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ABSTRACT

This paper presents a brief revision of several studies presented in the literature about the behavior of quantization noise for
sinusoidal signals and for uniform quantizers. From this revision, the conclusion is that quantization noise has been assumed to
be additive and has a white spectrum, although some published studies, considering the problem either from a deterministic
point of view or from a stochastic one, have shown a different noise behavior for some specific cases. Some of these cases are
related with the parameters that characterize the sinusoidal signal and other with the conditions under which the process of
conversion is realized. There are some cases that have not very been well considered in the previous literature and about which
it is convenient to call attention. By this reason and using computer simulations with sinusoidal input signals, it is illustrated here
that the quantization noise spectrum can show a discrete or complex structure depending on the relation between the sampling
rate used and the frequency of the signal. Moreover, some points to consider in order to get a better description of the
guantization noise are presented.

Palabras clave: Analog-digital conversion, quantization noise, noise spectrum.

RESUMEN

Este articulo presenta una breve revision de varios estudios presentados en la literatura sobre el comportamiento del ruido de
cuantizacion sefiales sinusoidales y cuantificadores uniformes. A partir de esta revisidn, la conclusion es que generalmente se ha
asumido que el ruido de cuantizacién es aditivo y tiene un espectro blanco; aunque algunos estudios publicados, considerando
el problema desde un punto de vista deterministico o desde un punto de vista estocastico, han mostrado un comportamiento
diferente del ruido para algunos casos especificos. Algunos de estos casos estdn relacionados con los parametros que
caracterizan la sefial sinusoidal y otros con las condiciones bajo las cuales se realiza el proceso de conversidn. Hay algunos casos
que no han sido muy bien considerados en la literatura previa y sobre los cuales conviene llamar la atencion. Por esta razdn,
utilizando simulaciones mediante computadora, con sefales de entrada sinusoidales, se muestra aqui que el espectro del ruido
de cuantizacién puede mostrar una estructura discreta o compleja dependiendo de la relacion entre la velocidad de muestreo
utilizada y la frecuencia de la sefial. Ademas, algunos puntos a considerar para obtener una mejor descripcién del ruido de
cuantizacion son presentados.

Keywords: Analog-digital conversion, quantization noise, noise spectrum.

study the information about the two processes
involved in the analog to digital conversion.

1. Introduction

When we were working in the acquisition process

of nuclear magnetic resonance signals, making the
conversion of the signal from analog to digital,
taking it directly in the radiofrequency range
(about 200.36 MHz), and using undersampling (5
Megasamples per second), we found that in the
spectrum of such digital signal appeared copies of
the original signal in odd multiples of the original
frequency [1]. For this reason, we decided to

We found that quantization error has attracted
considerable attention as a result of its
unavoidable presence in the conversion of analog
to digital signals. However, the analysis of
quantization error is usually simplified by
considering it as additive white noise, with the

output of the quantizer, y,, assumed to be the

addition of the input signal, X, plus white noise,
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€,, as shown in Figure 1. n is an integer.

Quantization error is then considered as a
sequence of uniformly distributed random
variables, uncorrelated with the input signal and
uncorrelated with each other. This result was first
obtained using assumptions about high-resolution
quantization that were initially made in classical
papers such as that on pulse-code modulation
(PCM) by Oliver, Pierce and Shannon [2], that on
guantization error spectra by Bennett [3] and that
on optimum quantizers by Panter and Dite [4].
The theory is supported by the following

assumptions:

Quantizer

Xn > Yn=0(Xn)

Figure 1. Model of quantizer using an input
sequence of infinite precision x, and additive
white noise e,.

1. The number of quantization levels, M, is high.

2. The difference between levels or quantization
steps, 4, is small.

3. The probability density distribution, f, of the
input is smooth.

The simplified quantization model is known as the
quantization theorem [5] and has been used as a
general model, usually without detailed
consideration of the work by Widrow [6,7].
Widrow proved that for a random input variable,
with a band-limited characteristic function that is
uniformly quantized with an infinite number of
levels, the moments of the quantized signal can be
calculated with the moments of the input signal
plus a random additive variable that is
independent of the signal and distributed
uniformly in the interval (-A/2, A/2). The band-
limited nature of the characteristic function
implies that the probability density function must
have an infinite support, because a signal cannot

be time-limited and at the same time has a band-
limited transform.

