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ABSTRACT

The Particle Swarm Optimization (PSO) algorithm is a well known alternative for global optimization based on a bio-inspired
heuristic. PSO has good performance, low computational complexity and few parameters. Heuristic techniques have been
widely studied in the last twenty years and the scientific community is still interested in technological alternatives that
accelerate these algorithms in order to apply them to bigger and more complex problems. This article presents an empirical
study of some parallel variants for a PSO algorithm, implemented on a Graphic Process Unit (GPU) device with multi-thread
support and using the most recent model of parallel programming for these cases. The main idea is to show that, with the help
of a multithreading GPU, it is possible to significantly improve the PSO algorithm performance by means of a simple and almost
straightforward parallel programming, getting the computing power of cluster in a conventional personal computer.

KEYWORDS. Multithreading GPU, PSO, general-purpose GPU, parallel programming, global optimization.

RESUMEN

El algoritmo Particle Swarm Optimization (PSO) ha tenido gran aceptacién como alternativa de optimizacién global con base en
heuristicas bio-inspiradas. Sus principales ventajas son su buen desempeiio, baja complejidad computacional y un minimo de
parametros. En general, las técnicas heuristicas han tenido un gran auge en los ultimos veinte afios y aun hoy resulta atractivo
estudiar alternativas tecnoldgicas que permitan acelerar estos algoritmos para aplicarlos a problemas mucho mas grandes y
complejos. En este articulo se presenta un estudio empirico sobre la aplicacion de algunas variantes paralelas para un algoritmo
PSO, empleando un dispositivo de procesamiento grafico (GPU) con capacidad multi-hilos y el mas reciente modelo de
programacion paralela para estos casos. La idea principal es demostrar que es posible mejorar significativamente el desempefio
del algoritmo PSO, mediante una programacion paralela sencilla y directa, logrando con ello el poder computacional de un
cluster en una computadora personal convencional.

Palabras clave: GPU con capacidad miltihilos, PSO, GPU para propdsitos generales, programacion paralela, optimizacién global.

1. Introduction

Some  bio-inspired  techniques, such as
Evolutionary  Computing [1], Ant Colony
Optimization [2, 3], and PSO [4], were proposed as
alternatives to solve difficult optimization
problems obtaining acceptable solutions in a
reasonable time. Due to these techniques work
with  a population of individuals, they
simultaneously test different solutions based on
specific rules and underlying stochastic processes.

These heuristic techniques have been applied in
practically all fields of knowledge, obtaining a good
performance even running on common personal
computers. The heuristic techniques obtain
acceptable solutions in a “reasonably short time”
compared with the traditional methods such as
deterministic and enumerative techniques that
may result impractical, specially while solving
difficult optimization problems, since they explore
each of the possible solutions of a problem.
Nevertheless, the "reasonable" time that heuristic
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techniques may consume, this can be in the order
of seconds, minutes, or even hours, depending on
the problem to be solved. So, simpler algorithms,
like PSO, have become very attractive because of
their low computational complexity that leads to
shorter execution times. However, when it is
necessary to obtain a good real-time solution, even
the simpler algorithms may seem to be slow. This
situation has motivated the search for new ways to

accelerate the performance of heuristic
algorithms.
Recently, it was suggested to exploit the

computational power available in the PC’s graphic
cards in order to solve general purpose problems
[5] and the idea of general-purpose GPU (GPGPU)
processing  emerged. Since then, both
manufacturers and developers have considered
this new computing application as a promising
research area, considering the wide range of
possible applications that can take advantage of
the parallelism available in the current GPUs.

Since bio-inspired algorithms were first reported,
the idea of their parallelization was viewed as a
natural consequence of their population-based
feature [6]. In the case of the PSO algorithm, we
can use parallel models developed for evolutionary
algorithms, i.e.: global model, island model and
diffusion model [7]. In this work we present some
parallel variants for the PSO algorithm (two Global
variants, and another one that we call embedded)
implemented on a multithreading GPU. We report
the obtained results using a new model of GPU
programming that allows the programmer to write
the code based on threads, additionally to the
parallel operations on the graphic memory [8]. The
main idea is to show that, with the help of a
multithreading GPU, it is possible to improve the
PSO algorithm performance, in a significant way,
by means of a simple and almost straightforward

parallel programming, getting the computing
power of cluster in a conventional personal
computer.

