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ABSTRACT

Modal analysis is one of the preeminent methods used by scientists and engineers to study vibrating structures. The frequency response
functions obtained through this method, are, in general, complex-valued. There is, however, no agreed-upon interpretation given to the
real and imaginary parts of these functions, even though it is acknowledged that their relative magnitude for different frequencies is related
to the behaviour of the corresponding modes. A simple model is deduced to describe the shape of the spectrum associated with a
finite-length time-signal. There is very good agreement between results obtained using this model and numerical results obtained for,
in this case, the vibration of a guitar top-plate using finite element methods. One interpretation of the relative magnitudes of the real
and imaginary parts of the frequency response functions is advanced. It is found that stationary-wave behaviour is associated with the
dominance of the real or imaginary part; traveling-wave behaviour, on the other hand, occurs when the real and imaginary parts are of the
same order of magnitude, as long as the scale of damping is large enough and resonance peaks in the spectrum are close enough.
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RESUMEN

El analisis modal es uno de los métodos utilizados con mayor frecuencia por cientificos e ingenieros para estudiar estructuras vibrantes.
Las funciones de respuesta de frecuencia obtenidas mediante este método tienen, en general, valores complejos. No existe, sin embargo,
una interpretacion universalmente aceptada asociada a las partes real e imaginaria de estas funciones, ain cuando se sabe que la
magnitud relativa de estas cantidades para diferentes frecuencias esta relacionada con el comportamiento de los distintos modos. Se
obtiene un modelo sencillo que describe la forma del espectro asociado a una sefal temporal de duracion finita. Hay una muy buena
concordancia enre los resultados obtenidos utilizando este modelo y aquellos obtenidos para, en este caso, la vibracién de la tapa de una
guitarra simulada a través de elementos finitos. Se propone una interpretacién de las magnitudes relativas de las partes real e imaginaria
de la funcion de respuesta de frecuencia. El comportamiento de onda estacionaria se asocia a la dominancia de la parte real o imaginaria;
por otra parte, el comportamiento de onda viajera ocurre cuando las partes real e imaginaria son del mismo orden de magnitud, y siempre
y cuando la escala del amortiguamiento sea lo suficientemente grande y los picos de resonancia en el espectro sean suficientemente
cercanos.

1. Introduction in the context of stringed instruments has focused
on resonance frequencies. Authors such as Schel-

The vibrational behaviour of the different components leng (3) have remarked, however, that damping in-
of stringed instruments has been the subject of quite a  troduces both blunting at resonance frequencies and
few studies in the past decades, especially where low Small changes of phase between adjacent frequencies
frequencies are concerned. This is due partly to the in the region between resonance peaks that do have
observation that in the low-frequency régime the reso- an effect on radiation patterns. Studies realised on
nance frequencies are almost completely determined the Violin by Bissinger (4) confirm the appearance of
by single modes of vibration, and it is then easier to Modes not determined solely by the resonance fre-
study them in relative isolation, but it is also due to uencies, and, furthermore, concluded that the pres-
the fact that for low frequencies the equation of mo- ence of these modes altered the perception of sound
tion for a vibrating plate may be approximated by a radiated from the instrument components under study.
wave equation incorporating damping, in effect simu- These modes have come to be known as complex
lating a damped membrane. These results are dis- modes, and are still considered difficult to identify.
cussed in detail by Fletcher and Rossing (1), and by Bissinger (4) goes as far as to suggest that these
Ahluwalia et al (2). Most of the research on vibrat- Modes can only be properly distinguished from normal
ing plates and the radiation produced by the plates modes through observation of an animation of the vi-
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bration of the structure. In more general terms, Spiek-
ermann and Radcliffe (5; 6) identify absorptive bound-
ary conditions with a traveling-wave response and re-
flective boundary conditions with a standing-wave re-
sponse, while noting that real conditions are neces-
sarily associated to a mixed response. They then pro-
ceed to decompose both analytically (5) and exper-
imentally (6) the total acoustic response associated
with mixed boundary conditions into propagating and
standing-wave components. A quantitative measure
of the relationship between the two distinct ideal re-
sponses is given by scaling factors and phase angles
obtained from the total mixed response. One of the
main objectives of this paper is to show the manner
in which even a harmonic signal acquires a complex
mode structure after Fourier transformation, and how
damping plays an essential part in determining to what
extent these complex modes resemble either standing
waves or traveling waves.

