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ABSTRACT

In this work, an improvement of the traditional digital design methodology is proposed. The major change is the use of a semi-
formal specification for the code implementation, the use of a verification tool and the establishment of properties for the
formal verification of Finite State Machines (FSM). From semi-formal specifications, assertions were written using Property
Specification Language (PSL) for an alignment circuit. Finally, a set of properties for the verification of this module were
established and proved using a model checking tool. Our statistics proved that the whole design process was improved and
considerable design time was saved.

RESUMEN

En el presente trabajo se propone una mejora a la metodologia del ciclo de disefio digital tradicional. La contribucion principal
es la generacion de un conjunto de propiedades a partir de una especificacion semi-formal de requerimientos, que permiten la
verificacion formal automdtica de una mdquina de estados finitos (FSM). Estas propiedades se escriben en el lenguaje PSL. Se
muestra como, a partir de las propiedades, se puede obtener cédigo VHDL que implementa la maquina de estados. Nuestros
resultados muestran que la metodologia de disefio propuesta resulta en una disminucién del tiempo requerido para realizar la
verificacion.

Keywords: Formal verification, assertion based verification, finite state machines, semi-formal specification, model checking
tool.

1. Introduction Language (HDL) like Verilog or VHSIC Hardware

Description Language (VHDL). After they create a

Ensuring functional correctness on RTL designs testbench, which includes the model for Device

continues being one of the greatest challenges for Under Verification (DUV), then input patterns, so-

ASIC's design teams. With ever increasing design
sizes, verification becomes the bottleneck in
modern design flows. Up to 80% of the overall

costs are due to the verification task [1].

Generally, the verification engineers use the
simulation to demonstrate that the design’s
implementation satisfies its specification using a
black-box testing approach. They create a model of

the design written in a Hardware Description

! Corresponding Autor

called simulation stimuli, are created to represent
typical or critical execution traces and are applied
to the DUV.

The functional verification process will never
guarantee that a design is error-free [2], i.e., it is,
until now, a hard time consuming task, which can
only demonstrate the presence of errors but not
their absence. One way to improve significantly
the performance and saving time of this traditional

verification is to increase the observability and the
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controllability of the design during the verification
process. We can do this using assertions and
formal verification techniques in a process called
Assertion Based Verification (ABV).

A problem with this technique is that the designer
and verification engineers are reluctant to adopt
these design and verification methodologies
without a clear proof that these methodologies
improve both quality and efficiency of the whole
design process. Up to this point, it should be
added that the majority of engineers do not have
deep knowledge about Logic. This fact does not
allow them to define a set of properties, from
the requirements, describing the intended
behavior of the design [3][4].

Some design engineers create a gap between the
their
implementations; this has a remarkable impact on

specification  of requirements  and
verification efforts. For example, let us consider a
requirement: “The design must perform the
initialization of the circuit”. In this case, there is
too much missing information: What signals are
involved and initialized? How is the reset asserted
(active high or active low, positive, or negative
edge)? These ambiguities, in these situations, can

lead to misinterpretations.

In [5] Winkelmann presents the advantages of
using a tool as property checker for verifying the
block-level functional correctness of a large ASIC;
and, he says: “the two biggest advantages are

e Coding and Verification can be done in
parallel.

e The whole state space of a test case will be
verified in a single run.”

But, he does not show a detailed methodology for

this purpose. For this reason, we propose the use

of a new form to express the set of requirements

of the design, which we will call semi-formal

specification and whose objectives are

e To fill
specification of requirements of the design

the gap existing between the

and the implementation in HDL realized by a
design engineer.

e To avoid ambiguity and misinterpretations of
the requirements specifications of the design
when the implementation and the verification

semi-formal

process is carried out, i.e.

specification is a common “well-defined”

point for the design and verification
engineers.

e To serve as help to obtain the set of
properties necessary to carry out the formal
verification of the design, without the need
that the verification engineers have deep
knowledge of techniques associated with the

formal hardware verification.

Definition 1.

representation of the implemented code in some

Let wimp and p spec be the

language and the representation of the set of the

requirement specifications, respectively, of a

design. Then, with the verification process, we will

prove that the following general logical
relationship is true:

1
Yimp = Psrec @
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should be able,
properties,  to

A formal verification tool

employing  logical prove
mathematically an equation equivalent to this one.
The main objectives of this paper are

e To introduce the use of the semi-formal
specifications inside the design cycle

e To establish a set of properties written as
assertions using PSL, which allows the
development of a formal specification for
FSMs

e  To use a design cycle, which involves the use
of a formal verification tool (Safelogic

Verifier) for FSM validation

e To apply the methodology ABV for the
verification of FSM showing major statistics.

2. Theoretical background

2.1 Formal Verification

An implementation, e, consists of a description
of the actual hardware design that is to be
verified. A specification, pspec, is a description of
the intended/required (properties) behavior of a
hardware design. Formal Verification (FV) is a
systematic process of ensuring, through
exhaustive algorithmic techniques, that a design
implementation e satisfies the properties
established in its specification pspec. With formal
verification, we are able to overcome both of
simulation’s challenges: the observability and the
controllability, since formal verification
algorithmically and exhaustively explores all
possible input values over time. The simulation is
empirical - meaning you use trial and error to
discover bugs. It would take an intractable
amount of time to test all possible combinations.
Therefore, it is never complete. However the

verification engineers are focusing their effort on

how to break the design, not on what the design is
intended to do. Formal verification, on the other
hand, is mathematical and exhaustive and allows
the engineer to focus solely on intent, or “what is
the design’s correct behavior”. The main
disadvantage of the formal verification is its
limited capacity when the explosion state [6] is

present.

