtained:

F = kg X+ kg3 (1)

spring
Where K; and kjare the linear and cubic stiffness

of the folded-flexure spring respectively, they are
obtained as follows [1]:

ky =—12L3',5' (2)
_ 252EA
37 17518 (3)

Where e is Young's modulus of polysilicon, 1 is the
moment of inertia of the beam, L is the effective
length of the folded-flexure spring and A is the
cross section area of the folded-flexure spring.

Therefore, the first linear resonance frequency s
given by

— (4)

Where, m is the equivalent lumped mass of the
movable plate.

Damping caused by air flow between the rotor and
the stator fingers, and at the edge of the proof
mass, is the major damping mechanism. For the
lateral accelerometer, squeeze-film damping,
which occurs when the air gap between two
closely placed parallel surface changes, is not
critical. The damping coefficient between a single
comb finger gap is given as [13]

b=7.2ul (&)3 (5)

Where, u is the effective viscosity of air, t is the
finger's thickness, dis the finger's gap and | is the
finger's length. Table 1 and 2 summarize some
properties of the accelerometer's fingers. Table 3
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shows the calculated theoretical lumped
parameters for the accelerometer under study.

L 2 teoa |
f (ng)

Reference 13
114] 0 2 3 1.3 0.27

Reference
_ 55 3.9 5 1.5 0.57
[15]

Reference
. 50 3.9 5 2 0.36
[13]

Ref

SIEIENCE 165 | 39 | 5 2 | 045
[13]

Reference 20
B 2 2 1 0.124a
9] 0

Table 1. Specification of some accelerometers.

Where L;,W;,t; are length, width and thickness

of the fingers respectively, f, is the resonant
frequency, d is the finger gap and m is the mass

of the proof mass.

160GPa

2331kg/m’®

E (Young's modulus)

P (Density)

v (Poisson Ratio) =02

Table 2. Properties of the fingers (Material:

polysilicon).
ky 0.71 [N/ m]
ks 1.136e11 [N/m?]
m 2.7¢ 10 [kg]
b 11.9¢ — 6[kg/s]

Table 3. Analytical lumped parameters of the
accelerometer.

movement ¥

proof mass A/

ring
spring damper

b

B .
LA W

Figure 2. Schematic of a capacitive accelerometer.

In general, considering the equations above and
Fig.2, the open-loop nonlinear equation of motion
can be written as

d?x . dx 3
M—-+b— + kK X+ K, x° = 6
dz g e T MR (6)
Where, ay: is the applied acceleration from

environment, x is the center displacement of
proof mass. The response of this equation is
calculated using the Runge-Kutta method and
shown in Fig.4.

3. Nonlinear Model of MEMA Using an Artificial
Neural Network

Figure 1 shows the vertical section at constant
12wt.% (5.3at.%) Zn of the Al-Zn-Mg phase
diagram [13], where the vertical lines indicate the
Mg content added to the Al-12wt. %Zn master
alloy. The microstructures are constituted mainly
by columnar dendrites of a-Al with small t
(Al,MgsZn3) precipitates and eutectic (o+t) in
interdendritic regions, as is shown in Figure 2 and
in agreement with the work of Alvarez et al. [14].

The ANN's inputs are applied accelerations and
time of actuating of the specific acceleration
applied to the device. The output of the ANN is the
displacement of the movable plate; here, a three
layer feed-forward network is created (Fig.3). The
first layer has 22 linear transfer functions, the
second layer has 10 hyperbolic tangent sigmoid
transfer functions and the last layer has one linear
transfer function.
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Figure 3. Neural Network Design.

For training the network, we suggest the
Levenberg-Marquardt (LM) algorithm. In the
following, the Levenberg-Marquart method is
reviewed [16]. In the EBP algorithm, the
performance index F(w) to be minimized is defined
as the sum of squared errors between the target
outputs and the network's simulated outputs,
namely:

Fw)=e'e (7)

Where, W=[W,, W,,..., W, ] consists of all weights

of the network, e is the error vector comprising the
error for all the training examples.

When training with the LM method, the increment
of weights Aw can be obtained as follows:

aw=[3T3+u[13Te @)

Where, J is the Jacobian matrix, W is the learning
rate which is to be updated using the B depending
on the outcome. In particular, p is multiplied by
the decay rate B (0<B<1l) whenever F(W)
decreases, whereas p is divided by B whenever
F(w) increases in a new step.

The standard LM training process can be illustrated
in the following pseudo-codes:

1. Initialize the weights and parameter p (u=.01 is

appropriate).

2. Compute the sum of the squared errors over all

inputs F(W).