1.1. The motion of vibrating plates: modal analysis
and Finite-Element Methods

Since the equations describing the motion of a vibrat-
ing plate are difficult to solve analytically for an object
with a complex geometry, such as a guitar plate, the
dynamic properties of these structures are often de-
scribed in terms of what are called modal parameters:
natural frequency, damping factor, modal mass, and
mode shape. This technique is called modal analysis,
and can be implemented mathematically by attempt-
ing to uncouple the structural equations of motion so
that the resulting equations can then be solved individ-
ually. If these equations cannot be solved exactly, then
numerical approximations are generally used. One
such method of approximation is the Finite Elements
Method (FEM), which consists of breaking down the
object into a large number of smaller, more manage-
able (finite) elements. Then the complex equations
that describe the behaviour of a structure can often
be reduced to a set of linear matrix equations which
can be solved using standard matrix algebra tech-
niques. The manner in which we implemented the
FEM scheme for the present work is described in de-
tail by Inman (7) and Hatch (8).

The FEM representation of a continuous structure
leads to the matrix system

M5 + Cx + Kx = £(t), (1)

where M, C and K are the n x n matrices containing

mass, damping and stiffness terms respectively, and
which are constructed from individual element matri-
ces. The forcing system is an n x 1 vector f(t) and
the displacement responses are denoted by the n x 1
vector x. The first step in modal analysis is carried
out when we make the right-hand side of equation (1)
equal to zero, in order to obtain the natural frequen-
cies and the undamped mode shapes of the structure.
Modes corresponding to these natural frequencies are
called normal modes, the shapes of which are, as ex-
pected, orthogonal to all other mode shapes of vibra-
tion for the system. Thus, all points in the structure
reach maximum amplitude of vibration, in either direc-
tion, at the same time. From a mathematical stand-
point, normal modes represent the solution of an un-
damped system, and the normal-mode vectors con-
tain a real number for each motional degree of free-
dom (DOF) studied. However, most realistic descrip-
tions of vibrating structures do contemplate some form
of damping, and in general this leads to the appear-
ance of complex modes, where phase angles need
not necessarily be either 0° or 180° (9). The maxi-
mum amplitude of vibration may then occur at different
times for different points on the structure, in the same
manner as is observed, for example, in a traveling-
wave pattern.

The frequency-response function (FRF) describes the
structural response to an applied force as a function
of frequency. In this paper, the response is given in
terms of the velocity of a point on the structure, so
that the measured quantity would be the mobility (ve-
locity/force). For normal modes, the imaginary part
of the FRF is zero at resonances, and the real part
attains a maximum value; for complex modes, how-
ever, this is no longer valid and the imaginary part of
the FRF is no longer zero. A classical treatment of
the interpretation of the real and imaginary parts of
the velocity response in a mode with complex eigen-
values is included in Newland (10). Some authors,
such as Marshall (11), give the FRF in terms of in-
ertance (acceleration/force), and in that case the real
part of the FRF would be zero at resonances, and not
the imaginary part. Marshall provides a very complete
description of the technique of modal analysis in the
context of studying the vibrational behaviour of a vio-
lin, and also remarks that it is only possible to excite
a single resonance frequency if this frequency is suf-
ficiently separated from other resonance frequencies
and if damping is low enough to prevent coupling from
occurring. It has become standard practice to accept
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the above-mentioned assumptions hold in most situa-
tions, and this has led most authors to plot the imagi-
nary parts of FRFs (when given in terms of inertance)
to illustrate vibrational behaviour - this, of course, is
due to the dominance of the imaginary part of the FRF
at resonance peaks. A more comprehensive portrait
of vibration would very likely be achieved using com-
plex modes. As the very definition of complex modes
seems to be subject to different interpretations, we in-
clude in the following section a brief discussion of what
are referred to as complex modes in this paper.

