Polygonal Approximation of Contour Shapes Using Corner Detectors

Hermilo Sdnchez-Cruz**; Ernesto Bribiesca’

1Departamento de Ciencias de la Computacién. Centro de Ciencias Basicas. Universidad Autonoma de Aguascalientes,
Aguascalientes,México.

* hsanchez@correo.uaa.mx

2Departamento de Ciencias de la Computacién. Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas.
Universidad Nacional Auténoma de México. D.F.,México.

ABSTRACT

A great amount of corner detectors that appear in literature are based on using the Freeman chain code of eight directions,
which is used to represent contour shapes. We propose a new method for corner detection based on a three-symbol chain code
representation, which requires lower storage memory and an easy way to obtain shape corners. We compare it with five
existing methods, which are well known in the literature, giving our method a better performance. Furthermore, in order to
reconstruct the original shapes through polygonal approximations, we propose an error parameter to quantify the efficiency.
This can be accomplished by considering the redundancy of points produced when looking for corners and when computing the
difference between the original region and the approximated polygon.

Keywords: Binary objects, corner detection, pattern strings, polygonal approximation, 30T chain code.

RESUMEN

Gran parte de los detectores de esquinas, que aparecen en la literatura, estan basados en el uso del codigo de cadena de
Freeman de ocho simbolos, el cual es usado para representar los contornos de las formas. En este trabajo presentamos un
nuevo método para detectar esquinas basado en una representacion de codigo de cadena de Unicamente tres simbolos, lo que
requiere menor consumo de almacenamiento en memoria y permite, de manera sencilla, obtener esquinas en los contornos de
las formas de los objetos. Dicho método lo comparamos con cinco métodos altamente citados en la literatura, dando nuestro
método un mejor desempefio. Mas aun, con el propdsito de reconstruir las formas originales a través de aproximaciones
poligonales, hemos propuesto un parametro de error para cuantificar la eficiencia de cada detector, el cual se logra al analizar la
redundancia de puntos que aparecen al tratar de localizar las esquinas, asi como de establecer una diferencia entre la region
original de la forma y la debida a la aproximacidn poligonal.

Palabras clave: Objetos binarios, deteccidn de esquinas, patrones de cadenas, aproximacién poligonal, cédigo 30T.

1. Introduction The corner detection of the shape of objects is an

active field in object recognition and image

Attneave [1] found that some characteristic points
are determinant in shape recognition. According to
Atteave's work, when the mentioned points are
joined by straight lines, the resulting shape should
be very similar to the original. Our present work is
inspired by this observation: In closed curves, we
try to find as minimum characteristic points as
possible and sufficient to obtain approximately the
original shapes. Also, we take advantage of the
compression properties of a chain code composed
of three symbols. One representing no change
directions, and each of the other two indicating
orthogonal changes of direction [2].

retrieval. In literature, usually, to obtain corner
points, computing angles of curvature on the
contours of shapes are carried out and, to
represent discrete contours, Freeman chain codes
are generally used. Freeman and Davis [3]
proposed to find corners by computing
incremental curvature in contour shapes
represented by an eight-direction chain code.
Since then, many authors have suggested to use
this code to represent contour shapes and to look
for corner points. Part of the algorithm presented
by Teh and Chin [4] consists of computing the
curvature of contour points and detecting corners

Journal of Applied Research and Technology

275

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

by a process of nonmaxima suppression. Liu and
Srinath [5] compared a number of corner detectors
due to Medioni and Yasumoto [6], Beus and Tiu
[7], Rosenfeld and Johnston [8], Rosenfeld and
Weska [9], and Cheng and Hsu [10]. All those
authors represented samples of shapes through a
sequence of eight direction changes from 0-7,
known as the Freeman Chain Code [11].
Techniques due to the Freeman chain codes in
finding corner detection are based on eight
different directions (see Fig. 1b).

Wu [12] proposed an adaptive method to find local
maximum curvatures of digital curves. Sobania and
Evans [13] described a corner detector from
segmented areas using the mathematical
morphology and employing paired triangular
structuring elements. A disadvantage of their work
is that it can be slow due to its high computational
complexity. Basak and Mahata [14] developed a
connectionist model along with its dynamic states
for detecting corners in binary and gray level
images.