There are two types of formal verification:
e EQUIVALENCE CHECKING: It is concerned
with  the that
representations of the same design are

verification two
equivalent. Typically, it is gate level versus
another gate level or RTL
e MODEL CHECKING: Specification is in the
form of a temporal logic formula, the
truth of which is determined with respect
to a semantic model provided by an
implementation
It does not matter what form of proof method is
employed, several criteria need to be evaluated in
order to make meaningful comparisons between
various approaches, and these are
e Nature of the relationship explored
between the requirements specification of
the design and their implementation

Vivp = Pspec

Vive = Psrec

e Soundness and completeness of the proof
method

e Degree of automation

e Computational complexity of the proof
method
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gister

“~J | MODEL CHECKING PASS
TOOL,
PROPERTY) _.--"" MEe® FAIL

¢

Counter-example

Fig 1. Formal Verification

In Figure 1, it is shown the formal verification
process. If the model satisfies the behavior, a
message of PASS is given by the tool. If the proof
fails, a counter-example is presented.

2.2 Definition of Assertion-Based Verification
(ABV)

The purpose of the ABV [7] is to convert functional
features of a specification into explicit logical
properties. The intended behavior of a design can
be defined as a set of logical and timing
relationships called properties which describes
logical behaviors of the system over the time while
an assertion can be considered as an
implementation of a property.
Assertions can be used as inputs to both
In the

market, there are some languages and tools that

simulation and static verification tools.

allow the implementation of assertions, among
them SystemVerilog [8], but only a few of them are
accepted as standards.

The current available static verification solutions
are capable of verifying functional equivalence of

different implementations (e.g. Register Transfer
Level and Gate Level Descriptions). However, these
tools have not been designed to verify an
implementation against their specification. Each
assertion verifies a certain functional feature of the
design. Assertions can be embedded into HDL
source code or they can be located in a separate
property file. In both cases, they are compiled
together with HDL code. Therefore, the target is to
improve both verification quality and efficiency.

Assertions can be used in methodologies based on
simulation, as hardware monitors to complement
the existing verification environment. In static
methods, assertions provide also an alternative
verification path to verify all computational paths
of the design.

2.3 Logical Temporal Linear (LTL)

The LTL is an extension of classical propositional
logic devised to formulate statements about
events that change over the time. In the LTL
semantics the time is discrete and it is seen as an
infinite succession of a linearly ordered set of
states, usually represented by the set of the

natural numbers N . This line has an initial state
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(state zero) and it extends infinitely towards the
future. Typical modalities of this logic are
“Sometimes P ”: this proposition is true if P is

completed in some future moment (or now)

if P is
completed in all the future moments (or now)

“Always P”: this proposition is true

The collection of temporal formulas @ that are
constructed on a set of boolean variables
Q= Py, Pyyeess Py is defined inductively in the
following way:
e Every pe( isatemporal formula.
o |If ais a temporal formula, then so are
O« (in following state « ), and —«a (not
a).
e If ¢ and [ are temporal formulas, then
soare U (o untiif),and av f

(a or f).

e Other operators can be defined in terms
of the above operators:

eventually o : (2)
a =TV«
always « : (3)

Oa=—-90-a

However, the properties to describe logical
behaviors of the hardware’s design can be
specified using LTL or PSL. All the operators of the
propositional logic have been defined for both

languages.

2.4 Property Specification Language (PSL)

PSL, developed by Accellera [9], is a language for
the formal specification of hardware. A detailed
description of PSL can be found in [9]. It is used to

describe properties that are required to hold on
the design under verification and it can be used to
capture requirements regarding the overall
behavior of design as well as assumptions about
the environment in which the design is expected to
operate. A PSL specification consists of a set of
assertions. PSL provides a standard means for
hardware designers and verification engineers to
document the design specification rigorously. It is
easy to learn, write, read and it has a concise
syntax and rigorously well-defined formal
semantics. Both VHDL and Verilog languages are

provided.

PSL has been divided into four different layers:

Boolean, temporal, verification, and modeling
layers. The boolean Layer is where PSL specifies
the conditions that define a behavior of interest,
referring to signal, variables, and values within an
HDL description of a design. Boolean expressions
are evaluated in a single evaluation cycle. The
temporal layer is used to describe the behavior of
the design over time and represents the heart of
the language. It can also describe properties
involving complex temporal relation between
signals. The verification Layer provides directives
to the verification tool. It is used to indicate the
verification tools what to do with the properties

described by the others layers.

PSL can express the following kind of behaviors:
o A behavior may always or never hold true

e A behavior may always or never hold true

only within some cycles

e A behavior may express some specific

sequences of events

e A behavior may express an eventuality
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e A behavior may have exceptions to the rule

The next classification of property specifications
was given in [6]:

e Safety: It denotes that certain condition
crucial for a proper functioning must not be
violated at any time instance: Something
bad will never happen

e [ljveness: It comprises properties where a
desired or necessary system condition will
be reached: Something good will eventually
happen

e Fairness: It is used if certain properties must
hold again and again: Something good will
happen infinitely often

2.5 Structure of properties using PSL

PSL allows the writing of design properties. A PSL
property defines a behavior that can be checked
(asserted) or assumed as a constraint. A property
can be thought as a sentence with a containing
enabling condition, a fulfilling condition (which is
the behaviour to be checked), an optional
discharging condition, and an optional clocking
condition.

The most general form of a property is shown
below:

property <name> is

[occurrence operator] [enabling_condition(s)]
[implication_operator(s)] (fulfilling conditions)
[discharging_condition] [@(clock_expression)];
The key terms of a property expression are:

0 property : It is a keyword specifying that
what follows is a behavior
0 A property <name> is a unique identifier.