3. Solve (8) to obtain the increment of weights Aw
4. Recompute the sum of squared errors F (W)

Using w + Aw as the trial w, and judge
IF trial in step 2 THEN

W=Ww+Aw
p=p p(p=.1
Go back to step 2
ELSE
u=1
go back to step 4
END
Considering the performance index s
F (w) = €' e using the Newton method we have:
Wic,1 =Wic - Al - gk (9)
A =V F W), (10)
gk = VF(W)‘ W=W (11)
oF (w)
[VEW]; =—=
J aWj
N e (w) 12
=2) e(w).—~
2.5
The gradient can be written as
VE(X) = 2J " e(w) (13)
Where,
oey o8y oey
oWy OW, oWy
08y Oy 0e,
J(W) =| ow, ow, oWy, (14)
Op O€p O&p
L oW, 0w, OWy |

J(W) is called the Jacobian matrix.
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Next, we want to find the Hessian matrix. The
k, j elements of the Hessian matrix yields as

i
0 0

222:11 2,5?%
0% (W)

+6 (W)-W}
j

(15)
j

The Hessian matrix can then be expressed as
follows:

VZEW) =237 (W) - J(W) + S(W) (16)

Where,

S(w) = Y & (w)- Ve () (17)
i=1

If we assume that S(W)is small, we can

approximate the Hessian matrix as

V2F (W) = 237 (w)J(w) (18)

Using (12) and (4), we obtain the Gauss-Newton
method:

Wk+l =
W, —[207 (W) - I(wi) 1237 (wi Je(wy)
=W, —[37 (w) - I(wi) [T (w)e(wy)

(19)

The advantage of the Gauss-Newton method is
that it does not require calculation of second
derivatives.

There is a problem with the Gauss-Newton
method: the matrix H=JTJ may not be invertible.
This can be overcome by using the following
modification:

The Hessian matrix can be written as
G=H+/ (20)
Let us suppose that the eigenvalues and
eigenvectors of H are {Al, A2,....,An} and
{z1,z2,.......,zn}.Then

Gz =[H+ulz
=Hz + pz
=4z + 11z

=(4 + 1)z (21)

Therefore, the eigenvectors of G are the same as
the eigenvectors of H, and the eigenvalues of G are
(Ai+p). Matrix G is positive definite by increasing p
until (Ai+p)>0 for all i, therefore, the matrix will be
invertible.

This leads to the Levenberg-Marquardt algorithm:

Wy = W —[37 (W )I(w,) + 2 [ 37 (wi)ewy ) (22)

aw =37 W) Iw) + [T (wdelw) (3

As it is known, the learning parameter W illustrates
the steps of the actual output movement to the
desired output. In the standard LM method, p is a
constant number.

In this paper, the input matrix for training the NN
has 2*6000 dimensions and the output matrix has
1*6000 dimensions. After training the NN, for
testing it, a 2*120 matrix is given to the input of
the NN and the results are evaluated.

4. Simulation Results
By using Eq. (6), the displacement response of a

movable plate with 10g (=100m/s?) acceleration is
calculated and shown in Fig.4.
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To validate Fig.4, we use the FEA analysis for Sx10” i ‘
modeling this accelerometer. The results are asf = T e
shown in Fig.5. S Y S N

w
T

With regard to the cubic stiffness of the spring, the
results are more accurate (Fig.6), therefore, when
the ANN is trained, its output can be fit with the
diagram that regards the cubic stiffness (Fig.7). i

25

Displacement of movable plate
"

s .
[ 1 2 3
time(ses) F1ok

| Figure 6. Comparison between the calculated
. ] displacement response with k3 and without k3.

displacement of movable plate
o
&

38+

25+

Time (sec) x10*

Displacement of movable plate

Figure 4.Calculated displacement response.

One of the advantages of this method is that we . . ‘ . .
can predict the damage to the fingers of the device ’ o U e W=
because of the high acceleration, so an electrical

feedback to the movable plate can prevent the Figure 7. Output of the NN with a test data with 10g
damage. acceleration.

: ANSYS 5. Conclusions

{/“\ This paper presented a nonlinear model for a
Ao N " capacitive MEMA. System parameters of the
3 s / accelerometer were developed using the effect of
N cubic term of the folded-flexure spring. To solve
/ this equation, the FEA method was used. The
iy artificial neural network (ANN) wused the
v L T T T A Levenberg-Marquardt (LM) method for training
Tave the system to have a more accurate response. The

designed ANN identified and predicted the

displacement of the movable mass of the

Figure 5. Displacement of the movable plate with the accelerometer. The simulation results were very

FEA method. promising.

nEms
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The neural network is a good method to predict
the response with very high accuracy. The
response of the device using cubic stiffness is more
accurate, therefore, the ANN acts better than the
linear model.
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