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ABSTRACT

In this work, a novel parallel manipulator is introduced with the purpose of simulating the jerk analysis of the end of the spine.
The displacement analysis is presented in a semi-closed form solution whereas the velocity, acceleration and jerk analyses are

carried out by means of the theory of screws.
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RESUMEN

En este trabajo se introduce un manipulador paralelo novedoso con el propdsito de simular el analisis de pulso de la columna
vertebral. El analisis de posicion se presenta en forma semi cerrada, mientras que los analisis de velocidad, aceleracién y pulso

son realizados por medio de la teoria de tornillos.

Palabras clave: Prediccidn lineal, servo control visual, seguimiento, vision estéreo, calibracion de camaras.

1. Introduction

The jerk, a research field of great interest in quite
different academic communities, is the time rate
of change acceleration and it is related to the rate
of change of force, namely, an impulse which is
considered as a hammer blow force. Particularly, it
is known that there is a direct relationship
between the jerk and the movements of the
human body [1, 2, 3]. Consider, for instance, that
Crossman and Goodeve [4] have shown that when
high spatial precision is required, many
movements related with the hands present
irregularities and multiple velocity peaks. Gielen et
al. [5] noted that the charactecteristic pattern of
cerebellar ataxia, related with the jerk and
submovements, is contained in the trajectory of
the hand during repeated arm movements.
Goldvasser et al. [6] investigated the high
curvature analysis and the integrated absolute jerk
for differentiating healthy and cerebellopathy
patients performing pointing tasks. In order to
understand how the central nervous system
controls the kinematics of rapid finger and hand

movement, Novak et al. [7] proposed an objective
algorithm to identify overlapping submovements,
detecting  appreciable inflections in the
acceleration traces which are related, evidently,
with the jerk. Viviani and coworkers [8, 9] proved
that there is a correlation between perception,
motion planning, and jerk in human. The spinal
column has been the subject of an exhaustive field
research.

Basically, the motions of the spine can be classified
in three types: a) sagittal plane movement, b)
coronal plane movement and c) transversal plane
movement of axial rotation. The individual
segmental range of motions was quantified for all
spinal levels by Panjabi and White [10]. Dimnet et
al. [11] reported a technique, based on lateral-
view-X-ray, to determine parameters for
describing the centers of rotation and curvature of
the spine. Gracovetsky and Farfan [12] proposed a
novel theory based on the mechanical behavior of
intervertebral joints capable of computing both
spinal motions and muscular actions. By means of
the technique of videofluoroscopy, Cholewicki and
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McGill [13] studied the kinematics of the lumbar
spine. Yoganandan [14] determined the kinematic
response of the lumbar spine using instrumented
transpedicular screws and plates. It is well-known
that a structure is any assemblage of materials that
is intended to sustain loads, a strong argument to
simulate the spine, in that way Levin [15] identifies
tensegrity structures whose elements always work
in tension regardless of the direction of the applied
force, an interesting option to simulate the
kinematics of the spine. Willems et al. [16]
provided preliminary information about the spatial
kinematics of the thoracic spine in vivo. Faber et al.
[17] proposed a method to compute Euler’s angles
of rotation of a body segment during locomotion
and applied it to in-vivo spinal kinematics. In order
to demonstrate in-vivo intervertebral coupled
motions of the upper cervical spine, Yoshikawa et
al. [18] studied the spatial kinematics of the upper
cervical spine during head rotation using three-
dimensional magnetic resonance imaging (MRI) in
healthy volunteers. Ziddiqui et al. [19] investigated
the in-vivo sagittal kinematics of the lumbar spine
at the instrumented level. Ishii et al. [20] studied
the spatial kinematics of the cervical spine during
lateral bending while Konz et al. [21] investigated
the spatial kinematics of spinal during walking.
Chanceya et al. [22] determined the center of
rotation of the upper cervical considering pure
bending. Gill et al. [23] examined the effect of
changes in horizontal lift distance on the amount
of flexion in different spine regions according to
different lift styles. In order to approach the so-
called shaken baby syndrome, recently, Jones et al,
[24] proposed a methodology for the kinematic
analysis of infant spine.