HDL naming conventions apply

The ocurrence operator is one of always
or_never _and _eventually! and indicates

whether the behavior should always
occur, should never occur or should
eventually occur; omitting the occurrence
operator causes the check to occur at
time zero only

The enabling condition can be any
Boolean  expression or  sequence
expression

The implication operator specifies the
logical relationship between the enabling
condition and the fulfilling condition. The

operator is one of the following symbols:

0 = Logical IF implication: The behavior
can be read as “if (enabling condition)
right hand side(RHS) is true, then the
(fulfilling  condition) left hand

side(LHS) must also be true

0 = next[n]: The behavior can be read
as “if (enabling condition) right hand
side(RHS) is true, then the (fulfilling
condition) left hand side(LHS) must be
true in the next nth verification cycle.
The LHS must be Boolean

The fulfilling condition is the behavior to

be tested. The fulfilling condition can be

any boolean expression or sequence
The discharging condition is a condition

that indicates to stop the checking of the
behavior. Discharging conditions include
the following:

Until (Boolean expression): When all of
the enabling conditions have evaluated to

true, the fulfilling condition must be true

until the Boolean expression becomes
true.
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abort (Boolean expression): The abort operator
cancels the checking of an assertion

2.6 Safelogic Verifier

Safelogic Verifier is a model checking tool
developed by Safelogic [10] and it has already
been used for circuit verification. It performs an
automatic formal verification, without user
intervention, of hardware designs implemented

with VHDL language, using PSL assertions.
3. The Design Cycle

3.1 Design cycle

Figure 2 shows our proposal of the whole design
cycle, where the highlighting points are the
inclusions of the semi-formal specification and the
use of a formal verification tool. The semi-formal
specification is a starting point for the designer,
which uses it for writing the code in some HDL, as
also for verification engineers, who write the
properties using LTL or PSL for Safelogic Verifier.
The most important aspects of the whole design
cycle are described.

A.  Stage of specification
Requirements Specification (or informal problem

Stage of
Specification

description). It defines a set of general
characteristics or requirements p = {ps, P2, -, Pn}
for the design of the FSM or a circuit. Each
requirement must capture only a particular
behavior of the FSM and each behavior will be
expressed by one or more properties. PSL
assertions can be used to implement these

properties.

Architecture. State diagrams are constructed to
define the behavior of an FSM, which must satisfy
the requirements specification. State diagrams for
to define PSL
assertions, because they show their expected

FSMs are particularly useful

behaviors.

Semi-Formal Specification. Making a refinement of
the original requirements o jointly with the
architecture document, timing diagrams, signals
description and entity, a semi-formal specification
¢ = {pn @
refinement s

., ©m} is obtained, where a
defined as the
transforming a requirement of the circuit or FSM

process of

into another one, equivalent and expressed in

semi-formal form.

Definition 2. A semi-formal specification is a form
to express a requirement using key words that

Stage of
Implementation

/S -

|
Stage of /

Verification

v Functional
Verification

Stage of
Results

EResults of
Verification

Fig 2. Design Cycle
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represent the functionality of logical, temporal
operators and specific statements expressed as
well-formed formulas associated with a property
or expected behavior of the design.

From the semi-formal specification it is possible:

e To obtain a set of properties &= {&, &, ...,
o}

e Toimplement the code in HDL

This way can ensure that each requirement p, p =

P, P2, ., pn) is described by its semi-formal

specification ;.

eer xe

B. Stage of implementation
VHDL Implementation & Formal

From the semi-formal specification, the VHDL

specification.

implementation 5, of the FSM and a set of PSL

assertions &= {&, &, ..., &} are obtained.

C. Stage of verification
Then, the FSM or circuit is verified using the model

checking tool Safelogic Verifier. 1t allows to assure
that an implementation in VHDL satisfies the
properties of its specification, i.e. :

Yo 6 (4)

When an error is found within of yiup, a
counterexample is generated and used to correct
Winpi- Also, to validate the design of the circuit, a
functional verification is executed to ensure the
global correctness of the implementation. The
functional verification is necessary to detect errors
in the semi-formal specification ¢ generated
during the refinement of p.

D. Stage of results

In this stage, reports containing statistics of
metrics about formal and functional verification

are generated. Therefore, conclusions about the

complete verification process over the properties
defined are obtained.

3.2 Generation of PSL assertions and semi-formal
specification from requirements specification for
the design

An assertion is built from Boolean Expressions

(which describe behavior over one cycle),
sequential expressions (which describe multi-cycle
(which

describe relations over the time between Boolean

behavior), and temporal operators
expressions and sequences). Assertions are able to
capture complex intended behaviors of the design
in a formal way. We use PSL as an extension of the
Linear Temporal Logics (LTL) to express the
assertions. The following notation was used for
the elaboration of the requirements and semi-

formal specification of our designs.

R_SM:i => i-th requirement

SF_SM:I => i-th semi-formal specification

We used the following words as reserved words
for the
specifications; they represent the functionality of

description of the semi-formal

the logical and temporal operators needed to
elaborate the specification:

Word LTL operator | PSL operator
Always O always
happens that
Never —0 never
happens that
If «a then o— > IB o —> ﬂ
B
In the O« next(a)
following
clock edge o
a and f anp a and [
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An example at low-level of how a PSL assertion
can be extracted from a requirement is explained:

Reset requirement (requirement specification)
[R_SM:1]
initialization of the circuit

The design must perform the

Refinement
[R_SM:1.1] The module must have a
synchronous reset mode to load
FPG_FPind_out port and internal states with
initial values.

[R_SM:1.2] Synchronous reset mode
must be reached when the corresponding
signal is active with ‘1’ logical

Semi-formal specification

[P_SM:1] ResetOp

Always happens that

If an operation of reset is required, then in
the following <clock edge the port
FPG_FPind_out will be loaded with the
initial value (LOW)

PSL assertion

property ResetOp is
always(FPG_Reset_in—next(FPG_FPind_out
= LOW); assert ResetOp;

3.3 Finite State Machine (FSM)

One of the major elements in the hardware
designs is the FSM. Due to its practical importance,

the problem of FSM verification has motivated

research in this area to ensure its correct
functioning and to discover aspects of its behavior
[11]. The problem of FSM becomes more complex

when the number of states and their transitions

grows. Therefore, it is difficult to construct
checking sequences to assure that the
implementation of the FSM satisfies its

specification. An FSM contains a finite number of
states and produces outputs on state transitions
after receiving data. FSMs are widely used to
model systems in diverse areas. A general FSM is
shown in Figure 3.

