Aceleration of association-rule based markov decision processes

Ma. de G. Garcia-Hernandez**, J. Ruiz-Pinales?, A. Reyes-Ballesteros®, E. Onaindia®,
J. Gabriel Avifia-Cervantes’, S. Ledesma®
1256 Universidad de Guanajuato, Comunidad de Palo Blanco s/n,
C.P. 36885, Salamanca, Guanajuato, México {garciag,pinales,avina,selo}@salamanca.ugto.mx
3 Instituto de Investigaciones Eléctricas, Reforma 113, C.P. 62490, Temixco,
Morelos, México, areyes@iie.org.mx
4 Universidad Politécnica de Valencia, DSIC, Camino de Vera s/n, 46022,
Valencia, Espafia, onaindia@dsic.upv.es

ABSTRACT

In this paper, we present a new approach for the estimation of Markov decision processes based on efficient association rule
mining techniques such as Apriori. For the fastest solution of the resulting association-rule based Markov decision process,
several accelerating procedures such as asynchronous updates and prioritization using a static ordering have been applied. A
new criterion for state reordering in decreasing order of maximum reward is also compared with a modified topological
reordering algorithm. Experimental results obtained on a finite state and action-space stochastic shortest path problem
demonstrate the feasibility of the new approach.

Keywords: Markov decision processes, association rules, acceleration procedures.

RESUMEN

En este documento se presenta un nuevo enfoque para la estimacion de procesos de decision de Markov basado en técnicas
eficientes de mineria de reglas de asociacidn tal como Apriori. Para la mas rapida solucion del resultante proceso de decision de
Markov basado en reglas de asociacidn, han sido aplicados varios procedimientos de aceleracion tales como actualizaciéon
asincrona y priorizacién usando reordenamiento estatico. Un nuevo criterio para el reordenamiento de estados es también
comparado con un algoritmo modificado de reordenamiento topoldgico. Los resultados experimentales obtenidos en un
problema estocdstico de ruta mas corta, con un numero finito de acciones y estados, demuestran la viabilidad del nuevo
enfoque.

Palabras clave: Procesos de decisién de Markov,reglas de asociacién, procesos de aceleracion.

etc.) or the occurrence of exogenous
(uncontrollable) events. If the control system does
not consider the possibility of fault, then it will
surely not make intelligent actions in the event of

1. Introduction

In planning under uncertainty, the planner’s

objective is to find a policy that optimizes some
expected utility. Most approaches for finding such
policies are based on decision-theoretic planning
[1, 2, 3]. Despite their general applicability and
mathematical soundness, the task of generating
optimal policies for large problems s
computationally challenging. For instance, in a
real-world process control problem many
variables change dynamically because of the
operation of devices (valves, equipment switches,

a fault occurrence. This problem is very complex
and uncertainty plays an important role during the
search for solutions.

Since the addition of new capabilities to a planner,
heuristic search has shown limitations for the case
of non integer data as well as in the use of
additive graphs in the solution of real world
problems [4]; thus they are frequently solved by
using Bayesian representations and inference [5],

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

or Markov decision processes (MDPs) [2]. The
latter have successfully solved decision problems
in process control, decision analysis and economy.
However, the computational complexity of those
processes is a significant one for the case of
continuous or high dimensionality domains,
making an intractable solution time for very large
problems [6]. The different approaches can be
broadly classified as: state abstraction and
aggregation techniques [7, 8, 9], feature
extraction methods [10], value function
approximations [11], heuristic and greedy search
[12, 13], simulation-based techniques [14] and
envelope-based methods [15]. State aggregation
and abstraction techniques reduce the search
space by grouping similar states [8]. For instance,
the search space can be partitioned based on a
reward function. Feature extraction based
methods combine dynamic programming with
compact representations that involve an
arbitrarily complex feature extraction stage [10].
In value function approximations, the dynamic
programming cost-to-go function can be fitted by
a linear combination of pre-selected basis
functions [11]. In heuristic and greedy search, a
state is labeled as solved when the heuristic
values, and the greedy policy defined by them,
have converged over that state [12]. Simulation
based techniques use an adaptive sampling
algorithm for approximating the optimal value for
a finite horizon MDP [14]. In envelope based
methods, world dynamics can be represented by a
compact set of rules related with an envelope of
states [15]. For instance, rules can be logical
sentences, whose STRIP scheme contains the
action name, precondition and a set of
probabilistic effects [16].

In this paper, we explore a different approach for
the solution of problems involving large state
spaces by means of MDPs. First, we propose a
method for the estimation of MDPs based on
efficient association rule mining techniques. Then,
we study the application of state-of-the-art

acceleration techniques to the resulting
association-rule-based MDP and provide an
improved static ordering technique.

This paper is organized as follows. We begin with
a brief introduction to MDPs, followed by a
description of a classical algorithm for solving
MDPs (value iteration) and its improvements.
Next, a brief survey of association rules mining is
introduced, followed by a description of the new
approach to the estimation and solution of MDPs
and, finally, results and conclusions are
presented.