Previously, Clavier et al. [8] studied quantization
error from a deterministic point of view. He
showed that when the number of samples in a
cycle of a signal is an integer, then the spectrum
of the quantization error consists of odd
harmonics of the frequency of the signal being
guantized.

Based on simplified quantization models, partial
descriptions of quantization noise behavior have
been obtained, although few researchers have
studied gquantization noise behavior from either a
deterministic or a stochastic point of view. In this
paper, after presenting a brief revision of several
classical papers that analyze quantization noise
and indicating some contradictory and incomplete
conclusions from these works, computer
simulations of the sampling and quantization
processes are presented, for which the generally
accepted assumption of additive white noise is
clearly not valid and other previous results need
to be reconsidered.

2. Background

Following the studies of Bennett [3] and Widrow
[6, 7], Sripad and Snyder [5] extended the class of
input functions for which the model of uniform
noise is valid. They showed that this model is
adequate for any random variable, x, with

characteristic function, @, , which satisfies Equation

(1):

forn==x1,+2,---,n20 (1)

This condition is less restrictive than the
requirements of the quantization theorem, which
can be considered a special case of Equation (1).
Thus, the uniform quantization error model is
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obviously adequate for describing the quantization
of a uniform random variable, which has a no
band-limited characteristic function. This result can
be extended to uniform probability densities in the

interval[— (2k+l)§,(2k+l)§j, where k is an

integer. The model is also valid for a random
variable with a triangular probability density
function.

Sripad and Snyder [5] also indicated that the
quantization error is not statistically independent
of the input function. Considering an input
modeled as a Gaussian process, they showed that
the difference between the model of uniform
noise and the model including quantization noise

o
decreases as the ratio,X, of the standard
deviation of the quantization noise to the
quantization cell width increases.

Apart from the asymptotic theories, exact
solutions have been found for some cases of
uniform quantization. For example, Clavier et al.
[8] analyzed quantization noise for sinusoidal
signals using the characteristic function or Rice
transform and obtained a result consisting of
complex additions of Bessel functions. Another
example is the derivation by Bennett [3] of the
power spectral density of a uniformly quantized
Gaussian random process. For high resolution, he
showed that a uniform quantizer with a small

quantization step, A, produces an average
2

A
distortion, D(q)= —.
istortion, D(q) 3

Claasen and Jongepier [9], following the work by
Sripad and Snyder [5], analyzed the error spectrum
for uniform quantization of deterministic signals.
They initially considered that the white noise
model was adequate if the signal was sufficiently
complex, as remarked by Oppenheim and Schafer
[10]. However, they also observed that until then,

no-one had established the acceptable degree of
variation or complexity needed to validate the
model. They also showed that there are well-
known examples for which the model is not valid
(such as for a step function or a dc input). It is
convenient to note here that the consideration by
Oppenheim and Schafer also appears in a later
version of their book [11].

e(x)

NAN AN
—2A\—A\_-; A \2A

<« >

No saturation region

Figure 2. The transfer function between input
x and quantization error e.

Claasen and Jongepier [9] obtained the power
spectral density of quantization error by
decomposing the error function (Fig. 2) as a
Fourier series, as done by Clavier et al. [8]. Taking
into account the relationship between the power
spectral density of a phase-modulated signal and
the amplitude distribution of the derivative of the
modulating signal, and the fact that the spectral
components add on a power basis, they obtained
an approximation of the power spectral density of
the quantization noise as:
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where px(a) is the amplitude distribution function

of the signal derivative and @ is the angular
frequency. a is the argument of the distribution
function, which in Equation (2) corresponds to

w
—— . For a sinusoidal function of amplitude A, it
27k

is given by the equation:

. \34 <A
Amn a 2
p(a; A)= 1—() 3)

0 a>A

For X(t): Asinot , px(a): p(a; a)oA) and the
guantization noise spectrum is given by Equations
(2) and (3). As can be seen from Equation (3), p(a;
A) tends to infinity or has a singularity at a = A,
which means that the model given by Equation (2)
has peaks or singularities in the noise spectrum for
frequencies:

o = (2kAT o, (4)

This is how the position of the spectrum peaks and
the amplitude of the quantified signal are related.
From this result, the authors conclude that if a flat
noise spectrum is desired, the band of interest has

to be restricted to |a)| < Aw, . In the digital case,

Claasen and Jongepier considered that, “due to the
sampling process and the associated folding of the
corresponding spectrum around the sampling
frequency, the spectrum of the quantization noise
will be white if the sampling rate is taking well

below the first discontinuity in Se(a)). If, however,

the sampling rate is taken appreciably larger than
this value, a non-white spectrum results”[9].