Previous approaches to detect corners using chain
codes are given in literature. By measuring the
number of links to both sides of a point that can
produce the largest digital straight line, Koplowitz

and Plante [15] proposed a corner detection
scheme for Freeman chain coded curves. Subri et
al. [16] presented a neural network classifier, by
using the Freeman chain code, obtaining corners
on the boundary of a sample line drawing.
Arrebola and Sandoval [17] proposed a method to
characterize a curve by means of the hierarchical
computation of a multi-resolution linking
approach. They adapted the multi-resolution
linking algorithm to the processing curve contours
described by the Freeman chain code. Also, Marji
and Siy [18] developed an algorithm to detect
corner points on an 8-connected shape by using
the Freeman chain code in a polygonal
approximation.

In [2], the authors proposed that it is suitable to
represent any binary closed shape with binary
resolution cells by means of the use of only three
symbols of a chain code without loss of
information. This method of chain code is
sufficient to represent binary shapes and
represents a low cost alternative in terms of
storage memory.

The chain code used in our work consists of the set
30T =1{0,1,2} and is given in Fig. 1(a) (see [19] for
the 3D case).

—

Sref+z +2
SN 0
ref ref +1 § / gl\‘

0 2

5 6 7

(a)

(b)

Figure 1. Two different chain codes: (a) The three symbols used to indicate a possible change
direction, (b) the eight different directions given by the Freeman chain code.

Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

A simple closed contour shape can be represented
by a discrete closed curve given by the sequence:

C={p, =(x,v)|i=12,...n} (1)

where n is an integer and the initial point p1 is an
immediate neighbor of the final point

pn of the curve.

When covering the discrete curve, two consecutive
points, pi,p(i+1)modn, conform a unit vector in one
of the x,y directions of the Cartesian Plane, i.e.

S = (P, P 1)modn) (2)

and have the directions of the unit vectors {
along the x,y axes in the Cartesian Plane,

gi = {_’L\r_,j; tl]} (3)

Let us take any vector as a reference vector in one
of the multiple steps needed when traversing the

discrete contour curve: S, =S Thus, when two

consecutive vectors have the same direction, we
label the point of the curve with a symbol 0, when
a change of direction occurs, regarding the
reference vector, we put a symboll or 2, as
follows:

symbol 0 when §ref = §ref+1

if S Sera =0, (4)

ref ©
if s =0,

symbol 1 when §ref = gref+z+2

symbol 2 when s_; = —S *Srefi1

ref+z+2 ref
where z is a zero or positive integer, and its value
depends on the number of unit steps given in one
same direction. The symbol 0 is represented by
two vectors: a reference vector and a vector
indicating a direction change. In this case, the
direction change is the same as that of the
reference vector. For the other two orthogonal
direction changes, chain vectors are divided in

three parts: a reference vector (in Fig. 1(a)

appears as a horizontal vector in each code), a
support vector (a vector depending on 2)
perpendicular to the reference vector, and a
vector indicating a direction change with regard to
the reference vector.

So, theelement 0, in the 30T code, represents the
direction change which means to “go straight”
through the contiguous straight-line segments
following the direction of the last segment; the ‘1’
indicates a forward change of direction with
regard to the reference vector; and ‘2’ means to
“go back” with regard to the direction of the
reference vector.

Recently, Sanchez-Cruz [20] proposed a new
method to find corners by using pattern strings.
He found three classes of strings to avoid
computing angles and maximum curvatures in
contour shapes. His method is based on the three
relative direction changes of the 30T code.
Pattern strings given in [20] contain certain
constraints and find corners at certain
approximations. However, with such a method, a
high redundancy in the number of corners can be
produced, i.e., a lot of corner points can appear in
regions where no high curvature is presented.
Now, in this work, we propose another method,
apply it to more shapes and compare it with highly
cited methods.

An advantage of using three symbols is its low
storage power, as can be seen by the recent work
due to Sanchez-Cruz and Rodriguez-Dagnino [2].
They found that coding with three symbols is
sufficient to represent binary shapes saving
storage efficiently.

In Section 2, definitions concerning to this article
are presented, seeking the problem as a search of
pattern substrings. In Section 3, some rules to
detect shape corners are proposed; in Section 4,
experimental proving of postulated rules are
applied on some binary shapes, and an error given

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

by polygonal approximations to original shapes is
computed. In Section 5, we give some conclusions.