2. Markov decision processes

Markov decision processes or MDPs provide a
mathematical framework for modeling sequential

decision problems in uncertain dynamic
environments [17, 18].
Formally, a MDP is a four-tuple (S’A’T’R),

1
where S is a finite set of states {Sl’ £ ,Sn} , Ais
a finite set of actions

{al,K,an},T :STATS® @1 s the
state transition function, which takes an action,

the current state and the next state and gives the
probability of this transition. The transition-

probability to achieve the state S¢, if one applies
T(a,s,s9

R:S" A is the reward function and R(s,a) is
the reward obtained if one operates the action &
in the state S. A policy is often defined to be a

function P : S ® A which yields an action for
each state. The problem is to find a policy Pto
maximize the expected total reward [18]. The
value function of a policy P and an initial state
Sis given by:

the action @in the state S, is given by

N
(e}

UP(s) = EQ 9'R(s.p(s))

t

Sy =S

[ol

(1)

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

where gl [01] is a discount factor, which may
be used for decreasing exponentially future
rewards. For the case of discounted rewards

(0 <g-< 1) the utility of an infinite state
sequence is always finite. So, the discount factor
expresses that future rewards have less value than
current rewards [19]. For the case of additive

rewards (g = l) and infinite horizon, the
expected total reward may be infinite and the
agent must be guaranteed to end up in a terminal
state.

The optimal value function is given by [18]
U"(s) = maxUP(s) (2)
p

It is well known that the optimal value function

Ut* (S)in stage t is given by the Bellman equation
[2, 18]:

S

U/ (s) = max¥ R(sa) + 9Q T(s,a,s%t*+1(s<1}§ (3)

s¢

Value iteration, policy iteration and linear
programming are three of the most well known
techniques for finding the optimal value function

U"(S)and the optimal policy p”for infinite
horizon problems [20].

3. Value iteration

Policy iteration and linear programming are
computationally expensive techniques when
dealing with problems with large state spaces.
Mainly because they both require the solution (in
each iteration) of a linear system of the same size
as the state space. In contrast, value iteration
avoids this problem by using a recursive approach
from dynamic programming [20].

Starting from an initial value function, value
iteration applies successive updates to the value
function foreach S| S by using:

N

U(s) = maxl R(s,a) + g T(s,a,s9 (sﬂ)g (4)

s¢

Let {Un In = 01K} be the sequence of value
functions obtained by value iteration. Then, it can
be shown that every value function satisfies

_ * n _ *
|U“ U Eg |U0 U |Thus, by using the
Banach fixed point theorem, it can be inferred
that value iteration converges to the optimal value

function U*. The power of value iteration (for
the solution of large-scale MDP problems) comes
from the fact that the value functions obtained
can be used as bounds for the optimal value
function [21].

The computational complexity of one update of

value iteration is O(l S |2| A |) However, the
number of required iterations can be very large.
Fortunately, it has been shown in [22] that an
upper bound for the number of iterations
required by value iteration to reach an €-optimal
solution is given by

B + log(}) + log(;%)) + 1

Mit 1-

9 (5)
where 0<g< 1, B is the number of bits used
to encode rewards and state transition

probabilities, and €is the threshold of the
Bellman error [18]:

B.(s) = max| Rsa) + 9& T(s,a.swt(s@%- U
(6)

aIAT s@s

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

The convergence of value iteration may be quite
slow for Q close to one. For this reason, several

improvements to value iteration have been
proposed [18]. For instance, common techniques
may improve the convergence rate, reduce the
time taken per iteration and/or use better
stopping criteria.

One of the easiest ways to improve the
convergence rate is to update the value functions
as soon as they become available (also known as
asynchronous updates). For instance, Gauss-Seidel
value iteration uses the following update equation
[18]:

It is well known that policy iteration converges in
less iterations than value iteration does, but
requires solving a system of linear equations for
each iteration. Value iteration is slower than policy
iteration but it does not require the solution of any
linear system of equations. A combined approach
(modified policy iteration) can exploit the
advantages of both. In this way, modified policy
iteration uses a partial policy evaluation step based
on value iteration [18].

Other ways of improving the convergence rate as
well as iteration time are prioritization and
partitioning [23]. This approach is based on the
observation that, in each iteration, the value
function usually changes only for a reduced set of
states. Thus, by restricting the computation to only
those states, a reduction of iteration time is
expected. It has been outlined that for acyclic

N

sks

problems the ordering of the states such that the
transition matrix becomes triangular may result in
a significant reduction in time. Last, there exists
another method that uses heuristics for prioritizing
backups that do not require a priority queue [24].

Also, another method to reduce the time taken
per iteration is to identify and eliminate
suboptimal actions [18]. For instance, bounds of
the optimal value function can be used to
eliminate suboptimal actions. The advantage of
this approach is that the action set is progressively
reduced with the consequent reduction in time.

Last, the number of iterations can be slightly
reduced by using improved stopping criteria based
on tighter bounds of the Bellman error [18]. For
instance, a stopping criterion would be to stop
value iteration when the span of the Bellman error
falls below a certain threshold.

4. Association rules

Association rules [25] represent an important tool
in data mining applications. An association rule is

a rule of the form XpY , Where X andY are
disjoint sets of items (itemsets). This implicates

that if we find all items in X , it is likely that we
also find all the items in Y .

A typical application of mining association rules is
to discover associations between articles in
market basket analysis [26]. These associations

sG s

Ut(s) = max,Ir R(sa)+ gq T(s,asWUi(sy+ g T(sasiu' (s (7)

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

can offer useful information to retail managers for
article collection decisions [27], personalized
article recommendations [28], and
implementation of promotional activities [29].

Association rules are usually selected from the set
of all possible rules using measures of statistical
significance and interestingness. Support is a
measure of significance, which is defined as the
percentage of instances that contain all the items
inarule [25] and it is given by

. X EY |
supp(X P Y) = supp(X EY) = — (8)

where ‘ ‘ represents the number of

instances that contain all the items in X or Y ,
and M is the number of instances in a specific
database. Consequently, a minimum support
threshold is used to select the most frequent (and
hopefully the most important) item-sets [26].