As will be illustrated, the previous condition does
not guarantee that the quantization noise

spectrum is white, and (4) gives only some of the
spectrum peaks.

In 1990, Gray [12] published a more in-depth
analysis of uniform quantization of deterministic
signals without saturation, which was followed in
1998 [13] by a complete revision of quantization.
He also represented the error sequence as a
Fourier series, from which he could compute the
second moment and the autocorrelation. This
Fourier series for a signal, x, is given by:

2l 0

) =S Ao L X
e_e(x)_ZZjlne —Zlnsm(ZlnAj. (5)

120 =1

This approximation considers the error signal as
periodic, which is only true in the no-overload
region. Outside this region, the Fourier series is not
valid.

As Gray remarks, this approximation is valid only
for simple inputs (e.g. sinusoids), but even so, the
Fourier series cannot converge if e, is not a
periodic function of n. As an example,
Xn = Acos(2m fon), with f, not a rational number,
gives functions, x, and e, which are not periodic
[14]. In this case, it is still possible to use the
Harald Bohr generalization of the Fourier series for
almost-periodic functions.

Then he proceeded to wuse a sinusoid,
Xn = Asin(nwy +0), with an initial phase 6, in
Equation (5). At this point he remarked that the
discrete-time signal can be related to the
continuous-time signal, by defining @ =T,
where T is the sampling period and w=2xnf,
where f is the continuous-time frequency of the
original signal. A further assumption was that

M
A< 7 , so that the quantizer would not saturate.

Finally,  after manipulations  and

considerations, and with the assumption that “ f0

some

is not a rational number (and hence that in the
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corresponding continuous time system, the
sinusoidal frequency is incommensurate with the
sampling frequency)” [12], Gray concluded that
the spectrum of the error has components of
amplitude:

2
1 &1
:(EZI_ it 2n|7/)] (6)
|=1

(2m-1)wy(mod 2).

is the Bessel function of order mand

located at
Where J

frequencies

A
Y= X . Thus, the power spectrum density may be

written as

= isnﬁ(f ~(em-1)f,)). (7)

m=—o0

Gray [12] concludes that “it suffices here to point
out that the spectrum of the quantizer noise is
purely discrete and consists of all odd harmonics of
the fundamental frequency of the input sinusoid.
The energy at each harmonic depends in a very
complicated way on the amplitude of the input
sinusoid. In particular, the quantizer noise is
decidedly not white since it has a discrete
spectrum and since the spectral energies are not
flat. Thus here the white noise approximation of
Bennett and of the describing function approach is
invalid, even if M is large.”

Therefore, Gray established that the discrete
spectrum with odd harmonics of the input sinusoid
is valid for any ratio of the frequency of the input
signal to the sampling frequency in the
corresponding continuous time system.

Another deterministic approach to quantization in
the continuous time, which confirms the results
obtained by Claasen and Jongepier [9] and also
those obtained by Gray [12], is presented by Bellan
et al. [15]; that is, the quantization error spectrum

shows repeated peaks at frequencies given by (4)
and other peaks in odd harmonics of the frequency
of the input sinusoid. However, these results are
obtained when a uniform mid-tread quantizer is
considered and when the signal crosses equal
number of positive and negative levels of
guantization. In this case, Bellan et al. characterize
the spectrum shape of the quantization error as
follows: it increases up to every peak given by
Equation (4) and then falls to the beginning of the
following increasing section. In this work, the
Fourier coefficients also depend of the ratio
between the amplitude of the signal and the
guantization step size. This behavior is not
obtained from the study realized by Gray [12].

Besides, Bellan et al. considered the case of no-
symmetric crossed levels or that of a sinusoidal
wave with offset. In this case they conclude that
the spectrum is going to have a dc component and
all the harmonics of the frequency of the signal,
even and odd ones.

For both cases, Bellan et al. said “if we are dealing

with a time shifted sinusoidal waveform, we must
tO

multiply the Fourier coefficients by € T, where

t, is the time shift.” Here, nis the number of

harmonic and T is the period of the signal being
guantized. It is important to note here that Bellan
et al. have not considered the process of sampling,
which is important in the process of conversion
from analog to digital. Then, their work is
incomplete in this sense.