This work is organized as follows: In Section 2, we
present the related work found in the specialized
literature. In Section 3, we offer a brief description
of the canonic algorithm for PSO. In Section 4, an
outline of the general GPU architecture is given. In
Section 5, we present practical considerations of
our implementation. In Section 6 present
experimental results. Finally, in Section 7, we draw
our conclusions.

2. Related Work

Parallel programming usually involves migration of an
existing sequential code towards concurrent, parallel or
distributed architectures. The sequential PSO algorithm
was not the exception and, after it was presented in
1995 [4], the first attempts to take advantage of its
natural parallelism were reported like in the case of the
work of J.F. Schutte in 2003 [9]. Interest in PSO
parallelization is still a very current topic, which is
shown by some recent research works that apply
diverse parallel PSO algorithms to solve very complex
optimization problems (i.g. see [10], [11], and [12]).

In the specialized literature, for a given algorithm, we
can find proposals based on traditional concurrent
processes, running in just one processor (e.g. see [18]),
but most parallel implementations are usually designed
to be executed in distributed systems (i.e. several
processors in a network). In all these distributed
systems, the communication overhead among different
processors is a factor that considerably affects the
performance of the parallel implementation. Because
of that, it is understandable that some parallel
implementations for PSO were proposed taking into
account communication strategies, like in [13], [14] and
[15]. Even new proposals for the PSO parallelization,
based on the concept of parallel vectors, have been
reported recently [16, 17].

Finally, we must note that although traditionally most
of the early works related to the parallelization of a
population-based algorithm with GPUs were firstly
focused on the Evolutionary and Genetic Algorithms
(e.g. see [19], [20], [21], and [22]), in some cases the
resulting experiences were applied later to the PSO
parallelization, like in [23].
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Nowadays, specialized literature does not mention any
empirical studies regarding the implementation of
heuristic algorithms on a GPU with the new model of
parallel programming based on multiple concurrent
threads. This could be attributed to the fact that the
programming tools were introduced very recently [24].
Therefore, this work represents the first empirical
study comparing some parallel PSO variants on a
multithreading GPU.

3. The Particle Swarm Optimization Algorithm

The PSO algorithm is based on the movement of
particles or individuals that "fly" in an n-
dimensional space searching for a global optimum
in a collaborative way. At each algorithm’s
iteration, the particles’ position is updated
following a simple rule where the individual’s
movement, although essentially random, s
influenced by their own experience (individual
learning) and by the environment (social
influence) [25].

Originally, the algorithm was proposed by
Kennedy and Heberhart [4], in 1995, based on the
position X and change of position V (which was
named velocity, by analogy) for every particle.
Later, the algorithm was improved by Shi and
Heberhart [26], in 1998, introducing the concept
of inertiaW. Denoting pbX the best fitness found

so far by the particle, and gbX the best global

fitness found so far within the population, then
the PSO algorithm (in its canonical form) can be
described as follows [27]:

Algorithm 1:

1.- Initialize every particle of the population in a
random form, obtaining the values for the n-
dimensional vectors of position X and velocity V.

2.- Calculate the fitness of every particle’s
position X . better

than pbx, then pbX is updated.

If the current fitness is

3.- Determine the location of the particle with the
highest fitness and revise gbX.

4.- For every dimension d, of every particle i, the
velocity V is updated according to the following
equation:

Vg @) =y, O+ 1, <(pbigy =X 4 (©)+6, <1, (b3, =4 )

where W is the inertia of the system; C and C,

are constants that weigh the influence of
individual learning and the social influence,

respectively; and I, and I, are random variables,

between 0 and 1, representing the free movement
of every particle.

5.- Update the position X of each particle
according to the following equation:

Xa(t+D) =X g(O) +Vq(t+1

6.- Repeat steps 2-5 until reaching the termination
condition (number of iterations or precision).