Confidence is a measure of interestingness and it
represents the maximum percentage of instances
covered by a rule [25, 26]:

conf(X b v)= MPPXEY) _ o)
supp(X) (9)
Apriori is one of the most well known algorithms
for mining frequent association rules in a database
[25]. It exploits the property that any subset of a
large item set is also large. Apriori (see Algorithm
2) starts by counting item occurrences in order to

find the most frequent itemsets Ll. The

subsequent passes, say pass K, consist of two
phases. In the first phase, the frequent itemsets

I'k'lfound in the previous pass are used to

generate the candidate itemsets Ck, using the
Apriori candidate generation procedure. Next, the

database is scanned and the support of candidates

in Ck is counted. The set of candidate itemsets is
subjected to a pruning process to ensure that all
the subsets of the candidate sets are already
known to be frequent itemsets. The intuition
behind the candidate-generation procedure is that

if an itemset X has minimum support, so do all
subsets of X . The pruning step eliminates the

extensions of (k- D) -itemsets which are not
found to be frequent. The Apriori algorithm moves
downward in the lattice starting from level 1 till
level k, where no candidate set remains after
pruning.

Some of the advantages of Apriori are easy
implementation and easy parallelization.
Improved versions such as AprioriHybrid [30] have
shown to scale linearly with the number of
instances.

5. Our approach

Reinforcement learning is a variant of optimal
control; however, optimal control involves only
planning whereas reinforcement learning involves
both learning (model learning) and planning.
Reinforcement learning methods can be broadly
classified as: direct (model-free) and indirect
(model-based) methods [31]. In contrast with
model-free methods which compute an optimal
policy directly from experience data, model-based
methods first estimate the underlying MDP and
then use standard techniques, such as value
iteration [3], to compute an optimal policy. An
advantage of model-based methods is that they
are very data efficient.

A usual method for the estimation of MDP
parameters (transition probabilities and rewards)
is based on maximum-likelihood. The maximum
likelihood estimator is the value of the parameter
which maximizes the likelihood of the data. Let

n(s.a) be the number of times the agent has

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

function Apriori(D , minsup)
L, = {large 1-itemsets};
for(k=2; L, _, 1 Agk++)do
C, = apriorigen(L,_ ,); // new candidates

forall transactionst 1 D do
C, = subset(C,,t); // candidates contained in t

forall candidates C | Ct do

c.count++;
end
end

L, = {cT C|c.count 3 minsup}
end

return Uk L,

function apriori-gen(L,_,))
insert into C,
select p.item,, p.item,,K p.item,_,,q.item,_,
fromL,_, p,L,_, Q
where p.item = q.item,,...p.item, ,=q.item, ,,p.item,_,<qg.item, ,;
forall itemsets C | C, do
forall (K - 1) -subsets S of C do
ifs| L,. ; then
delete C fromC, ;

end
end

return Ck

Algorithm 1. Apriori

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

taken action @ in state S. Let n(s,a,s9 be the

number of times it arrives in state S¢ after having

[¢]
taken action @ in state S. Let a R(sa) be the
cumulative amount of rewards it receives when
taking action @ in state S. The maximum
likelihood estimators of the transition
probabilities and rewards are given by [32]:

T(s,a,s9 = ns:a,s9
n(s,a) (10)
and
Rsa) = & o RG2)
n(s,a) (11)

respectively.

In our approach, we start by computing, from
experience data gathered by an agent, a set of

association rules of the form {s,a} P {s4 where

S is a current state and is the resulting state after
applying action a . Next, we use the resulting rules
to build an Association-Rule-based Value Iteration
(ARVI, see Algorithm 2) algorithm, where each
decision rule is an association rule. Then, we assign
to each association rule a transition probability and
areward.

One advantage of the use of association rules is
that they can be computed by using efficient data

mining algorithms such as Apriori [25] and FP-
growth [33]. Another advantage is that the
confidence measure of each rule can be used
directly as transition probability. Rewards can be
computed by using Equation (11) at the same time.
For large datasets, the number of passes through
the dataset may render some mining algorithms
unfeasible. For instance, Apriori requires k (3 for
our case) dataset scans whereas FP-growth only
requires two. Thus, we may prefer the use of FP-

growth for cases where the dataset is large.
However, a sampling based algorithm (e.g., FPMax
[34]) may be wused to obtain successive
approximations of the set of association rules.
From these approximations, an approximate MDP
can readily be obtained and solved at the same
time the agent gathers experience data.

For the solution of the resulting association-rule-
based MDP, we have modified value iteration in
terms of association rules. Let

L={L IL = (s.s%a)}be the set of
association rules with a given maximum support
and confidence (obtained by Apriori or other
association rule mining technique), R be the state
rewards, T be the state transition probabilities of
each rule and N be the number of states, g be
the discount factor, € be the maximum error and
numit be the maximum number of iterations.
Our resulting value iteration algorithm (ARVI) is
shown in the next figure.

13

Even though we have not applied any accelerating
methods yet (as those shown in a previous section)
in this first algorithm, we expect this approach to
be faster than classic value iteration (which uses an
expensive 3-D transition probability matrix). In
order to improve this first algorithm, we have
formulated several variants of our ARVI by the
application of state-of-the-art acceleration
procedures such as asynchronous updates [18] and
prioritization by using a static reordering of states
[23]. The first variant of our ARVI

(ARVI2), shown in Algorithm (3), only uses
asynchronous updates [18]. The second variant
(ARVI3), shown in Algorithm (4), updates
synchronously only those states (as well as their
neighbors) whose value function changed in the
previous iteration [23] (in order to focus
computation in regions of the problem which are
expected to be maximally productive, and