It is straightforward to show that the movements
of the spinal column can be simulated by
assembling several parallel manipulators in series
connection. In this way, in a recent contribution,
Zhu et al. [25] proposed some parallel
manipulators to simulate the finite kinematics of

the end of the spinal column. In this work, not only
the finite kinematics but also the velocity,
acceleration and jerk analyses of the end of the
spine are carried out by applying the theory of
screws to a novel parallel manipulator.

2. Description of the parallel manipulator

The proposed parallel manipulator, see Fig. 1,
consists of a moving platform and a fixed platform
connected to each other by means of three
Universal + Prismatic + Spherical (UPS-type) limbs
and two Revolute + Revolute + Revolute +
Spherical (RRRS-type) limbs, where the active
kinematic pairs are indicated with underlines.

iy Moving platform
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Figure 1. The proposed base parallel manipulator

According to a revised version of the Kutzbach-
Gribler formula, this parallel manipulator
possesses five degrees of freedom, three rotations
that are provided by the translational generalized
coordinates {g3, g4, g5} and two translations that
are provided by the rotational generalized
coordinates {q1, g2}). The main merit of this
topology, for brevity’s sake: 3R2T, is that the
position and orientation of the moving platform
with respect to the fixed platform are controlled
independently by means of the UPS-type limbs and
the RRRS-type limbs, respectively; therefore, this
spatial mechanism belongs to the class known as
Decoupled parallel manipulators.
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3. Finite Kinematics

In this section, the displacement analysis of the
mechanism under study is presented. The inverse
position analysis (IPA) consists of finding the
generalized coordinates of the  parallel
manipulator given the pose, position and
orientation of the moving platform with respect to
the fixed platform whereas the forward position
analysis (FPA) consists of finding the pose of the
moving platform given the generalized coordinates
of the parallel manipulator.

Let XYZ be a global reference frame attached to
the fixed platform and let xyz be a reference frame
attached to the moving platform, see Fig. 1. Given
the position, vector C associated to point C, and
orientation, rotation matrix R of the moving
platform with respect to the fixed platform, angles
gl and g2 are obtained directly from the closure
equations:

On the other hand, lengths g3, g4 and g5 are
obtained as follows:

aF =(5, -U)- (5 —-U;) i=345 (2)

where the dot ¢ denotes the usual dot product of
the three dimensional vectorial algebra whereas

S and U, denote, respectively, the position vector

of points S and U. Furthermore, any point P is

computed upon point p, which is expressed in the
frame xyz, as follows:

RPN

In order to compute the FPA, point C is found re-
writing Eq. (1) as

C-A-d-h)-C-A—d-h)=¢
=12 (4)

which yields a closed-form solution. Furthermore,
with the purpose of computing lengths g3, g4 and
g5, let us consider the following closure equations:

(5, —-U,)(5-U))=q? =345
(5, -0)-(5,-C)=r? (5)
(5;+S,+S5)/3=C

where, r is the radius of the moving platform.
Expressions (5) are solved using recursively the
Sylvester dialytic elimination method, for details,
the reader is referred to [26, 27, 28], yielding a
semi-closed form solution. With this procedure,
sixteen possible locations, including reflected
solutions, of the moving platform with respect to
the fixed platform are available. Furthermore,
considering that two different locations are
available for point C, then the moving platform can
reach 32 different locations or poses with respect
to the fixed platform. Once the coordinates of
points §; (i=3,4,5) are computed, rotation matrix R
is obtained by applying the method introduced in
Gallardo-Alvarado et al. [29].

4. Infinitesimal kinematics

The mathematical tool to approach the velocity,
acceleration and jerk analyses is the theory of
screws.

Let Vo = [@; vp]" be the velocity state, or twist
about a screw [30], of the moving platform with
respect to the fixed platform, where @ and v, are,
respectively, the angular and linear velocities of
the moving platform with respect to the fixed
platform so that subscript P denotes a point of the
moving platform that is instantaneously coincident
with a point fixed at the global reference frame,
usually such point is the origin of the global
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reference frame. Furthermore, the velocity state
can be written in screw form, the infinitesimal
screws of two representative legs are depicted in
Fig. 1, through any of the limbs as follows

;i Q; =Vp
Where, J :[0$|1 $ O Y Y 5$|6]

i=12,..5 (6)

is the screw-coordinate Jacobian matrix of the i-th
limb and

_ R B FTPN N P
Q; = [00)1110)212w3’3w4’4w5'5a)6]

is @ matrix containing the joint velocity rates of the
i-th leg. It is important to mention that joint
velocity rates

1 .2 .3 . 4 . 5
{Owl =00, =0y, 05 = (3,505 =y 500, = QS}

have the privilege to be considered as the active
kinematic pairs of the base module.