On another front, some theoretical studies have
shown that in order to reduce the harmonic
distortion due to the quantization noise, it could
be convenient to use dithering quantization. This is
a technique in which a signal called a dither is
added to an input signal prior to quantization,
trying to force the Bennet approximations to hold
[16] and to have a flat spectrum of the
guantization noise, and then it could be subtracted
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or not before reconstruction. Therefore, it is
possible to have subtractive dithered quantizer
and nonsubtractive dithered guantizer.
Schuchman [17] studied the conditions a dither
signal must meet so that the quantizer noise can
be considered independent of the signal being
quantized for a quantizer having a finite number of
levels. He found that an infinite class of dither
signals satisfied these conditions, but he remarked
that the most useful member of this class is one
whose probability density function is uniformly
distributed over a quantizing interval. As it is
highlighted by Gray and Stockhman [16], the
subtractive dither result is nice mathematically,
but it is impractical in many applications. For this
reason, the most commonly used technique is the
nonsubtractive one.

However, as it is said by Wannamaker et al. [18],
nonsubtractive dithered quantizers can not render
the total error statistically independent of the
input and can not temporally separated values of
the total error statistically independent of one
another. Besides, this technique involves the
addition of a corrupting noise and decreases the
dynamic range of the input if quantizer overload is
to be avoided.

In a practical case, there are other factors which
can modify the structure of the quantization noise
obtained in the process of conversion of a signal
from analog to digital. These factors are studied in
papers like [19], [20] and [21].

Taking into account the brief revision of the
studies about the quantization noise presented
above, the aim of the current work is to confirm or
to reconsider the conclusions reached by the
authors of those previous works. Some of them
consider that under certain conditions the
guantization error could be white, like Claasen and
Jongepier [9], and others consider that it is discrete
with tones related harmonically, like R.M. Gray in
his two papers [12, 13], and Bellan et al. [15].

3. Simulations

To study the behavior of quantization noise
produced by the process of uniform quantization
of a sinusoidal input signal, computer simulations
with MATLAB were performed under various
conditions. The computer simulations allowed the
use of classical round-off, avoiding completely the
effect of other factors appearing in the operation
of an analog-to-digital converter, such as jitter,
integral and differential non-linearity, thermal
noise, etc. The process of rounding was considered
taking into account the definition of quantization
given by Proakis and Manolakis [22 ]: a process of
rounding or truncation. Before rounding, it is
necessary to increase the amplitude of the
sinusoidal signal from the range -1 to 1 up to an
adequate range. After the process of rounding, the
signal is adjusted to have an amplitude equal to
that of the original one and, then, the error of
guantization is obtained as the difference between
the signal generated at the resolution given by
MATLAB and the quantized signal, as defined by
Oppenheim [11]. Apart from these implementation
issues, the quantization noise for sinusoidal inputs
depends on the ratio between signal and sampling
frequencies (analyzed in Sections IIlLA and III.B),
the ratio between the amplitude of the input signal
and the quantization step size (analyzed in Section
IIl.LA), the offset (analyzed in Section Ill.A) and the
phase of the input signal (analyzed in Section III.C).

In all the simulations presented, the sampling of
the analog signal was simulated using the signal
and sampling frequencies specified in the following
sections. The samples are then quantized and the
quantization error is computed. Finally, the
spectrum of the original signal, the quantized
signal and the error signal are computed. In all the
simulations the amplitude of the input signal was
0.24, so that the quantization step size was
0.48/M, where M is the number of quantization
levels. The ratio of the amplitude and the
guantization step size was M/2. As it was
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presented in the studies briefly described above,
the important parameter in the behavior of the
guantization noise is the ratio between the
amplitude of the input signal and the quantization
step size and it is not the amplitude by itself. For
this reason, an arbitrary value for the amplitude
has been chosen. The values of the several
parameters used in the simulations were chosen to
exemplify or illustrate some cases where the
theoretical conclusions need to be revised. The
examples presented in the next paragraphs are
typical cases of what one can find during the
combination of the processes of sampling and
guantization.