Definition 3. A Finite State Machine (FSM) is a
sextuple:

M=(@,0,5,5,1,5) (5)

e [, O, and S are finite and nonempty sets of
input symbols, output symbols, and states,
respectively

O0:Sx1—S isthe State (6)
Transition Function
A:Sx1 =0 is the (7)

Output Function

e When the machine is in the current state se S
and receives an input a from /, it goes to the

58S xI =8
ASxI >0

Fig 3. Finite State Machine
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e next state specified by J('s, a)and produces
an output given by A(s, a)

e S, S, isthe set of initial states

3.3.1 Implementation in VHDL of FSM

The functionality of an FSM includes the following
signals:

e Clock Input (FSM_Reset_in)

e Reset Input (FSM_CIk_in)

e Symbols Input (FSM_Data_in[n,,0])

e Symbols Output (FSM_Data_out[ng,0])

e Set of States (S)

Figure 4 shows the input and output signals of the
entity for a general FSM.

The implementation in VHDL for an FSM can be
done using two processes; while Figure 5 shows

the diagram, in Table 1 a description in VHDL for
this architecture was given.

architecture fsm_arch of fsm is

type TState is (FSMSt-0,FSMSt-1, ..., FSMSt-n); -- States
declaration

signal FSM_State : TState; -- State signal

begin

State_Process : process (FSM_clk_in & FSM_Data_in &
FSM_Data_out)

Store_Process : process ( clk, rst)

end fsm_arch;

Table 1
VHDL description of an FSM using two processes

The architecture in VHDL for an FSM that uses one
process is shown in Figure 6 and a description in
VHDL for this architecture is shown in Table 2.

FSM Reset in
FSM_Clk_in

FSM_Data_in [n;:0]

5= {8, 85 ...

FSM_Data_out [n,:0]
[r———-
> Sp

Fig 4. Finite State Machine

FSM_Data_in [n;:0]

FSM_Data_out [n,:0]

Store Process

Chrvent State

Next State

Store Process

Fig 5. Architecture for an FSM using two processes
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architecture fsm_arch of fsm is

type TState is (FSMSt-0,FSMSt-1, ... , FSMSt-n); --
States declaration

signal FSM_State : TState; -- State signal
begin
State_Process : process (FSM_clk_in & FSM_Data_in &
FSM_Data_out)

end fsm_arch;

Table 2
VHDL description of an FSM using one process

This implementation is difficult to simulate and to
synthesize but a description can be done using
natural language.

3.4 Specification of requirements for the FSM

A specification of the set of
requirements of the FSM is

necessary

1) Reset Operation. It must have a "Reset" input
port to re-establish in a way [synchronous |
asynchronous ] that initializes its operation
and to load default values for signals and
variables used from an active signal in [high |
low]

2) Number of states for the FSM. The number of
states must be finite. In each state the
behavior of the outputs must be clearly
defined.

3) Transition between states. All conditions for
the transitions between states must be
defined.

4) Loops. It must have defined all conditions of
loop in each one of the states of the FSM.

3.5 Properties for the formal verification of FSMs

To carry out the formal verification of the design of
some FSMs, a set of properties® was given in [12].
To these ones, we added the properties for non-
connectivity between states and output FSM.

1. Reset Operation: (RstOpFSM)
It always happens that if a reset operation is
required, then the FSM takes its initial value
Property RstOpFSM is always (reset_in —
(FSM < Initial value))

2. States Reachability: (StateReach)
Each one of the states [s; € Si=1, 2, ..., n] of
the FSM will eventually be reached
Property StateReach is eventually (FSM_state
=[sieSi=1,2,..,n])

3. Connectivity of states: (StateConnectivity)
It always happens that if the FSM reaches a
state different to the current, then the FSM
will eventually return to current state again
Property  StateConnectivity is  always
((FSM_state /= s, ) — eventually (FSM_state
= 5¢)

4. Transition? between states: (TransStates)
It always happens that if the FSM is in state s
and completed the conditions of transition to
go to another state then in the following
clock edge the FSM moves to that state s;
Property TransStates is always ((FSM_state =
Sk and Srransmion (Sk to s;)) = next (FSM_state
=5));

5. Permanency in a state: (LoopState)
It always happens that if the FSM always

remains in state s, then the transition
conditions were never satisfied

Property LoopState is always
(always(FSM _state = s, ) — never
(Orransimion));

6. Non-connectivity between
states(Nonconnectivity)

* Where symbol — is the logical operator for the implication

Symbol < is the assignation operator
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It always happens that if state s, is reached,
then state s; is never reached

Property Nonconnectivity is always
(FSM_state = s, — never (FSM_state = s)));

7. Valid Output(ValOutput)
It always happens that if the FSM reaches
every state [s; e Si =1, 2, .., n], then the
FSM_Data_out takes a value of the set O; € O
fromi=1,2,.,n

Property ValOutput is always (FSM_state <
[sieSi=1,2, .., n] > (FSM_Data_out < [0;
eOfromi=1,2,..n]);

This set of properties was proposed since it covers
the principal functionalities for FSMs. The
particular objectives for each property are
described next:

Property RstOpFSM tests that the FSM begins in a
specific state a clock cycle later than a reset
operation is required.

Property StateReach tests that it exists at least an
input sequence that allows reaching each one of
the states defined in the FSM.

Property StateConnectivity tests that it does not
exist any sink state in the FSM.

Properties TransStates and LoopState test that
only the transitions and loop conditions defined in
the specification of the FSM occur when their
correspondent valid events in the input are
present.

Property Nonconnectivity tests transitions non-
specified in the requirements of the FSM that can
be occurring in unexpected conditions.

Property ValOutput tests only valid outputs
appearing in the response of the FSM, also defined
in the specification of the FSM.

3.6 Relationship between requirements (p) and
assertions (&)

There is a relationship between the set of general
requirements o of the FSM and the set of
assertions & obtained from the semi-formal
specification of the FSM. This relationship can be
expressed by the formula (8).

P, > G AEA A Gy (8)

That means: to each requirement p a set of
assertions &, (i el,~--,k) is associated, where k is

finite but not equal for all requirements.
Therefore, a requirement p; is verified using own
corresponding set of assertions, an
implementation in a HDL language, and a formal
verification tool.

3.7 Properties classification

From the set of all properties defined to carry out
the formal verification of FSMs, we identify a
subset of them in order to write code in VHDL. This
classification is shown in Table 3.