Furthermore, it must be noted that screws
’$2(i =1,2) are elements related to fictitious
prismatic pairs in which evidently , a)§= . a)§ =0.
These fictitious elements are included only for the
sake of completing an algebraic requirement,
specifically with the purpose of completing the
rank of the Jacobian matrix of limbs 1 and 2.

The inverse velocity analysis (IVA), a necessary task
to approach the acceleration analysis, consists of
finding the joint velocity rates of the limbs given
the velocity state Vp. The IVA is computed directly
from Eqg. (6). On the other hand, the forward
velocity analysis (FVA) consists of finding the
velocity state Vp given a set of active joint velocity
rates

{0.,9,,05,0,., 05 }

The FVA is simplified considerably by applying the
concept of reciprocal screw. To this end, please

note that screw *$; is reciprocal to all the screws
of limb 1, excepting screw 0fiSiwhich is associated
to the active joint velocity rate ¢, Therefore, the

application of the Klein form of screw 3$f with

both sides of the corresponding Eq. (6), the
reduction of terms leads to

Pstiv, = sts0slf (7)
similarly, from limb 2 it follows that
Pstiv, - a,°85:783 (8)

R 5 .
Furthermore, screws 5§j1,5ﬁ and ﬁ are reciprocal

to all the revolute joints in the same limb.
Therefore,

sov, =g =456 (9

In order to satisfy an algebraic requirement, note
that screw 5@ is reciprocal to all the screws of
limb 1, therefore, one can obtain

{5$f;vp}=0 (10)

Casting into a matrix-vector form Egs. (7)-(10), a
compact velocity expression is formulated as
follows:

JTAVp :de (11)

Where, 38, 8 ¥ % ]

is the active screw-coordinate Jacobian matrix,
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I
A{% 3 }is an operator of polarity, and

|3 X3

o {ql{3$“:°$ikq2{3$3:° ﬂT
651041050

is a matrix containing the generalized speeds of
the base module. Hencefore, velocity state Vp is
obtained directly from expression (11).

In what follows, the acceleration analysis is
approached using the same methodology used for
the velocity analysis.

Let Apz[d);ap—a)xvp]T be the reduced

acceleration state, or accelerator for brevity’s sake,
of the moving platform with respect to the fixed
platform, where @ and a; are, respectively, the
angular and linear accelerations of the moving
platform with respect to the fixed platform, taking
point P as the reference pole. Then, the
accelerator can be written in screw form, see Rico
and Duffy [31], through any of the limbs as follows:

SO+ A=A, i=12..5 (12)

Where,

i janj+HL i K 1
A:z‘j‘&[jajﬁl g zi:ja kM1 $<+]T
is the acceleration screw of the i-th limb in which
the brackets [* *] denotes the Lie product, and

Q is @ matrix containing the time derivatives of

the elements of matrix €2, .

The inverse acceleration analysis (IAA) consists of
finding the joint acceleration rates of the limbs of
the parallel manipulator given the accelerator

A, and is computed directly from expression (12).
On the other hand, the forward acceleration
analysis (FAA) consists of finding the reduced
acceleration state A, given a set of active joint
acceleration rates {ql,qz,qg,m,qs}. Following

the trend of the FVA, the systematic application of

the Klein form between the reciprocal screws
indicated in the FVA with both sides of
expression(12), and casting into a matrix-vector
form the equations, thus, derived vyields the
following expression:

JTAA, =Qua (13)

where,

e ey
658+ '8 Al
i+ A)
0+ %Al
6+ A
BN
Therefore, the reduced acceleration state A, is
obtained directly from expression (13).