A. Integer and Non-Integer Relation Between
Sampling and Signal Frequencies

The aim of this simulation is to show the behavior
of quantization noise when the ratio of the
sampling frequency to the signal frequency is an
integer or a non-integer number, and will include
illustrating the effect observed by Claasen and
Jongepier [9]. The simulation has been done using
the following steps:

1. A sinusoidal signal with a frequency of 21.5 Hz is
generated and oversampled at 40 k-samples/s.
Here is used an oversampling factor of 1860.46... (a
rational number, having a repetition of digits after
the 18th decimal digit. A total of 4096 samples are
produced.

2. The signal is quantified to 94 levels (in an
attempt to present a similar effect to that
predicted by Claasen and Jongepier [9]).

3. This analysis is repeated for a signal with a
frequency of 800 Hz but using first a sampling rate
of 40 ksamples/s and then 39995 samples/s,
corresponding to oversampling factors,
respectively, of 50.00 and 49.99... (a rational
number, as is any number in a computer).

4. The previous step is repeated but adding a dc
component to the 800 Hz sinusoidal signal.

Figures 3(a) to 3(d) show the results obtained
when oversampling a sinusoidal signal (21.5 Hz) by
a rational factor of 1860.46.... The power spectrum
of the signal using the maximum resolution given
by MATLAB can be seen in Figure 3(a), while Figure
3(b) shows the spectrum when the signal is
quantized with 94 levels. As expected, with the
high resolution used to generate Figure 3(a),
guantization noise cannot be discerned, but with
94 levels this noise can be seen as shown in Figure
3(b).

It can also be seen that the quantization process
generates several components distributed from 0
to the Nyquist frequency. An analysis of the
spectrum of the quantization error, presented in
Figure 3(c), shows the discontinuities predicted by
Claasen and Jongepier [9] in the regions between 6
and 7 kHz and between 12 and 13 kHz. This is in
agreement with the results of Equation (4), which
predicts a first peak at 6,349 Hz and a second at
12,698 Hz. Although the spectrum seems almost
flat or white, if we study it in detail, enlarging its
first section, as it is presented in Figure 3(d), we
can appreciate that the quantization error is
concentrated in odd harmonics of the frequency of
the sinusoid being quantized (there are peaks at
frequencies (2n + 1) x 21.5 Hz, withn =0, 1, 2,...).
This effect was predicted by Gray [12] and
obtained by applying Equation (7). As can be seen,
in this case, although the condition of Claasen and
Jongepier is satisfied, a white noise spectrum is not
obtained. The problem here is that Claasen and
Jongepier established their condition considering
only the presence of the peaks given by Equation
(4), but they did not take into account the
harmonics of the frequency of the signal being
guantized as they are considered by Gray [12] and
Bellan [15]. However, as it will be illustrated later
in the next section, an approximation to a flat
spectrum can be obtained depending of the
relation between the sampling frequency and the
frequency of the signal.

142
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Spectrum of the 21.5 Hz sinusoidal signal

without quantization
60 .

50r b

30 4

Magnitude [dB]

Frequency [Hz] w10t

(a)

Spectrum of the quantization error

Magnitude [dB]

05 1 15 2
Frequency [Hz] T
(c)

Spectrum of the quantized 21.5 Hz sinusoidal signal
80 . T .

501 .
anf g
30 .

Magnitude [dB]
2 3 o 32

[
=]

-0 05 ] 5 2
Frequency [Hz] 1ot
(b)

First components of the quantization error

50 100 150 200 250 300

Frequency [Hz]
(d)

Figure 3. (a) Spectrum of an unquantized 21.5 Hz sinusoidal signal, sampled at 40 k-
samples/s; (b) spectrum of the 21.5 Hz sinusoidal signal, quantized with 94 levels and
sampled at 40 k-samples/s; (c) spectrum of quantization error in (b); (d) detail of (c),

showing the first components of the spectrum.

It is important to remark here that Gray, in his
theoretical study, demonstrated that the
amplitude of the signal relative to the step size
only affects the magnitude of the spectrum peaks.
However, Claasen and Jongepier have
demonstrated, and we have illustrated here, that
this relative magnitude causes the presence of
peaks that are not considered by Gray.