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

function ARV | (R, L,T, g.6 numit)

t=1

do

for K = 1to ‘L‘
a = action (L(k))
S =

end

t=t+1

while t < NUMIt and

a
return D

U%s) = maxR(s,a) frs = 12...,n

J(s,a) = R(s,@)fors= 1,2...,Nnanda = 12....m

initialstate(L(k))
s¢= finalstate(L(k))
J(s,a) = J(s,a) + gT (KU Y(s9

U'(s) = maxJ(s,a) frs = 12K ,n

2
b o

p(s) = argmaxJ(s,a) frs = 1,2...,n

Algorithm 2. ARVI (synchronous updates).

simultaneously avoid useless backups. In this case,
the order of evaluation of the states is not
modified. The third variant (ARVI4), shown in
Algorithm (5), updates asynchronously only those
states (as well as their neighbors) whose value
function changed in the previous iteration [23].
The forth variant of our ARVI (ARVI5), shown in
Algorithm (6), uses the same acceleration
procedures as ARVI4 but uses a static reordering of
the states in decreasing order of maximum reward.
This is because it is better to use a good static
ordering instead of a good dynamic ordering. Thus,
state reordering is performed only once (during
initialization) such that, for each sweep, they are

updated in an approximately optimal order. In this
case, sorting is performed using the sort method of
the Array Java class, which has a complexity of
O(nlogn) . Note that variable reordering is only

effective when using asynchronous updates [23].
The fifth variant of our ARVI (ARVI6) uses the
same acceleration procedures as ARVI5 but uses
the modified topological ordering algorithm shown
in Algorithm (7). The use of a priority queue for all
states of the model may result in an excessive
overhead. For special cases of acyclic MDPs the
use of a topological sort on the states yields an
optimal ordering of states. For other cases, a good
possibility could be to reorder the states to make

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

the transition matrix “nearly triangular” [23].
Another option is to compute the topological order
of the states. For acyclic MDPs, at least one
topological order exists; and usual algorithms for
topological sorting with linear running time in the

number of nodes and the number of edges can be
used. Unfortunately, real world problems involve
cyclic MDPs and making a topological sorting is
impossible. However, in this case, a modified
topological ordering method can still be used [23].

t=1

do
mxerr = 0
k=1
do

end

return P

function ARVI2(R,L,T,g,enumit)
U(s) = maxR(s,a) fors = 1,2,...,n
a

J(s,a) = R(s,@) fors = 12...,nanda = 1,2....m

s = initialstate(L(k))

while k £ |L| and initialstate(L(k)) = s
st¢= finalstate(L(k))
a = action(L(k))
J(s,a) = J(s,a) + gT (KU (sY
k=k+1

mx = maxJ(s,a)
a

err = |mx - U(s)|
mxerr = max{err,mxerr}
U(s) = mx

while k £ |L |

t=t+1

while t < numit and mxerr > e
p(s) = argmaxJ(s,a) fors = 12,...,n
a

Algorithm 3. ARVI2 (asynchronous updates and improved termination criterion).

362

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

function ARVI 3(R,L,T, g, e numit)
U%s) = maxR(s,a) fors = 1,2...,n
a

BY(s) = ‘U 0(5)\ forS = 12,...,n

changed = {s | B%(s) > €}
t=1
do ~
forall S | changed
[o]

Jsa)= 8§ T(KU' Yfinalstate(L(k)))

ki rulesof(s,a)
U'(s) = maxR(s,a) + gJ(s,a)
Bi(s) = ‘U‘(s)— ut-l(s)\

end

forall s T neighbors(changed) - changed
Jsa)= & T (kU finalstate(L(k)))

k1 rulesof(s,a)
U'(s) = maxR(s,a) + gJ(s,a)
a
B(s) = U'(s)- U™ X9)]
end
changed = {s|s1 changed E neighbors(s),B'(s) > €}
t=t+1
whilet < numit and maxB!(s) > e
S
p(s) = argmaxR(s,a) + gJ(s,a) fors = 1,2...,n
a

return P

Algorithm 4. ARVI3 (synchronous updates of states that change between iterations and
improved termination criterion).

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

f unction ARVI 4R,L,T, g, enumit)
U(s) = maxR(s,a) fors = 12...,n
a

B(s) = U(s) fors= 12...,,n
changed = {s|[B(s)|> ¢}
t=1
do

forall s | changed

Jsa)= & TkU(finasate(L(k)))

k1 rulesof(s,a)
B(s) = max{R(s,a) + gJ(s,a)} - U(s)
U(s) = B(s) +U(s)

end

forall S 1 neighbors(changed) - changed

Jsa)= & TkU(finalstate(L(k)))
k1 rulesof(s,a)

B(s) = max{R(s,a) + gJ(s,a)} - U(s)

U(s) = B(s) + U(s)
end
changed = {s|s1 changed E neighbors(s),|B(s)| > €}
t=t+1

while t < numit and _max [B(s)| > e
sl changed

p(s) = argmax{R(s,a) + gJ(s,a)} fors = 1,2...,n

return P

Algorithm 5. ARVI4 (asynchronous updates of states that change between iterations and
improved termination criterion).

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

function ARVI5(R,L, T, g,enumit)

staticsort(R,L,T)

U(s) = maxR(s,a) fors = 1,2,...,n
a

B(s) = U(s) fors = 1,2...,n
changed = {s | [B(s)| > €}
t=1
do

forall S 1 changed

Jsa)= & TKU(finastate(L(k)))

ki rulesof(s,a)
B(s) = max{R(s,a) + gJ(s,a)} - U(s)
U(s) = B(s) + U(s)

end

forall s T neighbors(changed) - changed
o

Jsa)= A T(KU(finastate(L(k)))

kT rulesof(s,a)
B(s) = max{R(s,a) + gJ(s,a)} - U(s)
U(s) = B(s) + U(s)

end
changed = {s|s1 changed E neighbors(s),|B(s)| > e}
t=t+1
while t < numit and _max_|B(s)|> e
sl changed
p(s) = argmax{R(s,a) + gJ(s,a)} fors = 1,2...,n
return P :

Algorithm 6. ARVI5 (asynchronous updates of states that change between iterations, static
ordering of states and improved termination criterion).