1.2. Complex modes

Wave propagation can be described in terms of com-
plex solutions to wave equations, as is well-known.
Take the traveling-wave solution to the undamped lin-
ear one-dimensional wave equation given by y(z,t) =
sin k(x — ct), where y is the perturbation amplitude, «
is displacement, ¢ is time, k is the wave number, and ¢
is the local sound speed. This solution can then also
be written as y(z,t) = Re[exp(iwt) exp(ikz)], where
¢ = w/k. Feeny (12) takes the form of this solution as
a starting point in order to define complex modes as
x(t) = e**a, where x is a position vector, the same
asa=u+iv,and a = vy +iw, with v, w, u, and v real.
The real part of this complex mode is then easily seen
to be

Re [x(t)] = e"* [cos(wt) u — sin(wt)v]. (2)

Thus, x will, in most cases, continually oscillate be-
tween the values of u and v due to the phase differ-
ence between the cosine and sine functions above.
Feeny observes that the relative sizes and degree of
independence of u and v will determine whether, from
a qualitative standpoint, the motion appears to be of
a traveling-wave type or of a standing-wave type. He
goes on to define an index which characterises these
transitions quantitatively. For our purposes, however,
it will be sufficient to observe that both extremes are
obtainable from the single form above. If, for example,
we were to consider u = v in equation (2), we would
obtain

Re[x(t)] = V2 e cos(wt — 7/4) u,

which clearly represents a standing wave. Now if ei-
ther u = 0 or v = 0 we would recover a traveling-
wave solution with the same form as that introduced at
the beginning of this section. In this interpretation, all
modes are complex, even those normally referred to

as normal modes - these simply correspond to one of
the two extremes described above. As we discussed
in section 1.1, it is, however, common practice to iden-
tify modes in the spectral as well as in the temporal
domain, in particular through the FRF. In this paper we
will discuss the interpretation of the real and imaginary
parts of the FRF, and observe that the two extreme
types of complex modes discussed above may also be
distinguished from examination of the spectrum. The
standing-wave or traveling-wave character of a mea-
sured signal will not only depend on the shape of the
signal, but also on the length of the measurement in-
terval, and, critically, on the scale of damping, as will
be shown in the next section.

2. An analytical model of the Fourier transform of
a truncated signal

As we have discussed in the previous sections, modal
analysis provides a powerful way to study the vibra-
tional behaviour of a plate with complicated geome-
try. The canonical equations used for this technique
essentially describe coupled damped oscillators, and
since for low frequencies the guitar plate may be as-
sumed to vibrate very much in the same manner
as a damped membrane, we consider here the sim-
plest equation to combine wave propagation with lin-
ear damping, corresponding to a string with fixed-ends
where a small amount of energy is gradually dissi-
pated as the string vibrates. If y = y(x,t) represents
the vertical displacement of the string relative to the
x-axis, then the equation is written as follows:

1 0%y oy 9%

2otz " ot 92 ®)
where z is position, ¢ is time, ¢ is the local sound
speed, and ¢ is a non-negative constant associated
to the small dissipation (¢ < 1). The boundary con-
ditions can be written, without loss of generality, for a
string of length L, as:

:O7

y(x=0,t) =y(z = L,t) =0. (4)
The general form of the bounded solution to this equa-
tion can be easily obtained through separation of vari-
ables, and since ¢ <« 1 here it is written as:
cet/2 eiiat, (5)
where k¥ = nz/L, with n any integer, and o« =

Vws —€2/4, with wg = k/c. Notice that this so-

lution is of the general form given by Feeny for a

y(x,t) = sin(kz) e
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complex mode in equation (2). Observe also that
if ¢ = 0 the solution to equation (3) with boundary
conditions given by (4) should correspond simply to
the solution of the undamped linear wave equation,
y(x,t) = sin(kx) exp(Liwgt). It is well known that the
Fourier transform with respect to time of such a solu-
tion is real, having no imaginary part. Having stated
in the previous section our interest in doing so, we
will now calculate the Fourier transform with respect
to time of solution (5) in order to examine the explicit
role of damping in contributing toward the imaginary
part of the spectrum.

We consider here all of the previous solutions to be
given in terms of generalised functions, and the calcu-
lations involving Fourier transformations are then han-
dled in that context as well. This is necessary in or-
der to guarantee the existence of the transforms of
the functions involved. For clarity’s sake, the defini-
tion used here of the Fourier transform of generalised
function f(¢) is

fo) =il = [ roe
and then its inverse is given by
16 =F ) = o [ F e,

A detailed discussion of generalised functions and of
their Fourier transform is given in Kammler (13), as are
the transforms for the following generalised functions,
where h(t) denotes the Heaviside function:

270 (w — @), (6)

(7)

T

n [5@)) - } .

l
>
=
P
I

Using the convolution theorem for Fourier transforms
we may then calculate the Fourier transform of a semi-
infinite harmonic time signal (generality is not lost by
assuming the signal starts at time zero):