4. GPU Architecture

The device selected to implement the parallel PSO
variants is a GPU commonly used as graphic co-
processor in systems with requirements of high
performance video, such as video games. A GPU
has its foundation on the vectorial processor
architecture, which supports the execution of
mathematical operations on multiple data in a
simultaneous way. In contrast, the common CPU
processors cannot handle more than one
operation at the same time. Originally, the
vectorial processors were commonly used in
scientific computers [28], but later they were
displaced by  multi-nucleus  architectures.
Nevertheless, they were not completely
eliminated because many computer graphics
architectures, such as GPUs, use them as the basis
for their hardware.
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Usually, a conventional processor has to look for
the next instruction to execute, which consumes
time and generates latency during the
instruction’s execution. To reduce latency,
modern processors execute a set of instructions in
concurrent form, which is known as instruction
pipelining, where the instructions go through
several specialized subunits in turns: the first
subunit reads the instruction and decodes it, the
following subunit fetches it, and the last one
executes the mathematical -calculation. With
instruction  pipelining, decoding the next
instruction starts before the first one has been
carried out, in such a way that the instruction
decoder is constantly used and the latencies are
minimized. In these conditions, the execution time
for a set of instructions is less than in a
conventional processor, increasing the total
throughput of the processor.

Vectorial processors lead the same idea further,
pipelining both instructions and data. In this case,
the same instruction operates on much data. This
saves time while decoding instructions and results
in a great computing power.

In computer graphics, the matricial representation
is very common since images have a natural
representation in this formalism and because
operations on multiple sets of data are usually
straightforward. This explains the wide
acceptance of vectorial processors in the
computer graphics area and their influence on the
development of new hardware architectures
destined to support the image generation
required by video and gaming applications.

The big demand of gaming and video productions
with real-time and photorealistic appearance has
lead to the production of more powerful GPUs;
prompting video-card manufacturers to develop
multi-core based architectures and multi-thread
proposals with computing power similar to the
first Cray vectorial supercomputers.

Today, the trend in GPU development allows us to
foresee the consolidation of a new model of
parallel programming where the GPU does not
only increase their original capacity of parallel
calculation but rather has a more preponderant
role as multithreading manager [29].

The GPU device used in this work was a GPU
NVIDIA GeForce 8600GT with unified graphs and
computing architecture that the manufacturer
calls “Tesla”, which is a scalable arrangement of
multithreading multiprocessors. Every
multiprocessor consists of eight processing cores,
a multithreaded instruction unit and on-chip
shared memory. A multiprocessor manages the
creation, handling, and execution of the current
threads in the hardware, supporting hundreds of
threads (theoretically up to 512) under the SIMT
approach (Single Instruction Multiple Treads) [29].
Since the multiprocessor maps every thread to a
core and every thread is executed independently
from the others, with its own instruction address
and state registers, the NVIDIA programming tools
offer some functions that are focused on the
handling and optimization of multithreading.

5. Implementation Of Parallel Pso Variants On
The GPU

Concerning parallelization models for the PSO
algorithm, the same parallel classification
suggested for the Evolutionary Algorithms was
adopted as follows [7]:

1.- Parallel implementation with global approach.
There is a main (master) processor and several
slaves. In this model, the master distributes the
work related to the fitness function evaluation to
the slaves.

2.- Parallel implementation with migratory
approach (also called island approach). In this
model, the population is divided into several
subpopulations (or demes) and the different
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processors run the same algorithm on each
subpopulation. Eventually, after a certain time
(called epoch), the processors commute to a stage
of intercommunication where they interchange
information and share the solutions found to that
moment.

3.- Parallel implementation with diffusion
approach. This may be seen as an extreme case of
the island model where the population of every
island is just one individual and where there are as
many islands as existing individuals.

Based on the above classification, we
programmed some parallel variants for the PSO
algorithm as we will detail below. Our main
objective was to program parallel
implementations on the GPU using the CUDA
(Computer Unified Device Architecture) software
instead of complex and laborious methods based
especially on parallel operations with graphic
memory (i.e. textures, etc.). This was done in
order to assess the performance gains that could
be reached by the GPU through a relatively simple
parallel programming strategy. Then, our
implementations differ from the one presented in
[23] because we do not use the traditionally GPU
programming style based on parallel operations
on multiple data, using an approach known as
SIMD (Single Instruction Multiple Data) [8].
Instead, our implementations are based on the
new model of parallel programming conceived to
take advantage of the multithreading feature of
NVIDIA GPUs, which allows us to manage multiple
concurrent threads in a very efficient form.
NVIDIA calls this feature “SIMT” (Single Instruction
Multiple Threads) [29] and it is offered as a plus
feature that complements the parallel operations
of memory. This new programming model and its
associated programming tool CUDA allows the
programmers to write parallel programming on
GPUs in a more natural way, turning GPUs in really
general purpose programming tools. In fact, it is
foreseen that this new model of parallel
programming will be the reference for a future

specification on a universal programming model
that makes parallel programming possible, not
only on GPUs, but on any multi-nucleus
architecture or super computing platform that
appears in the future [8, 24, 28].