(%ccel = (14)

This section finishes with the main purpose of this
contribution, the jerk analysis of the artificial spine.

Let Jp:[c'b;jp—2£i)><vp—a)><ap]r be the reduced

jerk state or jerkor, for brevity’s sake, of the
moving platform with respect to the fixed
platform, where @ and jP are, respectively, the
angular and linear jerks of the moving platform
with respect to the fixed platform, taking point P
as the reference pole.

Furthermore, the jerkor can be written in screw
form, see Gallardo-Alvarado et al. [32], through
any of the limbs as follows:

SO+ =4,  i=12..5 (15)

Where,
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r =224j1:0[jvj+1 Zﬁ:j+1 kAk+l]
+24j1:o[jAj+1 Zﬁ:j{]_ ka+1]
+2zj1:o[jvj+1 [jvj+l Zﬁ:j+]_ ka+1]]

is the jerk screw of the i-th limb and Q is @ matrix
containing the time derivatives of the elements of
matrix €.

The inverse jerk analysis (IJA) consists of finding
the joint jerk rates of the parallel manipulator
given jerkor Jp and is computed directly from
expression (15). On the other hand, the forward
jerk analysis (FJA) consists of finding jerkor J, given

a set of active joint jerk rates {oﬂ,dz,%,q4,q5}
Following the trend of the FVA and FAA, the
systematic application of the Klein form between
the reciprocal screws indicated in the FVA with
both sides of expression (15), and casting into a
matrix-vector form the equations thus derived,
yields the following expression:

JTAT, =Q g (17)
Where,

008+ s

85088 +[°8t;
Oe +{S$;r3

q4 +{5$?1;F4

06 +{5$;F5
Pr

o]
L)
}} (18)
|

Q]erk=

Therefore, reduced jerk state JP is obtained
directly from expression (16).

Finally, once the velocity, reduced acceleration and
reduced jerk states are computed using the origin
of the global reference frame XYZ as the pole, the
linear and angular properties of any point attached
to the moving platform, for example its geometric
centre, are computed by applying the concept of
helicoidal vector fields, for details see Gallardo-
Alvarado et al. [32].

5. Numerical example
The parameters, using hereafter S| units, and

generalized coordinates of the numerical example
are listed in Table 1.

A1=(0.03,0,-0.051961)
A2=(0.03, 0, 0.051962)
Us=(0.06, 0, 0)

Ua= (-0.03, 0,-0.051961)
Us=(-0.03, 0, 0.051961)
h=0.08, r=0.0.08246
g1=3.403 + 0.174 sin(t) cos(t)
g2=1.309 + 0.0872 sin(t)
g3=0.08 + 0.005 sin(t)
ga=0.085 + 0.015 sin(t)
gs=0.0825 + 0.01 sin(t) sin(t)

Table 1. Parameters of the numerical example

With these data the resulting time history of the
angular and linear jerks of the moving platform,
with respect to the fixed platform, is provided in
Fig. 2.
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Figure 2. Time history of the forward jerk analysis of the
centre of the moving platform.

Please note that, as it was expected, the linear jerk
along the Y axis is practically null. Furthermore, in

order to avoid singular configurations, the
considered interval for time t was
0 < t(S) < m.

6. Discussion

In this work, a novel five-degrees-of-freedom
parallel manipulator is proposed for simulating the
jerk analysis of a module of the spine. This
manipulator brings the following features:

¢ Decoupled architecture, which is a combination
of a spherical parallel manipulator with a planar
parallel manipulator for controlling, respectively,

the orientation and position of the moving
platform with respect to the fixed platform.

e Due to the decoupled topology, the forward
displacement analysis is presented in a semi-closed
form solution. All the feasible locations of a
platform with respect to the other can be
calculated given the five generalized coordinates.

¢ Simple and compact expressions for solving the
velocity, acceleration and jerk analyses are derived
here by applying the concept of reciprocal screws
via the Klein form of the Lie algebra e(3) which is
isomorphic to the theory of screws.

e The proposed parallel manipulator is a non-
overconstrained parallel manipulator and, unlike
the parallel manipulators introduced in Zhu et al.,
[25] does not require additional conditions of
manufacture.

Finally, a numerical example is provided.
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