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

ordering.
for i=0..(p-1 do

I Initialization: dc is an array representing the in-degree of each
state. p is a partition of the state space.

I f T(sas)=0t hen increment(dds])

dc«0
for all sepdo
for all aeA do
for all sep do
end for
end for

// Main loop: finalOrder isan array representing the final state

| et sbe theindex of the smallest non-negative value in dc

dds] « -1
finalOrder [|p|-1-i]«s
for all aeA do
for all sep do
I f T(sas)=0t hen decrement(dds])
end for
end for

Algorithm 7. Algorithm 7. Modified topological reordering [23].

6. Experiments

For evaluating our approach, we chose the sailing
domain [35]. This is a finite state and action-space
stochastic shortest path problem, where a sailboat
has to find the shortest path between two points
of a lake under fluctuating wind conditions.

The details of the problem are as follows: the
sailboat’s position is represented as a pair of
coordinates on a grid of finite size. The controller
has 8 actions giving the direction to a neighboring
grid position. Each action has a cost (required
time) depending on the direction of the action and

the wind. For the action whose direction is just the
opposite of the direction of the wind, the cost
must be high. For example, if the wind is at 45
degrees measured from the boat’s heading, we say
that the boat is on an upwind tack. On such a tack,
it takes 4 seconds to sail from one waypoint to one
of the nearest neighbors. But, if the wind is at 90
degrees from the boat’s heading, the boat moves
faster through the water and can reach the next
waypoint in only 3 seconds. Such a tack is called a
crosswind tack. If the wind is a quartering tailwind,
we say that the boat is on a downwind tack; such a

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

tack takes 2 seconds. Finally, if the boat is sailing
directly downwind, we say that it is on an away
tack (only 1 second is required). Otherwise, if the
wind is hitting the left side of the sails we say that
the boat is on a port tack. If the wind is on the
right-hand side, we say that it is a starboard tack. If
the boat is heading directly into the wind or
directly away from the wind, then it is on neither a
starboard nor a port tack. When changing from a
port to a starboard tack (or vice versa), we assume
that our sailor wastes 3 seconds (delay) for every
such change of tack. To keep our model simple, we
assume that the wind intensity is constant but its
direction can change at any time. The wind could
come from one of three directions: either from the
same direction as the old wind or from 45 degrees
to the left or to the right of the old wind. Table |
shows the probabilities of a change of wind
direction.

Each current state S comprises a position of the
boat (X,y), a tack t 1 {012} and a current

wind direction w1 {0, LK ,7}. When the
heading is along one of the diagonal directions, the

time is multiplied by \/E to account for the
somewhat longer distance that must be traveled.

All the experiments were performed on a 2.66 GHz
Pentium D computer with 1 GB RAM. All
algorithms were implemented in the Java language
under a robotic planning environment. The initial
and maximum size of the stack of the Java virtual
machine was set to 800 MB and 1536 MB,
respectively.

For all the experiments, we set € = 10 ’ g=1
and Numlt = 1000. Since g =1, we are

dealing with an undiscounted MDP where
convergence is not guaranteed by the Banach fixed
point theorem and the bound of the number of
iterations (see equation (5)) no longer holds [36].
Fortunately, the presence of absorbing states
(states with null reward and 100% probability of
staying in the same state) may allow the algorithm
to converge [37].

The lake size was varied from 6~ 6 to 200° 200
and the resulting number of states varied from 384
to 940896, respectively. We repeated each run 10
times and then we calculated the average and
standard deviation.

N NE E SE S SW W NW

N 0.4 0.3 0.3
NE 0.4 0.3 0.3

E 0.4 0.3 0.3

SE 0.4 0.3 0.3

S 0.4 0.2 0.4

SW 0.3 0.3 0.4

w 03 0.3 0.4
NW 0.4 0.3 0.3

Table I. Probabilities of change of wind direction. First column indicates old wind
direction and first row indicates new wind direction.

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

7.Results

Figure 1 shows the solution time as a function of
the number of states for all the algorithms,
excepting ARVI6. We can see that ARVI5 (which
uses asynchronous updates of states that change
between iterations as well as static reordering in
decreasing order of maximum reward) is

significantly faster than the other algorithms. We
can see in Table Il that, for 940896 states, ARVI5
was almost 3 times faster than VDP. Even our first
algorithm (ARVI, which did not include any
acceleration procedure) is approximately 1.2 times
faster than VDP. We can see in Figure 2 that all
algorithms are clearly faster than classic value
iteration.

1600 -
1400 | |V
-+ VDP
1200 4 | =ARVI
-+ ARVI2 A
w 1000 -+ ARVI3
E -o-ARVI4 .
= 800 + O
- - ARVI5 X
5 g
5 600 A - .
@ ,) -/ ©
00 - e
L]
£ O
200 - 4 _/./’ o =
. 0 !/.
o Ao :'.Evggsgga-f-—*‘" i
0 200 400 600 800 1000

Number of states (thousands)

Figure 1. Solution time as a function of the number of states for all the approaches, excepting ARVI6.