In this work, three parallel variants for the PSO
algorithm are reported: two Global variants and
another one that we called embedded since it
encloses both island and diffusion models.
Concerning the global approach, two variants
were programmed on the GPU:

1.- Global_ev: Where only the evaluation of
objective function (fitness function) is parallelized.
2.- Global_ev+up: Where all the mathematical
calculations are parallelized, computing all fitness
function, velocity, position, and inertia.

Concerning the parallel implementation with the
island model, and considering that the diffusion
model is an extreme case of the island approach,
we choose to include both variants under the
same implantation and call it “embedded variant”
because, in this case, the whole PSO algorithm
runs on the GPU device and it appears as a black
box from the host processor viewpoint.

The sequential PSO Algorithm 1 was implemented
as reference, in order to assess the performance
of parallel variants. In all parallel implementations,
the programming strategy involved the creation of
one thread for each PSO particle. The rule was to
replace all the sequential loops (specifically those
where the iterations were in terms of the particles
number) by a single multithreading kernel call.
Thus, the sequential PSO algorithm and its parallel
implementations have essentially the same
structure. In the loops of the sequential code,
each loop’s iteration is independent from all
others. Such loops can be automatically
transformed into parallel kernels and each loop’s
iteration becomes an independent thread [8].
CUDA programs launch parallel kernels with the
following extend function-call syntax:
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kernel <<<dimGrid, dimBlock>>>(... parameter
list ...);

where dimGrid and dimBlock are specialized
parameters that specify the dimensions of the
parallel processing grid in blocks and the
dimensions of the blocks in threads, respectively.

Figure 1 depicts the structure of the sequential
PSO algorithm where the following functional
blocks can be observed [25]:

- Population initialization. It initializes
particle of the population in a random form.
- Fitness function evaluation.

- Comparison. It determines if an individual has
better fitness that the best registered.

- Imitation (updating). Every individual updates its
position influenced by its own experience, and by
the social environment.

each

Host CPU

Initialization _

dof Host CPU

for(i=0;i<m;i++){ #/ for n particles

Fitness evaluation

} Hend for

Host CPU

for(i=0;i<n;i++){ // for n patticles
Comparison
} Hend for

Host CPU

for(i=0:i<n;i++){ // for n particles

Imitation (update)

} Hend for

Host CPU

Host CPU

Jwhile( ! terminate)

Figure 1. Structure of the sequential PSO algorithm

Intentionally, in order to illustrate the forward
parallelization of the code, the sequential code has
been organized highlighting the loops that are in
terms of the particles number. The main idea is to
create one thread for each PSO particle, as we will
see below. Note that in the sequential PSO version
(see Figure 1) all the functional modules are
executed on the host processor. In the first parallel
variant, the Global ev one, only the fitness
function evaluation module is parallelized (see
Figure 2). Note that the respective loop was
replaced by a kernel call that distributes the work
to multiple threads on the GPU device. In the

second parallel variant, the Global_ev+up one, any
arithmetic calculation is distributed to the GPU,
replacing both the fithess function evaluation and
position update modules by the associated kernel
calls (see Figure 3). Finally, in the third parallel
variant, the embedded one, only the initialization
module remains running on the host processor
(see Figure 4), since there are kernel calls
associated to the evaluation, comparison and
imitation modules, that run on the GPU until a
termination condition is reached.