AN = 7[5 - a) b - )
e |
= W[d(w—a)—w(wl_a)} (8)

It is interesting to observe that the Fourier transform
of the semi-infinite time-harmonic solution already has
a non-zero imaginary part, and that this accounts in
some sense for the fact that measured time-harmonic
signals never precisely yield delta funtions in the spec-
trum, as should be expected if the signals were of infi-
nite duration. We now define

v(t) = h(t) e P elot, 9)
where b = ce/2 is a positive constant; it is then
straightforward to identify v(¢) with the temporal part
of the solution of the damped wave equation (3) where
in addition to the boundary conditions we require that
the system remain static until a particular time when
the signal starts (and again, without loss of generality
we may choose this time to be zero). This condition
effectively corresponds to a situation where a signal
is measured beginning at a certain time. Taking into
account that

FIbe ™) = md@) + =, (10)

and again using the convolution theorem, we obtain

Flo() [ (' — ) [mo(w — )
1

- /
b—}—i(w—w’)}dw

m0(w — ) + !

Stilw—a)

(11)

Notice that this solution tends, as ¢ — 0, precisely
to the solution given in equation (8), which is the ex-
pected result. As we are especially interested in the
imaginary part of this generalised function, we write it
in the following, standard, form:

Flo@®)] =

[wé(w —a)+ ce/2 }

2e2/4+ (w— a)?

, w—a
2[0262/4—1—(@—&)2} ' (12)

We now consider two main cases:

(i) When considering frequencies very near or at a res-
onance frequency, O(w — «) = 0, and in that case
the delta function term on the right hand side of (12)
clearly dominates the behaviour of the spectrum at
that point. Notice that, for ¢ > 0, the other two terms
do also contribute with inverse square decay (second
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real term) and inverse decay (imaginary term) away
from the resonance frequency. This decay is clearly
observed in the plots in the following section, where
resonance frequencies do not appear as absolute dis-
continuities, but rather as relatively sharp peaks.

(ii) When frequencies are not in the immediate vicinity
of a resonance frequency, say O(w — «) > 1, the delta
term becomes identically zero and makes no contribu-
tion to the spectrum. The contribution to the spectrum
of the remaining two terms now also depends on the
scale of the value of e. Firstly, as e tends to zero, the
second real term also tends to zero and only the imag-
inary term remains. However, for small but non-zero e
the relative magnitude of the remaining real term and
the imaginary term is determined directly by O(w — ).
If O(w—a) =1, then the real term will be smaller than
the imaginary term by an order of magnitude e, but if
O(w — a) > 10, then this same term will be smaller
than the imaginary term by a larger order of magni-
tude, ¢/(w — a). Thus, as we consider frequencies
further away from the resonance frequency, gradually
the imaginary part of (12) comes to dominate almost
completely the behaviour of the spectrum.

This analysis can be applied, in principle, to any vi-
brating system with small attenuation where the gov-
erning equation allows for separation of variables. Un-
der these circumstances, we could, for example, sub-
stitute the second derivative with respect to position
term in equation (3) with a more general Laplacian,
with different boundary conditions, and the analysis of
the temporal part of the solution that yields equation
(12) would remain valid.

3. Complex vibration modes of a guitar top-plate:
analytical and simulated results

Two distinct resonance frequencies of a system com-
pletely devoid of damping should, in theory, not inter-
act. It is observed, though, that even in the presence
of small-scale damping, these frequencies may inter-
act depending on their proximity in the spectrum. Fig-
ure 1 below illustrates the shape of two resonance
peaks calculated according to equation (12) sepa-
rately; these frequencies correspond to the two lowest
resonance peaks of the guitar top plate, which is the
system we will refer to throughout this section. Notice
that even though damping is non-zero for this simu-
lation, the imaginary part of the FRF is zero for both
resonance frequencies. Thus, damping seems, in this
case, to only have the effect of reducing the maximum

amplitude of the resonance peaks.

Figure 1: Plot of the real and imaginary parts of the
normalised average response of a guitar top-plate cal-
culated separately at the two lowest resonance peaks.
Solid and dotted lines are used simply to distinguish
between peaks.

Figure 2: Plot of the real and imaginary parts of the
normalised average response of a guitar top-plate cal-
culated jointly at the two lowest resonance peaks.
Solid lines denote the analytical result, and dotted
lines the FEM simulation.