2. The chain coded discrete contour

Let us associate one of the three symbols s; given
in Eq.(4) to each vector §: 0,1, or 2. In this work,

a specific set of pattern substrings of length / is
applied to find all those substrings in a contour
shape, coded by a chain that matches the set.
Which substrings are all composed of | symbols
and which of them are considered corner chains?
Not all substrings are considered corner chains
due to their associated low curvature.

Let S denote the complete contour string (that
represents the chain code of the shape associated
to the shape contour, given by the string
ofsymbols s; of Eq.(5)).

.S, = [si], (5)

where n is the contour discrete perimeter, given
by the number of symbols of the chain code.
Consider a substring C]. € Sgiven by Eq.(6).

C} = 5,51 1)modn S (1+2)modn * + * S j+1-1)modn 7 (6)

so that such a small contour string of symbols / is
considered an elemental contour substring
(stringel, for short), i.e., a small piece of contour
representation from the whole shape contour that
has length /|, so that /| << S, j states the j-th
substring in the complete contour string.

Let m = (j+1) / 2 be the middle point of a substring
of size | so that the middle symbol, spymodn), is the
center of the substring. It is possible to associate a
pair of line segments with any symbol. A well
behaved stringel is defined as a substring which is
associated to a pair of line segments so that the
chain does not form loops. Observe a sample of

stringel and their corresponding visual meaning in
Fig. 2.

We define a neighborhood of radii r when a piece
of the complete string is considered; this region is
composed of a small number of symbols in
comparison with the whole contour chain code, r
symbols on each side of a particular middle
symbol:

N(sm,r)={sieSHsi—sm|<r| }. (7)

Fig. 2 presents an example of a neighborhood of
radii 5: stringels having 00000 in their left first
part, 11110 in the right part, and s, = 2 as a
middle symbol could appear on this piece of
contour shape.

goooon

Figure 2. Stringel of 5-neighborhood of middle symbol
2:00000211110.

3. Pattern strings

A subset of stringels that we call stringpatts to
find chain corners from an arbitrary set of 2D
shapes is given in this section. Stringpatts are
patterns of elemental contour substrings similar
to those found in [20] (of course, polygonal
approximation was not dealt with in such a
paper), but we now modify them by releasing
some constraints to symbol '1'in S, and Ss. To find
a group of stringpatts considered as chain corners,
we focus on a vicinity of each change code
contour, for example of radii eleven, i.e., eleven
chain directed segments, labeled with symbols
and representing direction changes.

Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

So, in order to simplify the stringpatts that
correspond to chain corners, we postulate the
following regular expressions:

S, =(0+1+2)"2(0+1+2)",
S, =(0%+1)”1(0° +1)"”%,
S, =(0"+1)?1(0+1%)" +

qyl/2 q 1/2 (8)
(0+1%)""1(0* +1)"",
where g > I/4 represents many symbols. The first
stringpatt pattern is composed of a string of any
symbols, then a symbol ‘2’ and then a sequence of
any symbols again.

Another stringpatt that could represent a change
direction occurs when there are many 0s (with
possibly some 1s) following a ‘1’ as a middle
symbol of the stringel, followed again by many Os
(with possibly some 1s).

A third stringpatt is found when there is a
substring of many O0s, with possibly some 1s,
following a substring of many 1s (with possibly
some 0s); or vice versa, a substring of many 1s
(with possibly some 0s) following a substring of
many Os (with possibly some 1s), having the 1 as a
middle symbol.

Oq

(@)

(b)

Fig. 3 shows the three ideal cases of regions of
support, given by the rules of Eq.(8). Of course,
not all the stringpatts of Eg. 8necessarily
constitute real corners, but they are candidates.
See Fig. 4. There could appear stringpatts that
satisfy Eq. (8), however, not all of them are corner
points.

Our proposed method relies on looking for these
stringpatts on any contour shape, without the
paired constrictions in Eq.(8) of Ref[20] and
adding the symbol 2’ in S; of Eq.(8). Instead, we
introduce other constrictions: we group dots as
candidates to be corners given a certain threshold
in a vicinity distance.

On the other hand, we consider shapes
represented by resolution cells, each of them
having a numerical value equal to zero or one. The
contour shape is traveled through clockwise. For
the implementation of an algorithm to encode this
shape, we have to visit the ‘ones’ that represent
the contour shape, i.e., the ‘ones’ of the
boundary. Using the three code symbols, we
follow the contour of the shape counter
clockwise, and give one of the three relative chain
codes according to each change direction.