Initialization B — e — Host CPU
dof Host CPU
evaluation_kernel<<>>(); GPU device
for(i=0ui<n,i++){ # for n partticles
st ooy
} Hend for
for(i=0i<ni++){ #/ for n patticles
Imitation (update) | ——— Host CPU
} ffend tor d
| Jwhite( ! terminate) Host CPU

Figure 2. Structure of the Global_ev variant for the
parallel PSO algorithm

Initialization - Host CPU
dof Host CPU
evaluation_kernel<<>>(); GPU device
for(i=0;i<n;i++){ / for n particles
Comparison Host CPU
} Hend for
imitation_kernel<<>>(}); GPU device
| Jwhite( ! terminate) Host CPU

Figure 3. Structure of the Global_ev+up variant for the
parallel PSO algorithm

Initialization _— Host CPU
PSO_evaluate_comparate_imitate_kernels<»>{); - GPU device

Figure 4. Structure of the embedded variant for the
parallel PSO algorithm
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Finally, there are some practical considerations
that must be taken into account to achieve a
functional implementation of the parallel PSO
algorithm on a GPU:

Overhead. The GPU presents an overhead due to
memory transferences between the host and the
GPU device which are necessary during the
information exchange. Because these
transferences are relatively slow, any parallel
implementation on a GPU must minimize their
employment. Considering the overhead, it is
understandable that the global variants
(Global_ev and Global_ev+up) are slower than the
embedded one, due to the information exchange
between the host and the GPU during the
algorithm execution. In the global variants, the
information exchange in necessary since the host
processor needs to know the information
originated at both the evaluation and update
modules in order to take any decision.

Synchronization. Before any decision branch, for
example during the comparison process, all the
running threads must be synchronized at the
points where it is necessary to obtain
unambiguous information. This  point s
particularly important when the threads have to
communicate among themselves to share
information. In these cases, it is a good practice to
implement a master-slave communication
strategy, additionally to the thread
synchronization, in order to guarantee that only
one of the threads is updating the global variables
based on the information of all the others.

Contention. It is necessary to be careful when
operating global variables that can be
simultaneously revised by several threads.
Appropriate precautions must be incorporated to
deal with this problem. Specifically in the PSO
algorithm, this situation happens with the variable
that contains the index to the global best.

Random numbers generation. This is a
fundamental topic for the correct operation of the
PSO algorithm and it becomes critical when the
random number generation is executed on the
GPU. It has to be proved that any call to the
rand() function running on the GPU will generate
good random numbers (different numbers for
every call and for every thread). If the above
condition is not provided, it could result in a no
converging algorithm because of the poor
diversity. Thus, in the implementation of the
embedded variant, the initialization module
remains out of the GPU. Specifically, the seeds for
random numbers (one per thread, in our case) are
initialized on the host.

6. Experiments and Results
6.1 Experimental procedure

The experiments were conduced on a personal
computer with a processor Intel Core Duo with a
Linux operating system, which we name “the host
processor”. The GPU is a graphic card NVIDIA
GeForce 8600GT with 256 Mbytes of work
memory and 4 multiprocessors, each one
integrated by 8 cores, which represents a total of
32 processing cores. These processing cores were
programmed by means of the CUDA environment
which includes a new model of parallel
programming that allows us to write the parallel
code for the NVIDIA GPU in a straightforward way.

The objective was assessing the performance of
our parallel PSO variants compared with the
sequential one. The performance was measured
according to the fitness function complexity,
particles and iterations number. The
implementations were tested solving some global
numerical optimization functions from a well-
known benchmark [30]. The following functions
were selected because they are all multimodal
and since they present significant complexity
concerning fitness evaluation [29]:
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FO1 - Generalized Rosenbrock function.

1,00 = 31000 ; ~x7)? + (x -1

-30<x <30
min(f,) = f,(L...) =0
with n=30,60,120 dimensions.

FO2 - Generalized Rastrigin's function.
£,00 = 3 [x? ~10cos(2mx,) +10]
i=1

-512<x <512
min(f,) = f,(0,...,0)=0
with n=30,60,120 dimensions.

FO3 - Generalized Griewank's function.

fa( )—mz HCOS( )+1

~600 < X, < 600
min(f,) = f,(0,...,0) =0
with n=30,60,120 dimensions.

The PSO implementations tested in this work were
- Sequential variant. It is a sequential PSO
algorithm that is executed completely on the host
processor.

- Global_ev variant. In this variant, GPU only
evaluates the fitness function and the remaining
algorithm is executed on the host.

- Variant Global_ev+up. In this case, GPU
evaluates the fitness function and executes the
velocity/position update, while the remaining
algorithm is executed on the host.

- Embedded variant. In this variant GPU executes
most of the PSO algorithm. The host only
executes the population initialization and results
printing.