Algorithm Solution time (ms) Relative solution time
VDP 1376571.9 3.16
ARVI 1095706.3 2.50
ARVI2 766124.9 1.76
ARVI3 782284.5 1.79
ARVI4 499172.0 1.14
ARVI5 436302.9 1.0

Table Il. Summary of results in terms of solution time for all the algorithms excepting ARVI6 (the
number of states was 940896). Relative solution times are calculated with respect to the solution time
of ARVI5.

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

25 -
VI
& VDP
20 1 | = ARVI
-+ ARVI2
- -O-ARVI3
% 15 4 | ©ARVH4
E ~ ARVIS
2 10 |
e
5 |
0 : —F —5 —Ia BEEQE
0 500 1000 1500 2000 2500 3000

Number of states

Figure 2. Close-up of the solution time (for less than 3000 states) as a function of the number of states
for all the approaches, excepting ARVI6.

Figure 3 shows the number of iterations required by each algorithm to reach the solution as a function
of the number of states, excepting ARVI6. We can observe that or fastest algorithm ARVI5 also
required the smallest number of iterations. For example, for 940896 states, VDP took 373 iterations
whereas ARVI5 required 338 iterations.

700
= VI
600 | + VDP
“ ARVI
£ 500 - ~# ARVI2
2 4 ARVI3
2 400 & ARVI4
5 4 ARVI5 |
5 300 ¢
g
=1
Z 200 -

0 200 400 600 800 1000

Number of states (thousands)

Figure 3. Number of iterations as a function of the number of states for all the algorithms, excepting
ARVI6.

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

Figure 4 shows a comparison between ARVI5 and
ARVI6 in terms of solution time as a function of the
number of states. Figure 5 shows a comparison
between ARVI5 and ARVI6 in terms of the number
iterations to reach the solution. We can see that
ARVI6 requires slightly less iterations than ARVI5,
but ARVIS is significantly faster than ARVI6, even
when they differ only in the way states are sorted.
This shows clearly that the modified topological
reordering algorithm used by ARVI6 was very slow
in comparison with the ordering algorithm used by
ARVI5 (in decreasing order of maximum reward by
means of quicksort). In this case, the use of

incurred to find the topological ordering. An
alternative to this modified topological ordering
algorithm is to remove the smallest set of
transitions that render the MDP acyclic (also
known as feedback arc set problem) and to use
linear complexity algorithms for acyclic graphs
based on depth-first search. Unfortunately, it turns
out that the feedback arc set problem is known to
be NP-complete [38]. Another possibility to find a
topological ordering would be to apply a strongly
connected components algorithm as in [39].
Anyway, preliminary results obtained in an
experiment in which we used a strongly connected

topological ordering does not reflect in a better component algorithm indicated that our
solution time because of the high overhead reordering was still faster.
3000 -
x
2500 - /
& /
Y 4
£ 2000 - /
E ARVI5 *
= -
2 1500 | /
2 -¥- ARVI6 />K
1000 /*
500 - /X P .
K >)
0 -;>xX-XE*:.*w ‘
0 100 200 300 400 500 600 700 800 900 1000

Number of states (thousands)

Figure 4. Comparison in terms of solution time for two algorithms using different reordering methods.
ARVI5 uses a reordering method based on maximum reward and ARVI6 uses a modified topological
ordering algorithm.

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

400

350

300

250 A

+
.
&
S

. e

150

Number of iterations

100

200 400

0

A

600 800 1000

Number of states (thousands)

Figure 5. Comparison in terms of number of iterations for two algorithms using different reordering
methods. ARVI5 uses a reordering method based on maximum reward and ARVI6 uses a modified
topological ordering algorithm.

In all cases our ARVI5 yielded the smallest solution
time but slightly more iterations than ARVI6. This
implicates that, at least in the sailing strategies
problem, the combination of asynchronous
updates, prioritization with static ordering of the
states in decreasing order of their maximum
reward, results in the fastest algorithm. The use of
prioritization and partitioning (excepting static
ordering in decreasing value of maximum reward)
in the sailing strategies problem resulted in
excessive overhead. This may be due in part to the
cyclic nature of the resulting MDPs as shown in
[23] for the SysAdmin problem.

8. Conclusions
In this paper we have successfully tested a new

approach for the estimation and solution of MDPs
based on association rules (obtained by using

efficient methods such as Apriori and other
powerful association rule mining techniques) and
the application of state-of-the-art acceleration
procedures such as asynchronous updates and
prioritization with static reordering of the states. In
addition, we tested a new criterion for reordering
states and compared it with the modified
topological reordering algorithm proposed in [23].

We compared our approach with other methods
such as classic value iteration [18] and dynamic
programming [40, 41]. At least in the sailing
domain, our approach combined with
asynchronous updates and prioritization using a
static reordering of states in decreasing order of
maximum reward yielded the lowest solution time
with the lowest number of iterations. In general,
the use of prioritization and partitioning excepting
static ordering by decreasing value of maximum

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

reward resulted in excessive overhead. This may
be in part because of the cyclic nature of MDPs
resulting from the sailing strategies problem (as
shown before [23]). Since the use of the modified
topological reordering algorithm resulted in less
iterations than the state reordering algorithm
based on maximum reward, further work will focus
other criteria for finding an optimal state ordering.

References

[1] Boutilier, C., Dean, T., Hanks, S., Decision-theoretic
planning: structural assumptions and computational
leverage, Journal of Artificial Intelligence Research, 11,
1999, pp 1-94.

[2] Bellman, R. E., The theory of dynamic programming,
Bull. Amer. Math. Soc., 60, 1954, pp 503-516.

[3] Puterman, M. L., Markov Decision Processes, Wiley
Editors, New York, USA, 1994.

[4] Bonet, B., Geffner, H., Learning depth-first search: A
unified approach to heuristic search in deterministic and
non-deterministic settings and its application to MDP,
International Conference on Automated Planning and
Scheduling, ICAPS, 2006, Cumbria, UK.