However, if we calculate the spectrum around these
same resonance peaks, with the same damping co-
efficient as before, but considering the joint effect of
both peaks, it becomes apparent that the imaginary
part of the FRF is no longer zero at resonances, as
can be seen in Figure 2. The real part still domi-
nates at resonances, though, and the calculated FRF
approximates very closely the normalised response
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calculated for the guitar top-plate using FEM with an
equivalent damping factor. A Finite Element Method
has been used to calculate the average of the abso-
lute value of the velocity at all points on the mesh that
covers the guitar top-plate, as a function of frequency;
the scheme itself is described in detail by Torres and
Boullosa (14). We observe then that not only does the
introduction of damping have the effect of diminish-
ing the amplitude of resonance peaks, but it also re-
sults, when taking into account interactions between
the resonance peaks, in the spectrum consisting of
complex values (meaning, in this context, not purely
real or imaginary) even at resonances.

It is thus established that damping permits resonance
peaks to interact if they are close enough together. In
fact, as the scale of damping increases, the magnitude
of the imaginary part of the response approaches the
magnitude of the real part, as is shown in Figure 3.
Indeed, the greater the damping the greater the scale
of the interaction will be. When there is no damping,
the imaginary part is identically zero, as predicted in
section 2.

() ¢=002 ®)¢=0011 ()%=0002

—
Mabilty (m /N"S)

Moty (m /7s)
e
—

30 Ta0 150 T30 140 150
Frequency (Hz) Frequency (Hz)

Figure 3: Plot of the simulated real and imaginary
parts of the average response of a guitar top-plate at
the two lowest resonance peaks for different values of
the damping ratio ¢.

In order to distinguish between traveling-wave and
standing-wave behaviour in this example, we will in-
troduce the notion of an Operational Deflection Shape
(ODS), which is constructed from the collection of the
FRFs corresponding to all points on the mesh which
covers the guitar top-plate, and which gives the vibra-
tion pattern of the plate. Three ODSs are plotted in
Figure 4, corresponding to 126 Hz, 140 Hz and 162
Hz. The first and third frequencies are the resonance

frequencies observed in Figure 2, with the second
frequency falling between the resonance frequencies.
We observe that for both resonance frequencies the
principal contribution to the plate velocity is given by
the real part of the ODS, as would be expected. Also,
in both cases the imaginary part of the ODS is char-
acterised by asymmetric dipoles, with opposite orien-
tation due to a phase shift with respect to the axis of
balance of the top-plate at around 126 Hz. For these
frequencies we essentially observe what is generally
identified as normal-mode behaviour. For the inter-
mediate frequency, however, we observe that the real
part of the ODS exhibits a pole on the left side of the
plate, while the imaginary part is dominated by a pole
on the right side. Thus, due to the 90° phase shift
between real and imaginary parts, we conclude that
a perturbation very much like a traveling-wave moves
from left to right. This result is consistent with the fact
that for this frequency, the real and imaginary parts of
the FRF are of comparable order as seen, again, in
Figure 2.

(a) 126 Hz (b) 140 Hz

(©) 162 Hz

Figure 4: Normalised real and imaginary parts of the
ODSs corresponding to (a) 126 Hz, (b) 140 Hz, (c)
162 Hz.

4. Conclusions

In order to establish whether a particular mode be-
haves, in the traditional sense, more like a normal
mode, or whether it is more closely associated to a
traveling perturbation, Feeny, through a variation on
complex orthogonal decomposition, proposes a quan-
titative measure of behaviour according to the time-
evolution of this particular mode. However, a charac-
terisation to be used in conjunction with modal analy-
sis would preferably focus on the spectral, and not the
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temporal domain. A simple model is used to model the
average spectrum of a vibrating structure, which will
always be complex, even for harmonic signals, when
the length of the signal is not infinite. Since modal
shapes can be normalised, we are able to compare
the low-frequency spectrum obtained using this model
with that resulting from the FEM simulation of the av-
erage vibration of a whole guitar top-plate. The prox-
imity of resonance peaks and the scale of damping
are observed to determine the relationship between
the real and imaginary parts of the FRFs, and then
also establish whether the behaviour will tend to that
of a stationary or a traveling wave. Thus, the modes
commonly known as complex modes can, in general,
be identified through study of the spectrum, and not
only through the analysis of successive realisations of
the ODSs for particular frequencies, as suggested by
Bissinger (although they can also be pinpointed in this
manner).
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