Then, the following experiments were carried out
to measure the performance of each of the
implemented PSO variants:

- Experiment 1. Comparative measurements of the
processing time consumed by each of the
functional modules (i.e. evaluate, compare,
update) within the sequential PSO
implementation.

- Experiment 2. Measurements of the processing

time consumed by each of the PSO
implementations, in terms of fitness function
complexity.

- Experiment 3. For each of the parallel PSO
variants, performance measurements in terms of
iterations number.
- Experiment 4. For each of the parallel PSO
variants, performance measurements in terms of
particles number.

The objective of Experiment 1 was to measure, as
a reference, the processing time consumed by
each of the functional modules within the
sequential PSO algorithm. This experiment was
conducted in two sessions. In the first session,
parameters were fixed to 30 dimensions, 20
neighbors, and 2000 iterations while the particles
number was varied. In the second session,
parameters were fixed to 256 particles, 20
neighbors, and 2000 iterations while the
dimensions number was varied. The sequential
PSO variant was executed 10 times for each of the
3 benchmark functions, obtaining the average
consumed time, in seconds, for each of the
functional modules and their respective
proportion, as a percentage, in comparison with
the total consumed time. The results of this
experiment allowed us to empirically define the
PSO modules that were more convenient to be
parallelized in the case of global implantations.

The objective of Experiment 2 was to measure the
processing time consumed by each of the PSO
implementations (sequential and parallels) in
terms of the fitness function complexity.
Parameters were fixed to 10,000 iterations, 256
particles, and 30 dimensions. The PSO variants
were executed 10 times for each of the FO1, FO2
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and FO03 benchmark functions, obtaining the
average global optimum found and the average
consumed time in seconds.

Experiments 3 and 4 were carried out to test the
performance of the PSO variants concerning two
fundamental parameters: iterations and particles
number, respectively. The error and the
consumed time in seconds are reported. During
Experiment 3, while the iterations number was
variable (10,000, 30,000, and 60,000 iterations),
the following parameters were fixed:

Particles = 256

Dimensions = 60

Function = FO3

Criterion of stop = iterations number.

Finally, during Experiment 4, while the particles
number was variable (64, 256, and 1024 particles),
the following parameters were fixed:

Iterations = 10,000

Dimensions = 60

Function = FO3

Criterion of stop = iterations number.

Due to space constraints, and after observing that
FO3 takes more processing time than the
sequential PSO variant, we decided to report only
the results regarding the FO3 optimization in order
to illustrate the common behavior observed
during the optimization of the three benchmark
functions.

6.2 Performance metrics for parallel processing

In order to assess and plot the performance of all
our parallel PSO variants, we defined the following
metrics:

- Speedup measures the reached execution time
improvement.

- Efficiency measures the use of the available
processing cores.

cost C is defined as the
processing time (in seconds) that the PSO
algorithm  consumes. Then  computational
throughput V is defined as the inverse of the
computational cost:

v-1
C

Speedup S is a rate that evaluates how rapid the
variant of interest is in comparison with the
variant of reference:

Vobj

Vref
where VObj is the throughput of the parallel

Computational

S=

implementation under study, and V,4is the

throughput of the reference implementation, i.e.
the sequential implementation.

Finally, we define the parallel efficiency E as the
rate resulting from dividing the speedup by the
processing cores number:

E=>
n

where N is the processing cores number in the
GPU (32 cores in our case).

6.3. Discussion of results

6.3.1. Experiment 1. Comparative measurements
of the processing time consumed by each of the
functional modules (i.e. evaluate, compare,
update) within the sequential PSO
implementation.

The experimental results showed that, after
optimizing the three n-dimensional benchmark
functions; the fitness function evaluation
consumed a low proportion of the total processing
time compared with the velocity and position
update calculus (see Tables 1 and 2). This is due to
the fact that the update operations, although with
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Proportion of the total execution time with 30 dimensions, 2000 iterations
Particles
Function 64 256 1024
Evaluation | Update- | Evaluation | Update- | Evaluation | Update-
cost compare cost compare cost compare
Cost cost Cost
FO1 2.84% 96.59% 3.03% 97.25% 2.03% 97.28%
FO2 27.54% 70.34% 26.93% 69.38% 27.16% 69.43%
FO3 39.86% 55.24% 41.31% 55.81% 14.88% 35.93%
Table 1. Distribution of the computational cost as a function of the particles number
Proportion of the total execution time with 256 particles, 2000 iterations
Dimensions
Function 30 60 120
Evaluation | Update- | Evaluation | Update- | Evaluation | Update-
cost compare cost compare cost compare
cost cost Cost
FO1 3.03% 97.25% 3.26% 96.74% 3.38% 96.66%
FO2 26.93% 69.38% 30.51% 67.81% 33.56% 66.53%
FO3 41.31% 55.81% 44.92% 53.55% 46.95% 49.49%