[5] Darwiche, A., Goldszmidt M., Action networks: A
framework for reasoning about actions and change
under understanding, 10th Conference on Uncertainty
in Artificial Intelligence, UAI, 1994, pp 136-144, Seattle,
Washington, USA.

[6] Van Otterlo, M., A Survey of Reinforcement Learning
in Relational Domains, Technical Report Series CTIT-05-
31, ISSN 1381-3625, July 2005.

[7] Dean, T., Kaelbling, L. P., Kirman, J., Nicholson, A,
Planning under Time Constraints in Stochastic Domains,
Artificial Intelligence, 76 (1-2), July 1995, pp 35-74.

[8] Boutilier, C., Dearden, R., Goldszmidt, M., Stochastic
Dynamic Programming with Factored Representations,
Artificial Intelligence, 121 (1-2), 2000, pp 49-107.

[9] Givan, R., Dean, T., Greig, M., Equivalence Notions
and Model Minimization in MDPs, Artificial Intelligence,
147 (1-2), 2003, pp 163-233.

[10] Tsitsiklis, J. N., Van Roy, B., Feature-based methods
for large-scale dynamic programming, Machine
Learning, 22, 1996, pp 59-94.

[11] De Farias, D. P., Van Roy, B., The linear
programming approach to approximate dynamic
programming, Operations Research, 51 (6), 2003, pp
850-865.

[12] Bonet, B., Geffner, H., Labeled RTDP: Improving the
Convergence of Real-Time Dynamic Programming,
International Conference on Automated Planning and
Scheduling, ICAPS, 2003, pp 12-21, Trento, Italy.

[13] Hansen, E. A., Zilberstein, S., LAO: A Heuristic
Search Algorithm that finds solutions with Loops,
Artificial Intelligence, 129, 2001, pp 35-62.

[14] Chang, H. S., Fu, M. C., Hu, J., Marcus, S. I., An
Adaptive sampling algorithm for solving MDPs,
Operations Research, 53 (1), 2005, pp 126-139.

[15] Gardiol, N., Kaelbling, L. P., Envelope-based
Planning in Relational MDP’s, Neural Information
Processing Systems NIPS, 16, 2003, Vancouver, B. C.

[16] Gardiol, N., Relational Envelope-based Planning,
PhD Thesis, MIT, MA, USA, February 2008.

[17] Bellman, R. E., Dynamic Programming, Princeton
United Press, Princeton, USA, 1957.

18] Puterman, M. L., Markov Decision Processes, Wiley
Interscience Editors, New York, USA, 2005.

[19] Russell, S., Artificial Intelligence: A Modern
Approach, 2nd Edition, Making Complex Decisions (C-
17), Pearson Prentice Hill Ed., USA, 2004.

[20] Chang, I. and Soo, H., Simulation-based algorithms
for Markov decision processes, Communications and
Control Engineering, Springer Verlag London Limited,
2007.

372

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

[21] Tijms, H. C., A First Course in Stochastic Models,
Wiley Ed., Discrete-Time Markov Decision Processes (C-
6), UK, 2003.

[22] Littman, M. L., Dean, T. L. and Kaelbling, L. P., On
the Complexity of Solving Markov Decision Problems,
11th International Conference on Uncertainty in
Artificial Intelligence, 1995, pp 394-402, Montreal,
Quebec.

[23] Wingate, D., Seppi, K. D., Prioritization Methods for
Accelerating MDP Solvers, Journal of Machine Learning
Research, 6, 2005, pp 851-881.

[24] Dai, P., Hansen, E. A., Prioritizing Bellman Backups
Without a Priority Queue, Association for the
Advancement of Artificial Intelligence, 17th
International Conference on Automated Planning and
Scheduling, ICAPS, 2007.

[25] Agrawal, R., Imielinski, T., Swami, A., Mining
Association Rules between Sets of Items in Large
Databases, ACM SIGMOD International Conference on
Management of Data, May 1993, Washington DC, USA.

[26] Hahsler, M., Hornik, K., Reutterer, T., Implications
of Probabilistic Data Modeling for Mining Association
Rules, Studies in Classification Data Analysis and
Knowledge Organization, Springer Verlag, 2005.

[27] Brijs, T., Swinnen, G., Van Hoof, K., Wets, G.,
Building an association rules framework to improve
product assortment decisions, Data Mining and
Knowledge Discovery, 8 (1), 2004, pp 7-23.

[28] Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros,
M. S., Duri, S., Personalization of supermarket product
recommendations, Data Mining and Knowledge
Discovery, 5 (1/2), 2001, pp 11-32.

[29] Van den Poel, D., Schamphelaere, J., Wets, G.,
Direct and indirect effects of retail promotions on sales
and profits in the do-it-yourself market, Expert Systems
with Applications, 27 (1), 2004, pp 53-62.

[30] Agrawal, R., Srikant, R., Fast Algorithms for Mining
Association Rules, 20th VLDB Conference, IBM Almaden
Research Center, 1994.

[31] Sutton, R. S., Barto, A. G., Introduction to
Reinforcement Learning, MIT Press, USA 1998.

[32] Scherrer, B., Mannor, S., Error Reducing Sampling in
Reinforcement Learning, Institut National de Recherche
en Informatique et Automatique, INRIA, 98352, Vol.1,
September 2006.

[33] Gupta, G. K., Introduction to Data Mining with Case
Studies, Prentice-Hall of India, Pvt. Ltd, 2006, pp 76-82.

[34] Ceglar, A., Roddick, J. F., Association Mining, ACM
Computing Surveys, Vol. 38, No.2, Article 5, July 2006.