Power spectrum analysis did not vyield useful
information with this sample, as the FFT
resolution, approximately 10 Hz, is too close to the
harmonic separation. In this case the harmonics
are separated by approximately 43 Hz, that is, 4
points in the graphic of the spectrum, but each
harmonic is represented by 4 points. Then the
harmonics are touching each other or separated at
most by 1 point. The analysis was therefore
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repeated for the 800 Hz signal, but at 40 k-
samples/s and 39995 samples/s, and their spectra
presented in Figures 4(a) and 4(b), respectively.
These simulations show that Gray’s prediction in
his work of 1990 [12] is not valid for all ratios
between the sampling rate and signal frequency
(let us denoted it by RoF). There exist some
rational ratios for which the power of the
harmonics that constitute the quantization noise is
spread out in the Nyquist band. When the ratio is
50, the odd harmonic components appear, as it is
illustrated in Figure 4(a), but when this ratio
changes to 49.9937... (a change of around 0.013%),
the quantization error contains other components,
as shown in Figure 4(b), and part of the power of
the harmonics is transferred to the new
components; that is, the power of the harmonics
starts spreading over the frequency band. This
effect is not due to the folding.

Spectrum of the quantization error obtained
sampling at 40 KHz

Amplitude [dB]
& 8B s

=50

-60r

3 05 1 15 2
Frequency [Hz] w10t

(a)

An additional interesting case is obtained when the
sinusoidal signal has a d.c. component or an offset.
In this case, as can be deduced from the work by
Bellan et al. [15], the quantization error signal is
going to have even and odd harmonics of the
frequency of the sinusoidal input. The important
point here is that the behavior of the quantized
error also depends of RoF, as it is illustrated in
Figures 5(a) and 5(b). This point was not
established by Bellan et al. because they only
considered the process of quantization without
taking into account the process of sampling. They
considered that the sampling process only
introduces the folding of the spectrum of the
guantization noise. With the examples presented
here, we are illustrating that is necessary to
consider simultaneously both processes, sampling
and quantization. Figure 5(a) presents the
spectrum of the quantization error obtained after

Spectrum of the quantization error obtained
sampling at 39995 Hz

-20r

-30 1

-50

Amplitude [dB]
5

-60

-ior

0 05 1 15 2
Frequency [Hz] w10t

(b)

Figure 4. Spectra of the quantization error obtained from quantizing a 800 Hz sinusoidal
signal with 94 levels; (a) using a sampling rate of 40 k-samples/s; (b) using a sampling rate of
39995 samples/s.
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sampling the signal of 800 Hz using a sampling rate
of 40 KHz; that is, the process was done
considering an integer RoF. In this case, the
spectrum presents both the odd and even
harmonics of the frequency of the sinusoidal input
signal. On the other hand, Figure 5(b) presents the
spectrum of the quantization error when there is a
noninteger RoF and the other characteristics of the
sinusoidal signal similar to those used in the case
of Figure 5(a) were kept. Now, it is possible to
observe the presence of components that are not
harmonically related with the frequency of the
signal and, also, the transference of power from
the harmonics to the other components that
appear in the spectrum; that is, the spreading of
the power of the harmonic components in all the
band of interest.

B. Relation between quantization error and a
sinusoidal input signal

The aim of these simulations is to determine
whether Gray’s analysis is still valid when the
sampling frequency is not considerably larger than
the input signal frequency, and to illustrate that
the discrete quantization error is not periodic even
though the input signal is periodic, except in the
case in which RoF is an integer.

Spectrum of the quantization error obtained
from a sinusoid + dc

-20r

-30¢

Amplitude [dB]

40

-50

-60r-

-70
0

05 1 15 2
Frequency [Hz] w10t

a)

The simulation requires the following steps:

1. A sinusoid of 800 Hz is oversampled at 8 k-
samples/s, generating 4096 samples.

2. The signal is quantized to 94 levels. This analysis
is repeated for the same input signal but using a
period of sampling of 0.000125625. In these cases
we have oversampling factors of 10.00 and 9.95...,
respectively. The last factor has no repetition of
digits in the 31 digits used by the PC.

Figure 6(a) shows the behavior of quantization
noise in the time when there is an integer ratio (in
this case, 10) of the sampling rate to the signal
frequency. As can be seen, the error is periodic
with frequency components in the odd harmonics
of the input signal as shown in Figure 6(c); that is,
in 800 Hz and 2400 Hz. Note that in Figure 6(c),
because of the sampling rate, we only can
appreciate the first and third harmonics of the
sinusoidal signal being quantized; the other
components fold back into the positions of the
visible components. However, when the ratio of
the two frequencies is not an integer, there is no
such periodic behavior in the error, as shown in
Figure 6(b). In this case, as presented in Figure
6(d), the error spectrum becomes distributed over
the whole frequency range and, therefore, it is
possible now to say that the spectrum tends to be
flat or white, complementing the condition by
Claasen and Jongepier.