Table 2. Distribution of the computational cost as a function of the dimensions Lumber

low arithmetical complexity, are computed more
times than the fitness function evaluation.
Furthermore, the process that generates the
random numbers may consume a significant
amount of processing time if the same processor
executes the PSO algorithm and generates the
random numbers. Thus, the experimental results
allow us to conclude that for our three n-
dimensional optimization problems, most of the
PSO processing time is consumed by updating
(position and velocity) and not by the fitness
function evaluating task.

6.3.2. Experiment 2. Measurements of the
processing time consumed by each of the PSO
implementations, in terms of fitness function
complexity.

Concerning the time consumed, it was observed
that the performance of the Global_ev variant
may become worse than the sequential one if the

arithmetical complexity of the objective function
is small (see Figure 5). This amazing behavior (i.e.
the Global_ev variant performance increases as
the objective function complexity increases) is
understandable if we think that a high arithmetic
intensity (i.e. high number of arithmetic
operations per memory operation) allows the
GPU’s thread scheduler to overlap memory
transactions (see [29], chapter 5). In comparison
with the sequential variant, the experimental
results show a better performance for the
Global_ev variant in the case of the functions FO2
and FO3 optimization. Impressively, improvement
is more notable for the Global_ev+up variant
executing the FO3 optimization (the most complex
function) and is followed by results obtained
executing the FO1 and F02 optimizations (less
complex functions). The best performance is
achieved by the embedded variant executing the
FO3 optimization with an average execution time
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of 6 seconds, followed by the FO1 and FO2 cases.
Again, note that the best performance is achieved
executing the optimization of the most complex
objective function. In comparison with the
sequential variant, which consumes 35.9 seconds,
the performance improvement of the embedded
one is notable: only 6.6 seconds.

—# =Sequential
el GlObA|_et
e Global_ew +up

—i— Ermhedded

40

35 o _/.-‘
] -
7)) L
Z -
s el
O v
L
"53' 15
O
O ]

5

1]

FO1 FO02 FO3

Fitness function complexity

Figure 5. Performance of the PSO variants in terms of
fitness function complexity. In this case,
complexity(FO1)< complexity(FO2)< complexity(F03).

Thus, the experimental results allow us to
conclude that a lower performance for the
Global_ev and Global_ev+up parallel variants, in
comparison with the embedded one, is due to the
overhead produced by the information exchanges
between the host computer and the GPU device.

6.3.3. Experiments 3 and 4. Performance
measurements for each of the parallel PSO
implementations in terms of iterations and

particles number.

Concerning the error, we observed in all
implementations that by increasing the iterations
it was possible to obtain a global optimum
solution very close to the real one. For example,
setting 10,000 iterations as a starting point, it was
observed that the sequential implementation has
a low and very uniform error. It is notorious that
the embedded variant begins with an error slightly
greater than other implementations but, as the
number of iterations increases, the solution
reaches and improves the same precision for
30,000 and 60,000 iterations (see Figure 6), which
is achieved in just a fraction of the time consumed
by the sequential implementation with the same
number of iterations. In fact, with 60,000
iterations the embedded variant has a lower error
that the sequential one, with the same iterations,
in a rate of 5 to 1 (see Figure 7).

In Figure 7, the consumed time as number of
iterations increases is plotted. Note that
improvement in the Global _ev+up variant is
better than in the Global_ev variant and in the
first one the GPU executes the velocity and
position update in addition to the fitness function
evaluation. Regarding the embedded variant, it is
very interesting to note that the consumed time is
practically the same, independently from the
number of iterations.