01
lq
N
\ boA
1+2 1+2
0'51
©

Figure 3. Samples of the three types of corners, each invariant under rotation transformation.

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

A manner to fix every symbol s; that represents a
change in direction is by defining a 3 x 3 window,
then we choose a starting one as the center of the
window, and we analyse its neighborhood by
finding directed vectors on the boundary of the
shape. Hence, we calculate the changes and
produce the code. This procedure continues until
all “ones” of the boundary are visited.

The contour of the object shape is confined to a
minimum rectangle that is visited line by line,
from left to right and from top to bottom. The first
cell resolution of the object to be visited is that
which appears at the leftmost and highest part of
the occupied region. Fig. 4 shows part of a contour
shape. When starting to follow the contour, the
first two discrete segments do not represent a
direction change with regard to the reference
segment. When one ends to traverse the contour,
it is possible to give a direction change at the
starting and contiguous points because of the last
reference segment visited.

Given this representation, we can reconstruct the
original image by interpreting the code of every
symbol in terms of the direction changes that can
follow.

Finally, the pattern substrings S;, S, and S; are
used to parse the resulting chain string of the
complete contour.

3.1 Algorithm

Let s, = piv be the middle symbol of a stringel. If
middle symbols P = {pivy, pivpi: ... pives} are
separated by a distance smaller than certain value
v, obtainan average of the middle symbol points
and define a corner. If middle symbols are
separated by a distance greater than v, consider
them as corners. The algorithm of the method is
as follows:

1. Obtain [s;]. /* The complete contour shape is
represented by a string */

2.0btainC, € S. /* C, are the stringpatts */

3. Find a subset D < C, /* D is the set of

stringpatts representing corners */
executing the following:

forj=1...num_pivots do

if d(pivj/piV(j+1)moalnum_pivol“s)Z v then pivj € D

Figure 4. Examples of stringels covering the contourclockwise.

Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

else if d(piv;pivj.y)) < v /* then analyse whether
these pivots are part of a cluster of neighbor
pivots */

init = ;

while d(piv, pivj.1) < v
{

temp [i] =j;

j++

i++;

} I*end while*/

if i < s /*sis a positive integer near 1. */
p = Average(templi])

piv, e D;

else

pivi,, € D;

piv. e D;

[* end for */

4. Comparing with other methods

Since the digital curves are represented by
discrete contours, the most of the methods do not
avoid redundancy, including when apparently
straight lines in shapes are observed.

We compare our method of searching substrings
with the most frequent corner detectors
appearing in literature: Rosenfeld and Johnston
(RJ73) [8]; Rosenfeld and Weska(RW75) [9];
Freeman and Davis (FD77) [3]; Beus and Tiu (BT87)
[7] and Chetverikov and Szabo (IPAN99) [21]. We
call our method 30T, because it is based on the
30T chain code to represent discrete contour
shapes.

To find corner points, there are some drawbacks
in the existing methods: one is that the calculated
region of support avoids obtaining angles of small
curvature, even when the shape is represented by
means of the Freeman code: successive slope
angles on the discrete curve can differ by

multiples of 452. So, when modifying parameters
of the existing corner detector methods,
redundancy appears by finding corners even in
apparent straight lines of the shape regions.

All these methods find corner points by using
input parameters. While modifying these
parameters, a number of corner points appear in
the contours. Fig. 5 shows the sample of contour
objects frequently used to probe corner detectors.

Considering the object (h) (the Plane of Fig. 5) and
its corresponding chain code (Fig. 6), 286
stringpatts were found in its contour shape. Many
of them are so closed, in such a manner that their
corresponding middle symbols are in the
neighborhood of each other, or they are part of
cluster points, using the algorithm of Section 3. A
subset of these strings correspond to corner
chains.

)

{

1

S
A~
ff
\

(g) (h)

Figure. 5. Common sample shape tests used to detect
corners; (a) Peaks; (b) Circles; (c) Bubble; (d) Stick; (e)
Spot; (f) Irreg; (g) Pige; (h) Plane