Spectrum of the guantization error from

a sinusoid + dc sampled at 39995 Hz
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Figure 5. Spectra of the quantization error obtained from quantizing a 800 Hz sinusoidal signal with a dc
component using 94 levels; (a) sampled at 40 k-samples/s; (b) sampled at 39995 samples/s.
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This presentation can be completed if we consider
Figures 7(a) and 7(b). Figure 7(a) presents the
relationship between the discrete quantization
error and discrete input signals when the RoF takes
on an integer value. It is possible to observe that
the quantization error takes on the same values in
each of the four cycles of the input signal shown in
the figure, and then it is possible to say that if the
input signal is periodic the error will be periodic.
This would be the case obtained following the
well-known analog relationship shown in Figure 2.
On the other hand, Figure 7(b) presents the
relationship between the discrete quantization
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error and the discrete input signal when the RoF is
not an integer value and only for four cycles of the
input signal. It is possible to appreciate that the
guantization error does not take on the same
values in each cycle of the input signal and then it
is not periodic. The results of this section do not
follow Gray’s prediction, as he considered that the
error could be approximated by an almost periodic
signal and for this reason he always presented only
odd harmonic components of the signal being
guantized. The periodic or quasi-periodic behavior
of the quantization noise cannot be assumed for
all ratios of sampling rate to signal frequency.
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Figure 6. Behavior of the quantization error obtained from quantizing with 94 levels a sinusoid of 800 Hz
in time domain and frequency domain. (a) In the time domain using an integer RoF=10. (b) In the time
domain using a noninteger RoF=9.95.... (c) In the frequency domain using an integer RoF=10. (d) In the

frequency domain using a noninteger RoF=9.95.
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Behavior of the quantization error
in four cycles of the signal
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Figure 7. Relationship between the discrete quantization error and the discrete 800 Hz sinusoidal signal at
the input of the quantizer (RoF=10).(a) Integer ratio between the sampling rate and the frequency of the
input signal; (b) noninteger ratio (RoF=9.95...).

In this example, a small change in the ratio of
frequencies, that is, in the conditions of operation,
causes a large change in the structure of the
guantization noise spectrum. Specifically, small
changes in the frequency ratio also induce changes
in the error spectrum from periodic to non-
periodic and then again to periodic. This behavior
occurs undoubtedly because in the digital domain
a small change in the frequency of the signal can
cause a great change in the period.

C. Relation Between the Signal Phase and the
Spectrum

The analysis of the section A is repeated for four
input sinusoids of 800 Hz, which have a % radian

phase difference, starting from zero. They were
sampled at 40 K-samples/s.

Figure 8 shows the spectrum of the quantization
error of four quantized signals, having a different
for a sinusoidal signal with phase equal to zero

does not present the third and eighth harmonics,
however the spectrum of the error for the signal
phase. As can be seen, the signal phase has an
influence on the quantization error. Figure 8(a)
shows that the spectrum of the quantization error

T
with — phase has those harmonics. This is the

most drastic change in the spectrum; in the other
cases, the change is basically in the magnitude of
the odd harmonics, as can be seen in Figure 8(b).
This influence has not been considered either by
Gray [12] or by others. A related point to consider
here is that the value of the phase determines
whether or not there are discontinuities in the
initial and final acquired samples. These possible
discontinuities affect the spectrum computed by a
discrete Fourier transform, as is well known since
the publication of the work of Harris [23], but not
in the way shown here. The discontinuities at the
ends of the record introduce an imaginary
sinusoidal component of period 27 /(NTS /2),

where N is the number of samples in the record
and T, is the sampling period.
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Figure 8 . Modification of the quantization error spectrum with phase.(a) Spectra of the quantization
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error obtained from quantizing with 94 levels a 800 Hz sinusoidal signal with phase 0 (solid line) and —.