—+# -Sequential

0 sl G0 bE]_B
10,000 30,000 60,000 ol G0 bal_ev+up

Iterations ——Ermbedded

Figure 6. Error of the PSO variants, executing the FO3 optimization with different iterations number
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, particles number is increased. In general,
—# - Sequential .
— S theexperimental results showed that performance
caoeggeeee Glabial_gyeup improves when the number of mathematical
—we—Embedded operations distributed to GPU is also increased.
250
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Figure 7. Consumed processing time by the PSO ol
variants after executing the FO3 optimization with
different iterations number. v ‘ ‘
64 256 1024
. L . Particles
Experimental results show a similar behavior for
the case where the particles number was varied Figure 8. Consumed processing time by the PSO
(see Figure 8), i.e. performance of the parallel variants after executing the FO3 optimization as a
implementation is better on the GPU as the PSO function of the particles number
a0
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Figure 9. Speedup for the parallel PSO variants with different iterations number
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6.3.4. Discussion on performance metrics

In general, the observed behavior is consistent for
all tested functions. The experimental results
allow us to conclude that the performance of the
implemented algorithms acquires a notable
improvement as more calculations are distributed
to the GPU device. The performance metrics for
all parallel PSO variants are depicted in Figures 9
to 12.

feet el G =TT

ookieee (Gl0bal_ew+up
—#—Embedded

Speedup (times)

64 256 1024
Particles

Figure 10. Speedup for the parallel PSO variants as a
function of the particles number

Summing up, we can emphasize the better
performance that GPU shows in relation to the
host processor. For example, the optimization of
the generalized Griewank's function (FO3, of high
computational cost for 60 dimensions, 60,000
iterations and 256 particles) takes the sequential
variant 214.13 seconds, whereas it takes the
Global_ev wvariant 136.3 seconds and the
Global_ev+up one 39.89 seconds. Finally, the
embedded variant was executed in only 7.66
seconds, which represents a speedup of 27.97 in
comparison with the sequential one, resulting in
an efficiency of practically 1 (remember that in
our case the GPU is integrated by 32 cores).
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Figure 11. Efficiency for the parallel PSO variants with
different iterations number

60,000
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s (Global_ev+Up
—#—Embedded
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Particles

Figure 12. Efficiency for the parallel PSO variants as a
function of the particles number

Note that by increasing the number of particles
and iterations, the efficiency for the Global_ev
and Global_ev+up variants keep practically
constant, although the speedup metric increases.
This is due to the fact that the overhead also
increases proportionally to the number of
particles and iterations. In contrast, the
embedded variant increases its efficiency as it
increases either the number of the particles or
iterations.
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7. Conclusion and Future Work

In this paper, an empirical and comparative study
on the performance of three parallel variants for
the Particles Swarm Optimization (PSO) algorithm
implemented on a multithreading GPU, using
CUDA as the most recent model of parallel
programming, was presented. The experimental
results showed that with these tools, it is possible
to get some parallel variants for a given
population-based algorithm with significantly
improved performance by means of a simple and
straightforward parallel programming.

In general, it was shown that a parallel
programming based only on multithreading
features of a GPU (i.e. exclusively distributing the
work into threads and without using parallel
operations on multiple data) at least results in a
speedup proportional to the number of GPU
cores, getting the computing power of cluster in a
conventional personal computer. It is supposed
that using the whole GPU capacities, executing
parallel operations on multiple data in addition to
the multithreading feature, it is possible to
increase the performance even more. Also, it was
shown that the whole performance of GPU
improves when the quantity of simple tasks
distributed to GPU threads is increased. This
behavior can be appreciated in the performance
of all three parallel variants tested, but it is more
evident in the embedded one, where its
performance was significantly improved.

Future research may be focused on the following
three points: (1) To apply the whole
multithreading GPU capacities, including the
parallel operations on multiple data in addition to
the multithreading feature, to get a powerful high
parallelized PSO algorithm. (2) The necessity to
test more fitness functions. (3) To use GPU and
the new parallel programming model CUDA to
deal with the parallelization of other population-

based algorithms, e.g. the Differential Evolution
algorithm.

Finally, the authors foresee that in the future the
development of GPUs and their new parallel
programming models will lead to the availability of
scientific super-computing on conventional PCs,
thanks to the new hardware platforms inspired
on the modern GPUs and its predecessors: the
vectorial processors.
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