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

211011001100111100011001100111100011000001100001101100000000000000000000000000021210000000
000000000001111101101101101101111020110000000000000000011101100021210210100000000000000000
000000000010111111001101100211000000000000000000111000000000211000000000000000000000000001
110111101101101101111001101111001101111001100111101101100110111100110110110110110110110110
111100110110110011110011011011111110000000000000000002021000110011110000011000110011000110
011011001100000110011110001100011000110001101100011001101100001100110000110000000000110000
110002102100011000002111100011000000110011110110111101111101010110110111002121212121000000
000021210021001100000000000110000000011000011011000211101011011110111111011011111101101111
011011110111101111110110111110000000011002112101100000110000111121210110011000011110000110
001100011110021100000011011000101121100110000000000100021110000110001100111100011000011001
100011000110011110000011002000000210001111111110111101010011110111101111011011011110111100
111111011111101111111000021000000011000000110110000000000000011000000000000000000001110110
111111101111111100110110011000110212110002110021000000000110000000011000000000110000011000
111100001100011001100001100001100110110001100110110000110001100011000110001100110110000110
000110000110020000210000000000011011010110110110110001101101101100110111111001101111000110
010100110110110110011110110011011011011011001111001111001101101100111011021000000000000000
000000021101102121000211110000000000000000001000210110111101101110000000000000000000000000
010000000002111100000000000000001110021011011011110111101000000000000000000000000000000000
000000000000001101100000110000110011011000110011011001100110011101100

Figure 6. 30T Plane's chain code with length P = 1 689.

4.1 Polygonal approximation
Let us present a comparison of our method with

Fig. 7 shows corner detections using the most that of Rosenfeld & Johnston (RJ73) [8] when
known detectors including the proposed one in looking corner points through the x parameter.

this work.
.’n ;ﬁ‘ A
ﬁf.JlLJ]-‘ALJ‘L fﬁlﬂj J]\%L P ﬂﬂ(| fhl
Sy o o

\ N
e o RS

RIT3{0.03) EWT50.03) FINE,1500)

ol wll

[:fff--\ll Ifm-;:J :::ifﬂ(]ﬁm.:: Cffﬁ FH

L=

LR
T e o
1 oy 2
DTE7(4,7,1500,0.05) TPAN(T150) 30TiA.LL

Figure 7. Corner points calculated with all methods at standard parameter values.

wr:p) | Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

Given the RJ73 algorithm, we calculate corner
points with different values of its x parameter.
The cases x> 0.006 do not reconstruct the
contour shape (there are missing points), as can
be seen in Fig. 8. Observe in Fig. 9 that the Plane
shape is well represented by corner points when
Kk =0.007.

On the other hand, in Fig. 10 we show corner
points calculated with the RJ73 method at
different k parameter values. Observe that

whereas the parameter value is modified,
different number of dots is obtained, and they can
help us to reconstruct the shape by joining corner
points, and so, fitting a polygon.

Generally, the methods try to employ few corner
points to represent the object. However, in this
work we consider the necessary corner points to
reconstruct the original shape, or an
approximation of it. We could say that a method
tends to be good when it reconstructs the original

Slatas's
AR A A

ARASAS

Fig. 8. Corner points calculated using the RJ73 method at different k parameter values. From left to right and up
to bottom: (a)0.05, (b)0.03, (c)0.02, (d)0.015, (e)0.013, (f)0.01, (g)0.008, (h)0.007, (i)0.006

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

shape in such a way that the error produced
between the original shape and its polygonal
approximation is as small as possible.

We have computed the corner points with the
different methods. See Fig. 9 where the
parameter values of each method appear in
parentheses. These parameter values are given by
default in the web page [21].

Our method tries to find corner points with less
redundancy than the other methods. This is, there
are less corner points in straight lines, and also,
follow with better approximation the contour
shapes.

Observe that our method is better than existing
ones to obtain as few as possible corner points in
order to reconstruct the original shapes.

AR AR

RI(0.007)

RW(0.06)

FD(2,1000)

AR A

BT(2,6,1000,0.04)

TPAN(5,160)

30T(11,10)

Figure 9. Comparison of the different methods to obtain corners applied to Plane

-]
A el

Figure 10. Comparison of the RJ73 (with ¥=0.008) and 30T (/=11 and v=10) to reconstruct Plane object

Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

In Fig. 11 and 12 the reconstructions are shown by a polygonal approximation of the Pige and Spot
shape, respectively, using the different algorithms.

AT

IPAN RJ RW

LI

Figure 11. Reconstruction of Pige shape using the different methods.

23
2R

Fig. 12. Reconstruction of Fig. 6(e) (Spot) using the different methods, from the upper left corner to the down
right corner: IPAN, RJ, RW, FD, BT, 30T, respectively.