(b) Spectra of the quantization error obtained from quantizing with 94 levels a 800 Hz sinusoidal signal
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4. Discussion and conclusions

The behavior of the quantization error, under
different conditions, is obtained modeling the
process of quantization as a rounding step and
then calculating the quantization error as the
difference between a signal generated at the
resolution given by MATLAB and the same signal
but quantized. The models described in the
literature were not used because they do not

describe completely the behavior of the
guantization noise.
The work described here shows, through

simulations, that some statements or conclusions
published about the structure and behavior of the
spectrum of the quantization error generated
when a sinusoidal signal is quantized are not valid.
First, it is not true that a discrete spectrum with
only odd harmonics is obtained, as established by
Gray [12], following both the deterministic and

stochastic points of view. Gray showed that this
type of spectrum is obtained independently of the
relationship between the sampling rate and signal
frequency. The simulations presented here
(Sections IILA and |IIl.B) show that Gray’s
conclusion is only true when the sinusoidal signal
and the sampling frequencies have an integer—
and in a large number of cases, a rational—
relationship in the continuous time domain.
However, when this relationship changes by even
a small amount (0.013 % in the case shown), the
harmonics disappear and their power is spread
over the entire band established by the sampling
frequency. Then, with a further small change in
the relationship between frequencies, the
spectrum evolves from a periodic structure to a
non-periodic one. An additional point to be
highlighted is that the spectrum of the
guantization error has even harmonics if the
sinusoidal signal being quantized presents a
component of dc.
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The simulations also show that the model usually
applied in initial analyses of quantization error
(periodic or almost periodic quantization error) is
not always adequate. This is only true, as has been
illustrated here, when the ratio of the sampling
rate to signal frequency in the continuous time
domain is either an integer number or a particular
rational number.

Another conclusion obtained is that the condition
established by Claasen and Jongepier [9], to
ensure that the spectrum is white, is not
sufficient. There is a white spectrum, that is, a flat
spectrum  with components not related
harmonically when the ratio between the
sampling rate and the frequency of the signal is
not an integer value or some rational values
(these values need to be determined
theoretically). There are many cases in which the
condition established by Claasen and Jongepier is
satisfied and, however, the error is not white, that
is, it has not a flat spectrum with uncorrelated
components. In these cases, the spectrum
presents multiple peaks or poles that are located
at odd harmonics of the frequency of the signal
being quantized. The problem in the paper by
Claasen and Jongepier is that they did not
consider the presence of those odd harmonics.
Claasen and Jongepier were right, however, in
establishing their condition based on the fact that
there are peaks in the signal spectrum that
depend on the frequency and amplitude of the
signal, as has been illustrated here.

Gray also proposed that the only effect of the
signal amplitude relative to the quantization step
size is in the amplitudes of the odd harmonics,
which is not correct. This ratio, combined with the
signal frequency, modifies the position of the
quantization error spectrum peaks.

Finally, it is interesting to note that there is a
dependence of quantization error on the signal
phase. The harmonic amplitudes depend, to a

certain extent, on the signal phase, although the
total error energy is obviously constant. Both Gray
[12] and Bellan et al. [15] introduced the phase
factor as a complex exponential, which did not
affect the spectrum magnitude but, as has been
shown here, the phase does affect the magnitude.

It is necessary to note here that albeit Gray
considered the process of sampling in the study of
the behavior of the quantization noise, he did not
considered the process of folding due to the
sampling [12] and that Bellan et all [15]
considered neither the process of sampling nor
folding. However, we have illustrated that it is
necessary to consider simultaneously the
processes of sampling and quantization in order to
approximate better the practical situations.

The previous discrepancies indicate that it is
necessary to study the behavior of the
quantization error in more detail, perhaps using
the tools of nonlinear dynamic systems theory, as
the studies based on deterministic and stochastic
points of view seem incomplete or inaccurate.

The very simple procedure of simulation
presented here permits to evaluate the
theoretical results obtained about the behavior of
the quantization error with different parameters
used in the process of sampling and quantization.

The presence of harmonic components in the
guantization error must be considered when
designing digital systems that process analog
signals. Although quantization error is something
that is usually undesirable, as it distorts the digital
signal, the harmonic component effect could be
used to evaluate ADCs, as the quantization noise
could be well localized, and any additional noise
could be attributed to other sources. For example,
the presence of a dc component in the signal can
be immediately detected if the spectrum presents
the even harmonics of the sinusoidal signal being
quantized. As it was highlighted before, if the
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sampling frequency is selected adequately, the
guantization noise might be white and it is not
necessary to use a dither signal and reduce the
dynamic range.
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