Classification Subset of properties

Used only to 1. Connectivity of states:
formal (StateConnectivity)
verification 2. Non-connectivity
between
states(Nonconnectivity)
Used to write 1. States Reachability:
code in VHDL and (StateReach)
to formal 2. Reset Operation:
verification (RstOpFSM)

3. Transition between
states: (TransStates)

4. Permanency in a state:
(LoopState)

Table 3 Properties Classification
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The following scheme was proposed to write VHDL code, using this property

classification, for VHDL architectures with one and two processes:

One process

Two processes

architecture FSM_arch of arch is

-- Values defined in States Reachability:
type state is (FSMSt-0,FSMSt-1, ..., FSMSt-n);

-- State signal
signal FSM_state: state;

begin
State process: process(FSM_clk_in &
FSM_Data_in & FSM_Data_out)
begin
-- Reset Operation: (RstOpFSM)
if FSM_rstSignal = ACTIVE then
-- FSM < Initial value
elsif clkSignal'event and clkSignal=ACTIVE then
-- State Machine Scheme
case FSM_state is
-- FSMSt-i Scheme
when FSMSt-i=>--0<i<n
-- Transition between states: (TransStates)
if “State Transition” then
-- Next State Assignment
elsif Other “State Transition” then

-- Permanency in a state: (LoopState)
else
-- State Loop Assignment
end if;
when others => null;
end case;
end if;
end process;
end FSM_arch;

architecture fsm_arch of fsm is

-- Values defined in States Reachability:
type TState is (FSMSt-0, FSMSt-1,...., FSMSt-n);

-- State signal
signal FSM_State : TState; -- State signals

begin

State_Process : process (FSM_clk_in & FSM_Data_in &

FSM_Data_out)

-- Reset Operation: (RstOpFSM)
if FSM_Reset_in = ACTIVE then
-- FSM < Initial value
elsif clkSignal'event and clkSignal=ACTIVE then
-- State Machine Scheme
case FSM_state is
-- FSMSt-i Scheme
when FSMSt-i=>--0<i<n
-- Transition between states: (TransStates)
if “State Transition” then
-- Next State Assignment
elsif Other “State Transition” then

-- Permanency in a state: (LoopState)
else
-- State Loop Assignment
end if;
when others => null;
end case;
end if;
end process;

Store_Process : process ( clk, rst )

-- Reset Operation: (RstOpFSM)
if FSM_Reset_in = ACTIVE then
-- FSM_State < Initial value
elsif clkSignal'event and clkSignal=ACTIVE then
-- Current State Assignment
end if;
end process;

end FSM_arch;
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4. Alignment process — A Study Case

In order to apply the above-mentioned concepts,
an example should be given. In this paper, a circuit
for the alignment process was selected because it
has more than two states and characteristic
temporal behaviors. We will begin by defining the
concepts framing pattern, header, and alignment
in our context. Other definitions, close to these
ones, can be read in [13].

Definition 4. A framing pattern <A> is a small piece
of information that allows the receiver to identify
the beginning of the frame for data processing
and, therefore, it provides the synchronization
between the transmission and reception parts.

Definition 5. A header is a finite sequence of bits
containing a pattern called framing pattern <A>.

Definition 6. The alignment is a process to identify
the alignment pattern, or a part of it, contained in
each one of the input frames in order to establish
the synchronization between the receiver and the
transmitter.

Definition 7. An information flow can be seen as a
sequence of frames.

While circuits that build and process the frames
are called framers, aligner circuits are or may be
parts of the framers. The framer is the first
module in which the input data stream is
processed [14]. The function of this circuit is very
important because delimits bytes and input
frames, providing synchronization for the correct
operation of the remaining modules such as
processing as generation in SONET/SDH [15]
devices.

The objectives of these circuits are
e To align the input data stream by means of

the alignment pattern.

e To detect the main defects or possible failure
when processing the input stream.

Problem 1. An ALIGNER is a circuit that carries out
the search and validation of the framing patterns
in the input data stream; this function will be
represented by W/ 5 \on -

An aligner can be seen as a circuit, see Figure 7,
composed of two major blocks: the processor,
where the data are processed; and the controller,
where a state machine controls the operations
performed by the processor. It can defined as: </,

¥ aLion 0>, Where

1. | :{Sindata’SCLK ’Sreset’SCONFIG}'
Where S

ndata 1S @ Vvariable of n bits that

represents the input data stream, S is the

clock system variable, S is the reset

reset

variable, and configures the

Sconric
component.

2. O ={S,uduar Sswc+ Soor + Stoas Sne } - Where
S

outdata

is the aligned data output, Sg,c
indicates the presence or absence of the
frame synchronization or alignment state,

Soor indicates the hunt or out of frame state,
S, oa indicates lost of alignment state, and

S\r indicates a new frame beginning.

3. Wauon ={@ret»PaLion} - These functions are

temporal logical functions that satisfy
generally one specification, where:

® (. isinvoked when the reset occurs.

The state machine will be in the initial
state and the registers will be loaded
with default values.

®  Quien IS the frame alignment function

and it carries out the bytes delimitation
(if necessary), the framing pattern
detection, the new frame signal
generation, and it indicates the following
states, hunt, and lost of alignment.
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Fig 7. Principle of an Alignment

The processor performs function ¥ 5 gy, Which is

controlled by the state machine running in the
block controller. When a framing pattern is found,
signal b will be true. If n consecutive frames are
taken from the information flow, see Figure 8,
then the relationship given by Equation (9) is hold:

in=(b), AO"(=b) AO"™ (=b), ¢

where
in is the sequence of boolean values given by
b;
b is true when the framing pattern <A> is
found;
O is the logical operator next, and in this
context means next frame;

(b), =bAObAO%A---A 0" D,

reset | b L (*** b b |—=b [—b

where 1,1, and K are nonnegative integers
such thatr, +r, +k=n.
Equation (9) permits us to explain the most
diverse situations, for example:

1. If r; = 0, then the circuit evolves from the
initial state to another without synchronism,
or it stays in the initial state.

2. From the initial state, if r; > 0, then the circuit
evolves to another with some type of
synchronism.

3. From the initial state, if r; > Csyne, then the
circuit evolves to another with a strong
synchronism.

4. If k > Cip4, then the circuit will go to the state
of loss of alignment.

5. If k > Cyunr, then the circuit will reach the

state of hunt.