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

4.2 Comparing original shapes with polygonal
approximations

To test our method, we have compared the fitted
polygons by applying the different methods to the
original shapes, and we introduced a parameter
that measures the error between the polygonal
approximation and the original contour.

Let us suppose a given contour shape (Fig. 13(a)),
and another given by its polygonal approximation
after applying a corner detector (Fig. 13 (b)). For
each corner method a polygonal approximation is
obtained (Fig. 13(c)); and an error in area, AA, is
produced. Fig. 13(d) illustrates the error area of
the shapes, where C" is the set of, say, positive
pixels, belonging only to the original shape, and

C™ the set of, say, negative pixels, belonging only
to the polygonal shape.

The error obtained by the polygonal
approximation contains the AA area not
superimposed in the intersection of both shapes,
i.e., (C"+C7), normalized by the area of the
original shape, and weighted by the number of
corners found by a given method; of course, the

smaller the number of corner points to
reconstruct the original shape, the better the
corner detection. Eq. (9) illustrates this error.

num_corners *(C" +C")
€= (9)

OriginalArea

To compute this parameter, we have obtained the
original area of our shapes, which are given in
Table 1.

Table 2 gives the next quantities: the number of
corners found to reconstruct each contour object,
its resulted area of polygon, the number of pixels
in the intersection between the resulted polygon
and original shape, the non common pixels, and
the error parameter. Also, the average error of all
methods for each shape is given. In this case, the
average error for each test sample suggests that
all methods tend to be less efficient for shapes
with so many corners than those of smoother
contours.

Table 3 shows the global average error committed
by each method. As can be noted, 30T has the
smallest average error obtained to reconstruct
contour shapes.

Figure 13. Polygonal approximation of a shape: (a) original shape O; (b) its approximation by a polygon; (c)
linked corners by straight lines in the original shape, (d) positive, negative and common pixels, respectively.

Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

Original

shape Area(pixels)
Peaks 48703
Spot 33869
Irreg 28446
Pige 40703
Plane 20508
Circles 33843
Stick 5344
Bubble 42818

Table 1. Original area, given in number of pixels, of the original contour shapes

Contour Polygon

Object Method num_corners arealpixels) OonP Cc+ C- e
Peaks IPAN 53 49924 48683 20 1241 1.3722
RJ 52 49496 48593 110 903 1.0815
RW 49 49536 48626 77 910 0.9930
FD 59 49836 48657 46 1179 1.4839
BT 49 49316 48396 307 920 1.2344
30T 48 48886 48305 398 581 0.9648
Average 1.1883
Spot IPAN 68 34317 33604 265 713 1.9635
RJ 68 34471 33724 127 729 1.7186
RW 58 34483 33715 154 768 1.5789
FD 64 34458 33722 147 736 1.6685
BT 59 34339 33651 218 688 1.5782
30T 64 33557 33189 680 368 1.9803
Average 1.748
Irreg IPAN 76 28930 28012 434 918 3.6121
RJ 84 28708 27831 615 877 4.4058
RW 60 28669 27705 741 964 3.5962
FD 82 29448 28325 121 1123 3.5860
BT 96 29350 28377 69 973 3.5165
30T 79 28940 28178 268 762 2.8605
Average 3.5962
Pige IPAN 74 41676 40655 48 1021 1.9434
RJ 82 41540 40617 86 923 2.0327
RW 75 41659 40685 18 974 1.8278
FD 109 41762 40686 17 1076 2.9269
BT 83 41311 40431 272 880 2.3491
30T 85 40902 40514 189 388 1.2049
Average 2.0475

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

Plane IPAN 80 21383 20289 219 1094 5.1219
RJ 93 21107 19972 536 1135 7.5776

RW 98 21327 20288 220 1039 6.0162

FD 114 21632 20362 146 1270 7.8712

BT 78 21307 20062 446 1245 6.4315

30T 76 20495 20149 359 346 2.6126

Average 5.9385
Circles IPAN 55 34472 33718 125 754 1.4285
RJ 55 34683 33843 0 840 1.3651

RW 53 34790 33843 0 947 1.4830

FD 54 34562 33840 3 722 1.1568

BT 57 34548 33836 7 712 1.2109

30T 59 33716 33484 359 232 1.0303

Average 1.2791
Stick IPAN 44 5699 5304 40 395 3.5815
RJ 53 5748 5312 32 436 4.6414