[35] Vanderbei, Robert J., Optimal Sailing Strategies,
Statistics and Operations Research Program, University
of Princeton, USA,
(http://orfe.princeton.edu/~rvdb/sail/sail.html), 1996.

[36] Blackwell, D., Discounted dynamic programming,
Annals of Mathematical Statistics, Vol. 36, 1965, pp 226-
235.

[37] Hinderer, K., Waldmann, K. H., The critical discount
factor for Finite Markovian Decision Processes with an
absorbing set, Mathematical Methods of Operations
Research, Springer Verlag, 57, 2003, pp 1-19.

[38] Garey, M. R., Johnson, D. S., Computers and
Intractability, A Guide to the Theory of NP-
Completeness, Appendix A: List of NP-Complete
Problems, W. H. Freeman, 1990.

[39] Dai, P., Goldsmith, J., Topological Value Iteration
Algorithm for Markov Decision Processes, 20th
International Joint Conference on Artificial Intelligence,
1JCAI, 2007, pp 1860-1865, Hyderabad, India

[40] Reyes, A., Ibarguengoytia, P., Sucar, L. E., Morales,
E., Abstraction and Refinement for Solving Continuous
Markov Decision Processes, 3rd European Workshop on

Probabilistic Graphical Models, 2006, pp 263-270,
Prague, Czech Republic.
[41] Vanderbei, Robert J., Linear Programming:

Foundations and Extensions,
Edition, January 2008.

Springer Verlag, 3rd

Journal of Applied Research and Technology

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

Authors’ Biography

Ma.de Guadalupe GARCIA-HERNANDEZ

She is a researcher and full-time professor at the Universidad de Guanajuato,
at the Engineering Division of the Campus Irapuato-Salamanca, in Mexico.
She holds a recognition and artificial intelligence doctorate degree from the
Universidad Politécnica de Valencia, Spain. She obtained the mechanical
engineer master’s degree in 1992 from the Universidad de Guanajuato,
Mexico. She graduated in chemical engineer in 1985 from the same
university. For twenty years, she has been a full-time professor in the
aforementioned institution. She has presented eighteen papers in
international scientific events and eleven papers in national scientific events;
she has six collaborations in indexed journals and four collaborations in
national journals. She is member of the Spanish Association for Artificial
Intelligence since January, 2006.

J. Gabriel AVINA-CERVANTES

He received the engineering degree in electronics and communications from
the Universidad de Guanajuato in 1998, the M.S. degree in electrical
engineering from the same university in 1999, the Ph.D. degree in
informatics and telecommunications from the Institut National
Polytechnique de Toulouse and the LAAS-CNRS, France, in 2005. His research
interests include artificial vision for outdoor robotics, pattern recognition,
object classification and image processing. He is currently a researcher and a
full-time professor at the Universidad de Guanajuato, at the Engineering
Division of the Campus Irapuato-Salamanca.

Sergio LEDESMA

He got his M.S. degree from the Universidad de Guanajuato while working on
the setup of Internet in Mexico. In 2001, he got his Ph.D. degree from the
Stevens Institute of Technology in Hoboken, New Jersey. After graduating,
he worked for Barclays Bank as part of the IT-HR group. He has worked as a
software engineer for several years, and he is the creator of the software
Neural Lab and Wintempla. Neural Lab offers a graphical interface to create
and simulate artificial neural networks. Neural Lab is free, and the latest
version can be downloaded from Wikipedia. Wintempla provides a thin layer
of encapsulation to ease program design and implementation for business
and research. Currently, he is a research professor at the Universidad de
Guanajuato in Mexico. His areas of interests are Artificial Intelligence and
software engineering.

Vol.7 No. 3 December 2009

Aceleration of association-rule based markov decision processes, Ma. de G. Garcia-Hernandez et al., 354-375

Eva ONAINDIA

She is an assistant professor of computer science at the Universidad Técnica
de Valencia in Spain. She received her Ph.D. degree in computer science from
the same university in 1997. She currently leads the Reasoning on Planning
and Scheduling Group where she conducts research in temporal and classical
planning, development of integrated techniques of planning and scheduling
and re-planning. She is currently collaborating with the Agreement
Technologies Project where she is working on the application of negotiation
techniques to planning. She has led national research projects (MCyT, MEC)
as well as sittings on various scientific committees in her field (IJCAI, ICAPS,
ECAI, etc.). She has published about 50 articles in specialized conferences and
scientific journals related to topics of Planning in Al.

Alberto REYES-BALLESTEROS

He is a researcher at the Electrical Research Institute in México (lIE) and a
part-time professor at Instituto Tecnolégico y de Estudios Superiores de
Monterrey (ITESM)-campus Meéxico City. His research interests include
decision-theoretic planning and machine learning, and their applications in
robotics and industrial processes. He received a PhD degree in computer
science from ITESM-campus Cuernavaca, and is currently involved in a
postdoctoral program at the Instituto Superior Técnico (IST) in Lisbon. He is a
member of the National Research System (SNI) in Mexico.

José RUIZ-PINALES

He received the BA degree in electronics and communications engineering
and the MSE degree in electrical engineering from Universidad de
Guanajuato in 1993 and 1996. He received the PhD degree in computer
science from the Ecole Nationale Supérieure des Télécommunications de
Paris in 2001. He joined the Department of Electronics Engineering,
Universidad de Guanajuato, as a professor in 2001. His research interests are
in computer vision and artificial intelligence including face recognition,
handwriting recognition, neural network models, support vector machines,
models of the human visual system, instrumentation, communications and
electronics. He has coauthored more than 32 research papers.

Journal of Applied Research and Technology