**e b | b | b ees | b

bk etk ek 2 rprkrrs=1 rpekers

Fig 8. Flow information processed

Vol.7 No. 1 April 2009, Journal of Applied Research and Technology




Semi-formal Specifications and Formal Verification Improving the Digital Design: Some Statistics. D.Torres. et. al. 15-40

Frame Pattern
Detector

Sync
Process

Data Output
Array

|

Active Channel
Detector

Frame Pogition
Detector

Fig 9. Aligner Architecture

In statements 3-5, thresholds C; are positive
integers, and Cyynr < Cioa-

4.1 Aligner Module for SONET/SDH- Sync Process

The aligner blocks for SONET/SDH [16], see Figure
9, are (A) Frame Pattern Detector, (B) Controller,
(C) Data Output Array, (D) Active Channel Selector
and (E) Frame Position Detector.

The major task, during the alignment process, is to
find this pattern within each frame and to keep the
data transmission at all times. This process is
controlled by a Finite State Machine located in the
Controller Block, called “Sync Process”.

The verification of the aligner described above
must be done by validating each one of their
blocks. The verification process of the
components of the aligner can be carried out
generating a set of PSL assertions for each
component and applying formal verification using
the model checking tool Safelogic Verifier.

A. Requirement Specification
The next seven requirements for the aligner circuit

P =100, P1, P2, P3 Pay Ps, Psy are defined.

o Reset Operation. A “Reset” input port allows
the initialization of the circuit.

p1 Transition to synchrony state. The module will
be declared in “synchrony state”, activating a
“synchronous system” signal after the “detected
frames counter” reaches a specific value.

P2 Permanence in synchrony state. If the module
reaches the “synchrony state”, it must verify that
the "frame pattern detect" signal appears each
125us; otherwise, a “loss frames counter” must be
incremented. If the "frame pattern detect" signal
appears correctly, then the "loss frames counter"
must be set to zero.

ps3 Transition to out of frame state. If the module
reaches the “synchrony state” and the “loss
frames counter” reaches a “four” value, the
module will change to the “non-synchronous
state”, deactivating the "synchronous system"
signal.

ps Out of frame state indication. If four
consecutive times the "frame pattern detect"
signal does not appear each 125us, the module
will change to state “out of frame” and this state
will be indicated with an active signal.

s Maximum time to detect an out of frame state.
The maximum detection time of an “out of frame
state” must be 625us, or 5 frames, for a random
SONET/SDH input frame.

Vol.7 No. 1 April 2009, Journal of Applied Research and Technology




Semi-farmal Snecifications and Farmal Verification Imnroving the Digital Desion: Some Statistics. D.Tarres. et. al. 15-40

Ps Loss of the “out of frame” state. The module
will leave state “out of frame” (OOF) when signal
"frame pattern detect" appears twice each 125 ps.

B. Architecture of Sync Process

Figure 10 shows the input and output signals of the
aligner module. After a reset operation, the circuit
starts in state “out of frame” indicated by “offOut”
output. Whenever the alignment pattern is
detected, some internal counters are incremented.
When “syncCounter” reaches a specific value fixed
by the input “syncConfig”, the “synchrony state” is
declared, and it is indicated by the “syncOut” and
“syncAux” outputs. Once the synchrony state is
declared, the module will return to state “out of
frame” when four consecutive patterns of
alignment are lost, which is controlled by
“lossCounter”. Also, whenever frame last byte is
detected, it will be indicated by port “lastByte”.
See table 4 for the port description.

The state diagram to model the behavior of “sync
process” is shown in Figure 10. In the diagram,
state OOF represents the “non-synchronous
state” and state SYNC the “synchrony state”. Each
one of the arrows represents the defined
transitions and loops of the FSM; they are based
on requirements (py,.., ps) established in the
specification.

For example, requirement (p;), see Section 4.1.A,
describes when the FSM reaches state SYNC, and
the corresponding transition is OOF— SYNC, see
Fig.10. A first refinement of p; involves input and
outputs signals, i.e:

4

State SYNC is established when “syncCounter
reaches a value fixed by input “syncConfig”, input
“framePulse”( not activated) indicates the frame
beginning, and in the following clock edge a
“syncOut” output signal indicates the new state.

In this requirement, all signals are specified
completely, but the values of some signals are not
clear enough. Then, these values must be
specified, and the requirement can be written in a
semi-formal way, i.e.:

-- [P_SM: 6] OOFTrSync

It always happens that

if the FSM is in state OOF and at least one of the

next conditions is completed

- (s syncCounter = ‘1’ and syncConfig = 0’
and cyclecounter = 9719’ and framepulse =0
logical’

-y syncCounter = ‘3’ and syncConfig = ‘1’
and cyclecounter = ‘9719’ and framepulse =
’0 logical’

then in the following clock edge the FSM moves

to state SYNC and the “syncOut” output signal

will be loaded with ‘1 logical’

P Pa

Ps

Fig 10. State diagram for Sync Process
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The specification in PSL for this requirement is
-- [PSL_SM: 6] OOFTrSync
Property OFFtoSYNC is always ((FSM_state = OFF
and (@;v ¢@,)) > next (FSM_state =
SYNC and syncOut = HIGH);

The VHDL code for this requirement is
-- [P_SM: 6] OOFTrSync
if (FSM_State = OOF ) then
if ( ( (sync_counter = 1 and sync_config = 0 and
cyclecounter = 9719 and frame_pulse = LOW)
or (sync_counter = 3 and sync_config = 1 and
cyclecounter = 9719 and frame_pulse = LOW)
then
FSM_State <= SYNC
syncOut = HIGH;

Where LOW = ‘0 logical’ and HIGH = ‘1 logical .