RW 54 5813 5343 1 470 4.7593

FD 34 5750 5283 61 467 3.3592

BT 36 5697 5267 77 430 3.4154

30T 39 5025 4974 370 51 3.0724

Average 3.8049
Bubble IPAN 59 43782 42808 10 974 1.3558
RJ 53 43784 42811 7 973 1.2130

RW 55 43802 42786 32 1016 1.3461

FD 63 43341 42617 201 724 1.360

BT 55 43397 42663 155 734 1.1419

30T 43 42489 42410 408 79 0.4890

Average 1.1510

Table 2. Comparison of the methods applied to the eight contour shapes

Method: IPAN RJ RW FD BT 30T
Average e: 2.5474 3.0045 2.7001 2.9267 2.6097 1.7769
c: 1.3933 2.3222 1.8627 2.2143 1.8210 0.9853

Table 3. The Average error rate and the standard deviation of the methods to reconstruct the contours.

Given the data distribution of each method, we The standard deviation tells us that the RJ values
also computed the standard deviation s. The are the most dispersed, whereas 30Ts are the
standard deviation of each method is presented in least. We think this is due to the nature of the
Table 3. In Fig. 14, we can observe how dispersed method to work on the variability in the contour.
the data are regarding their average values.

Vol.7 No. 3 December 2009

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

o
£
B
5 —t— |PAN
—c— R
3 —w—FD
2 —&—BT
—— 30T
Peaks ' Spot ' Irreg ' Pige ' Plane 'Circles ' Stick ' Bubblé
Shapes

Figure 14. Error obtained by each method in polygonal approximation

From Fig. 14 we can observe an interesting
situation. Most of the methods do not have such a
good performance on, either, irregular shapes or
shapes with nearby corner points in their
neighborhood, such as the Plane, Irreg and Stick.
On the contrary, they work better on smoother
contours, or shapes with not so nearby corner
points. For example, RJ is more efficient with
smooth contours than with irregular ones, making
the error smaller in the first case. On the contrary,
30T behaves better all along the shapes, in
comparison with the rest of the methods. These
observations suggest that the 30T code is more
appropriate to represent shapes and to be used
for looking for patterns of symbols representing
shape characteristics.

We have compared different corner detectors.
They are related with the chain code used to
represent the contours. We have decided to use
the 30T code instead of the Freeman code
because of its versatility to handle few symbols in
order to find patterns; also,because of its
advantage in compression efficiency. Comparisons
in shape representations involving 30T, Freeman
codes and others are presented in [2] and [22].

5. Conclusions

We proposed searching pattern substrings to look
for corner points. This method has three
parameters: the length of elemental contour
strings, the number of a symbol that can be
repeated in the elemental contour strings, and the
distance between pivot symbols. When decreasing
one or more of these parameter values, more
corner points can be found.

In order to save time and memory storage of
contours, we used three symbols that represent
changes of direction when covering the contours
of the binary shapes. We used three classes of
pattern substrings to obtain the most important
corners in contour shapes, preventing to compute
angles and curvatures directly.

Part of our method was to find a polygonal
approximation to the original contour, an error
was measured and we have found that the best
approximation corresponds to apply the proposed
30T method.

We have presented a new research strategy
involving avoiding computing explicitly angles and

Journal of Applied Research and Technology

Polygonal Approximation of Contour Shapes Using Corner Detectors, Hermilo Sanchez-Cruz et al., 275-291

curvatures and, also, using a recent chain code
method to represent contour shapes. As future
work, it would be interesting to study whether
this method is invariant under scaling.

References

[1] F. Attneave. Some information aspects of visual
perception. Psychol. Rev. 61 (1954) 183-193.

[2] H. Sanchez-Cruz; R. M. Rodriguez-Dagnino.
Compressing bi-level images by means of a 3-bit chain
code. Optical Engineering. SPIE. 44 (9) (2005) pp 1-8.
097004.

[3] H. Freeman and L. S. Davis, A Corner-Finding
Algorithm for Chain-Coded Curves. IEEE Trans. Comput.
26:(1977) 297-303.

[4] C-H. Teh, and R.T. Chin, On the Detection of
Dominant Points on Digital Curves. IEEE Trans of
Pattern Anal and Mach Int. 11 (8) (1989) 859-872.

[5] Hong-Chih Liu; M.D. Srinath. Corner Detection From
Chain-code. Pattern Recognition. 23 (1/2) (1990) 51-68.