It can be seen that the writing of the assertion in
PSL language and the corresponding code in VHDL
from the semi-formal specification is almost direct
and not complex. For each transition or loop of the
state machine, the same procedure to obtain the
semi-formal, formal specification and the code in
VHDL can be applied. Some properties do not
generate a code, but they verify certain

behaviors. An example is property Connectivity of
states which tests that the circuit does not remain
forever in a specific state (sink state), see
requirement ps-- [P_SM: 5] OOFConnectivity

It always happens that

if the FSM reaches the state of SYNC then,
eventually, the FSM will return to OFF again

-- [PSL_SM: 6] OOFConnectivity
Property OOFConnectivity is always ((FSM_state
/= OFF ) — eventually (FSM_state = OFF)

C. A set of assertions for Sync Process

Making a refinement of the original requirements
p jointly with the architecture document, a semi-
formal specification @ = {@;, @, ..., @33} for the
module Sync Process is obtained. From the Semi-
formal specification, it is possible to obtain a set of
PSL assertions & = {&, &, .., &3 and to
implement the code in VHDL. Let Wsync process b€ the
implementation obtained in VHDL from the semi-
formal specification, and let &sync process be the set of
PSL assertions representing a formal description,
as shown in Table 5; then, the verification process
must prove that

WS/nc Process - g&/nc Process (10)

syncConfig[2:0] —»
framepulze ———»q
resetln

clkIn

—_—

—_—

- » syncOut
—————— SYNCAUX
s oofOut
——— lastByte

- » syncCounter[1:0]
byteCounter[13:0

le—» lozzsCounter|1:0]

i SVNCSt

Fig 11. Sync Process Architecture
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Port

Description

syncConfig[2::0]

Configuration port

framePulse When activated, it indicates the frame
beginning

ResetIn Aligner's reset

Clkin Clock of the system. 77.76 MHz for
STS-12 and 622.08 MHz for STS-48

SyncOut It indicates the frame synchronization

SyncAux It indicates the synchronization to
internal modules

OofOut It indicates the loss of synchronism.

LastByte It indicates the last byte of frame

syncCounter[1::0]

Frame pulse counter.

byteCounter[13::0]

Frame byte counter.

lossCounter[[1::0]

Loss frame counter.

SyncSt It denotes the aligner's state
Table 4 Sync Process Port Description
Category PSL Assertions
Init State Reset {3
State Reachability {&, &
State Connectivity {& &4
State Transitions {&s, &9, &1t
State Loops {&s &6 ER
State non-connectivity {11, &2}

Counters Range

{513: 514} 5/5; 516) 517; 5/& 5/9’ 520)
éZ 2 522’ (3523) (3524) §251 526) ‘/352 7 éZ&
529, 530}

Outputs Behavior

{53 L 532, 533}

Table 5 PSL Assertions for the verification of Sync Process

Besides, for the control of the verification process
of the mentioned module, we used the following
set of metrics: Writing time of &y processs Number
of syntax errors for each version of &ncprocess;

verification time used by Safelogic Verifier; number
of assertions in PSL against the number of lines of
code in VHDL; errors detected in the semi-formal
specification and  Wsyne process @and number  of
developed versions for &nc process-
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Requirements Assertions
Po &1, S10, S12, 13y S14, 15, S10y En
P1 &2y &2y Say &5y oy &7y L8y S0y 10, 12
&5, &17y Eo3y o7, S0
P2 &3y &5y 613, S14y Ei5
P3 &2, &3, Say &5, S11y $20, o8, Sa2
Pa &2, &3, Say &5y S0, &8y 14y S5, o8y S32
Ps &2, & 13
Ps S, &4

Table 6 Relationship between p and & for the module Sync Process

D. Relationship between p and & for module Sync
Process

This relationship is shown in Table 6. It can be seen
that one property can have a relationship with
various requirements of the specification, for
example, property & appears in requirements p,,
Pz and p,. In these cases, testing their behaviors
using simulation and test vectors is a hard task
while using techniques of formal verification is
straightforward.

E. Implementation of Sync Process

In order to study the impact of our proposal in the
whole design cycle compared with the traditional
methodology, three implementations of the
circuit were developed and verified. We will use
the following notation to make reference to these
three implementations in the rest of the
document.

1. l//i%p Original or reference Implementation.
2. !//ipm?)‘ Assertion-Based Implementation.

3. !,//i'r:np Free Implementation of the Designer.

The first implementation ‘//i?np was done by a non-

experienced engineer [16] and previously verified
functionally. It was developed from the
requirements specification, i.e. this
implementation was not intended for formal
verification.

The second and third implementations were
written by an experienced engineer. The second

PSL . .
one ., was elaborated directly from our semi-

formal specification and it was verified with

functional tests additionally.

Thus, we call it Assertion-Based Implementation.
And, the last one, l//ifm, written by the same

engineer, was elaborated from our semi-formal
specification, but the code was optimized based on
the experience of this engineer, obtaining a
version with minimum lines of code. We call it
Free Implementation of the Designer.

5. Results

During the code implementation of the circuit
represented by Wsync process and its verification,
some statistics were controlled, particularly design
errors and the number of design cycles, see Figure
12.
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Detected errors

[1 1

2

3 4

Design cycles

Fig 12. Error Distribution vs Design Cycles for wsync process

From our analysis, we concluded that

(0] .
° Inl//imp, more errors were detected and it

requires more time than the other two
versions to obtain a final version for Wsync process
with zero errors. Also, the designer’s effort to

obtain the final code in VHDL for t//i%p

requires more analysis and error probability
due to a wrong interpretation of the
requirements specification is greater than
error  probability due to a wrong
interpretation of a semi-formal specification.

e With l//i',:np, some errors were detected, but it

required more time than l//ifn?; to obtain a

zero errors implementation. Nevertheless, this
implementation required less designer’s effort

and analysis than l//i?np because it was

obtained from a semi-formal specification
which defines an exact description of the
expected behavior, and the structured and
formal approach allows an abstract view of
the described system, so the error probability
is reduced significantly. We saved time in the
verification process, but we required time to

analyze the semi-formal specification and to obtain
an optimized code.