[6] G. Medioni; Y. Yasumoto. Corner detection and
curve representation using cubic B-Splines. Comput.
Vision Graphics Image Process. 39: (1987) 267-278.

[7] H.L. Beus; S.S. H. Tiu. An improved corner detection
algorithm based on chain-coded plane curves. Pattern
Recognition. 20 (1987) 291-296.

[8] A. Rosenfeld; E. Johnston. Angle detection on digital
curves. IEEE Trans Comput. 22 (1973) 875-878.

[9] A. Rosenfeld; J.S. Weszka. An improved method of
angle detection on digital curves. IEEE Trans. Comput.
24:(1975) 940-941.

[10] F. Cheng; W. Hsu. Parallel algorithm for corner
finding on digital curves. Pattern Recognition Lett. 8:
(1988) 47-53.

[11] H. Freeman. On the Encoding of Arbitrary
Geometric Configurations, IRE Trans. on Electr. Comp.
10 (2) (1961) 260-268.

[12] W. Wen-Yen. An adaptive method for detecting
dominant points. Pattern Recognition. 36 (2003) 2231-
2237.

[13] A. Sobania and J.P.O. Evans. Morphological corner
detector using paired triangular structuring elements.
Pattern Recognition. 38 (2005) 1087-1098.

[14] J. Basak and D. Mahata. Connectionist Model for
Corner Detection in Binary and Gray Images. IEEE
Trans. on Neural Net. 11 (5) (2000) 1124-32.

[15] J. Koplowitz, S. Plante: Corner detection for chain
coded curves. Pattern Recognition 28 (6) 843-852
(1995)

[16] S. H. Subri, H. Haron, R. Sallehuddin, Neural
Network Corner Detection of Vertex Chain Code. AIML
Journal. 6(1) 2006 37-43.

[17] F. Arrebola, F. Sandoval. Corner detection and
curve segmentation by multiresolution chain-code
linking. Pattern Recognition 38 (2005) 1596 — 1614.

[18] M. Marji; Pepe Siy. Polygonal representation of
digital plannar curves through dominant point
detection-a nonparametric algorithm. Pattern
Recognition 37 (2004) 2113-2130.

[19] E. Bribiesca. A chain code for representing 3D
curves. Pattern Recognition. 33(5)(2000),755-765.

[20] H. Sanchez-Cruz. A Proposal Method for Corner
Detection with an Orthogonal Three-direction Chain
Code. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg. Volume 4179 (2006) pp 161-172.

[21] D. Chetvarikov, Z. Szabo.
http://visual.ipan.sztaki.hu/corner/corner_click.html.

[22] S. Alcaraz-Corona, R. A. Neri-Calderén and R. M.
Rodriguez-Dagnino Efficient bilevel image compression
by grouping symbols of chain coding techniques Optical
Engineering 48(3), 037001 (March 2009)

Vol.7 No. 3 December 2009

Authors Biography

Hermilo SANCHEZ-CRUZ

He received his PhD in sciences (computing) from the Universidad Nacional
Auténoma de México (UNAM) in 2002. He received his BSc in physics from
UNAM in 1995. He is a full-time professor with the Universidad Nacional
Auténoma de Aguascalientes in Mexico (UAA) where he teaches graduate
courses in pattern recognition and image processing. He was an assistant
researcher with the Instituto de Investigaciones en Matematicas Aplicadas y
en Sistemas (IIMAS) at the UNAM where he took part in projects about
biomedical images and also recognition of Mesoamerican images. His areas
of interest are pattern recognition, image compression, bidimensional and 3-
D image recognition.

Ernesto BRIBIESCA

He received his BSc degree in electronics engineering from the Instituto
Politécnico Nacional in 1976 and his PhD degree in mathematics from the
Universidad Autonoma Metropolitana (UAM) in 1996. He was researcher at
the IBM Latin American Scientific Center and at the Direccién General de
Estudios del Territorio Nacional (DETENAL). He is associate editor of the
Pattern Recognition journal. He has twice been chosen Honorable Mention
winner of the Annual Pattern Recognition Society Award. He is currently a
professor with the Instituto de Investigaciones en Matematicas Aplicadas y
en Sistemas (IIMAS) at the Universidad Nacional Auténoma de México
(UNAM) where he teaches graduate courses in pattern recognition.

Journal of Applied Research and Technology

291