. l//il:ri' had fewer errors and was corrected in a
very short time because it was written directly
from the semi-formal specification, i.e. the

comparisons and/or decisions written in the
code correspond to the PSL assertions. This

implementation requires more lines than l,yifnp,
see Table 7, but less effort and analysis. It was

only necessary to determine the order in
which the PSL assertions would have to be

written in VHDL code. Therefore, in t//"'?f)‘ the

use of a formal methodology improves
communication within the design team
reducing the error probability.
Also, it should be mentioned that these
implementations were synthesized with
Synopsis™; the corresponding results for

verification time, circuit area in cells, delay, and
the total lines of effective VHDL code are shown in
Table 7. As we can see, while the synthesis of

implementations l//iii‘ and ‘//nan have the same

(6] .
area and delay, Yimp r€quires more cells and has a

greater delay.

Vol.7 No. 1 April 2009, Journal of Applied Research and Technology




Semi-formal Specifications and Formal Verification Imoroving the Digital Design: Some Statistics. D.Torres. et. al. 15-40

Implementation T . Area I/O Delay V.HDL
Verification Time (Sec) Lines
(Cells) (nSec)
o
Vimp 319 72 7.09 183
PSL
Vimp 16 69 7.08 145
F
Vimp 11 69 7.08 128

Table 7 Synthesis Results

From the learning process for writing specification
Esync process TOT this circuit (see Figure 12 and 13) we specification regarding the current state of the
concluded that FSM. Therefore, ambiguities in the semi-formal

specification lead to an interpretation error.
®  Eoync process Nad few errors and was corrected in

a very short time because it was written
directly from the semi-formal specification.
The types of errors detected were syntax and
semi-formal specification errors.

e We found errors in properties &, and &3
(see Table 5). These errors were due to the
lack of precision in the semi-formal

Finally, the total time employed to obtain the final
versions of &syne process i shown in Figure 13.
Components of this amount of time are writing
time of all the assertions; correction time of syntax
errors in &Esyne process;  COrrection time of errors
detected in the semi-formal specification; and
correction time of errors detected in the Wsync process-

—_
=

[ e o S Y =TS B Y |
!

1 2 3 4

Design cycles

W Sintax etrors in PSL specification O Errors in semi-formal specification

Fig 13. Learning process for writing &gnc process
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Fig 14. The total time employed to elaborate Esync process

to do a comparison of the verification time versus
Let &7, process be the PSL specification in version i.  the number of assertions. The tests were
The set of assertions related with &’s,.c process does ~ €xecuted in a computer with a Pentium IV
not generate counterexamples, for i = 1,2,3.  processor at 2.8 GHz, 256MB of RAM Memory,
Therefore, some assertions for generation of and Windows XP Professional.
counterexamples were included in 54)5,,,,5 Process IN
order to find all possible errors in s, process: Furthermore, we specifically considered the
obtained results for all assertions with frame size

6. Verification Time Used For Safelogic Verifier of 10 and 100 bytes. The obtained results are

fOF Weyne process shown in Table 8. The verification process was

carried out using implementation Wii% for Sync
From the developed PSL assertions for s process, Process.
see Table 5, we selected all the assertions in order

Frame Size Verification Time without Verification Time with Number of counter-
counter-examples counter-examples examples
10 0.3 sec 2.4 sec 6
100 5.3 sec 1661.2 sec 6

Table 8 Total verification time for t//if:)‘
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Now, from Table 8 we can see that the total
verification time for Wsync process With frames of 100
bytes length is considerably greater than ys,nc process
for a 10 bytes frame length. These results show
that for a longer frame length and assertions that
generate counterexamples, the verification time
increases exponentially or according to a power
law.

If the VHDL codes use constants as circuit
parameters, we can do formal verifications for
small values, which reduce significantly the
amount of used Boolean variables and, therefore,
reduce the amount of time used by the formal
verification tool. In this way, a fast feedback in the
error correction process is attained.

In [17], a work was presented; it includes the
verification of a second circuit where the same
procedure was followed and where design time
was saved too.

6.1 Rules of thumb

We propose to use the following rules in the
design cycle; these have been proven in several
different designs obtaining excellent results:

1. Obtain the semi-formal specification from the
general specification of requirements.

2. The Semi-formal specification is very useful,
not only for the verification engineers, but also
for the designers, since it is the input
document for both types of engineers.

3. The design engineers should write the code
following the semi-formal specification and
document it according to the referred
requirement.

4. Before simulation, the verification engineers
should write assertions from the semi-formal
specification, not only to prove that the
implementation  satisfies the expected
behaviors, but also to check non-expected
behaviors that generate counterexamples.

5. The assertions from the semi-formal
specification and the implemented code
should be used in a verification tool, e.g.
Safelogic Verifier, during the verification
process.

6. Then, only a few simulations are needed by
the designers to check expected behaviors.

7. The global functional verification should be
reduced to some general cases.

7. Conclusions

A set of PSL properties was established to carry out
the formal specification and verification of a
circuit.

The structure of a basic set of properties for
verification of FSMs is presented. Therefore, it can
be used, in general, for different FSMs. The use of
LTL and/or PSL is very important, not only for the
verification, but also for the design process. By
means of this methodology, not only the design of
each block and its verification can be done in
parallel, but also this parallelism leads to shorten
the whole design process.

We give statistics in order to show the
improvement that the use of assertions in the
design cycle of a class of digital circuits provides,
specifically in the implementation of the code in
VHDL.

Our statistics in the verification process of the
circuit represented by Wsync process Show that the
number of versions for &ne process Was relatively
low; the writing time decreased from version to
version, except in the second version of the study
case. The cause was the discovery of some
limitations in the tool. These metrics should be
used, joint to classical ones, to control the whole
design process.

A set of rules of thumb, for the engineers, is given
in order to help to improve the whole design
process. Particularly, we pointed out the following:
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e The writing of the semi-formal
specification from the general specification
of requirements.

e The semi-formal specification is very
useful, not only for the verification
engineers but also for the designers.

e The design engineers should write the
code following the semi-formal
specification, and document it according to
the referred requirement.

As the formal or semi-formal specification cannot
discover possible errors at the refinement phase of
the requirements, then for the discovery of these
errors is useful to maintain the functional
verification. Therefore, ABV using PSL is useful not
only for the verification process but for the
implementation design.
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