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ABSTRACT 
The main goal of this work is to present a new class of feedback controller which contains on its structure a 
polynomial form of the named control error, the proposed controller is applied to a class of sulfate-reducing chemostat 
in order to control the sulfate concentration, which would be useful for several biotechnological issues, as heavy metal 
removal in wastewater. The closed-loop behavior of the chemostat is theoretically analyzed and a practical 
convergence to the selected optimum trajectory is proved. The proposed methodology is applied to an experimentally 
corroborated kinetic model of a sulfate-reducing bacterium and further numerical experiments show the satisfactory 
closed-loop performance of the process in comparison with other controllers. 
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RESUMEN 
El principal objetivo de este trabajo es el presentar una nueva clase de controlador de tipo retroalimentado, el cual 
contiene en su estructura una forma polinomial del llamado error de control, el controlador propuesto es aplicado a un 
quimiostato sulfato-reductor, el cual pudiera ser usado para varios fines biotecnológicos, como la remoción de 
metales pesados en aguas residuales. El comportamiento a lazo cerrado del quimiostato considerado es 
teóricamente analizado y se prueba convergencia práctica a la trayectoria óptima seleccionada. La metodología 
propuesta es aplicada a un modelo cinético de una bacteria sulfato-reductora experimentalmente validado y 
experimentos numéricos complementarios muestran un comportamiento a lazo cerrado satisfactorio en comparación 
con otros controladores. 
 
 
1. Introduction 
 
Sulfate reducing bacteria (SRB) are dispersed in 
the nature, are able to produce energy through 
electron transfer-coupled phosphorylation, use the 
sulfate as the terminal electron acceptor for 
respiration and produce sulfide as compound end. 
SBR play an important role in global cycling of 
numerous elements in anaerobic environments, 
particularly in sulfate rich environments, the global 
sulfur and carbon cycles are most relevant 
(Widdel, 1988). Beyond their role in ecology, SRB 
have an economic impact because they are 
associated with pitting corrosion of ferrous metals 
due to production of sulfide, which is highly 
reactive, corrosive and toxic, particularly in the  
petroleum industry (Neria-Gonzalez et al.; 2006). 
 

On other hand, SRB have become especially 
important in biotechnological processes due to its 
ability to degrade organic material and remove 
heavy metals (Jorgensen, 1982). Many processes 
of material degradation and heavy metal removal 
are carried on anaerobic bioreactors, which are 
large fermentation tanks provided with mechanical 
mixing, heating, gas collection, sludge addition and 
withdrawal ports, and supernatant outlets. The 
anaerobic digestion is affected by many factors 
including temperature, hydraulic time, pH, and 
chemical composition of wastewater. In a practical 
framework, the bioreactors are operated on the 
basis of laboratory analysis of samples, which lead 
to empirical methodologies for operation policies. 
In general the above is related to the rising energy 
costs, increased global competition in terms of  
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both price and quality, and the need to make 
products in an environmentally benign manner. 
Many of the products obtained by the biological 
route either cannot be produced, or are very 
difficult to obtain, by conventional manufacturing 
methods. 
Generally speaking, the following features 
distinguish the biochemical reactors from the 
chemical reactors: 
 
1. Several of the crucial variables can not be 
directly measured quickly or easily. Quite often a 
time delay, which is larger than the system time-
constants, is associated with their measurement. 
Therefore, a mathematical model must be used in 
place of feedback information. 
 
2. As already pointed out, the fed-batch reactor 
operation does not have a true steady state. In this 
case, evaluation of the state variables will locate 
the position of the system on a trajectory through 
the operational cycle. Since these state variables 
can not be measured online, the estimation of 
state becomes an important element of 
optimization and control of the reactor. 
 
3. Linear system analysis is mostly not applicable 
in case of bioreactors, especially for evaluation of 
long term response, since biochemical reaction 
systems usually are nonlinear. Hence, numerical 
solution of differential equations is required. 
 
Biological reactors typically are governed by highly 
nonlinear behavior occurring on both a 
macroscopic reactor scale and a microscopic 
cellular scale. Reactions taking place at these 
scales also occur at different rates so that the 
bioreactor system is multi-scale both spatially and 
temporally. By increasing our understanding of 
these systems, it may be possible to avoid some of 
the empiricism associated with the operation of 
continuous and (fed-) batch bioreactors. 
Considerable benefit, in terms of reduced product 
variability and optimal resource utilization could be 
achieved. Process control mainly focuses on 
controlling variables such as pressure, level, flow, 
temperature, pH, level in the process industries; 
however, the methodologies and principles are the 
same as in all control fields. The early successful 
application control strategy in process control is in 
evolution of the PID controller and Ziegler-Nichols 
tuning method (Ziegler and Nichols, 1942). So far 
a high percentage of the controllers implemented 

in the process industries are PID-type 
(Chidambaram and See, 2002); however, as (i) the 
industrial demands (ii) the computational 
capabilities of controllers and (iii) complexity of 
systems under control increase, the challenge is to 
implement advanced control algorithms (Spear, 
2005). 
 
Since achievable controller performance in a 
model-based control scheme is dependent on the 
quality of the process model (Aguilar, et al, 2005), 
a controller based on a model that captures events 
occurring at both the general considerations for 
control of bioreactors. 
 
On the other hand, the difficulty of implementing a 
feedback control is threefold. Firstly, the response 
of sensors tends to be slower than many of the 
processes they monitor. Secondly, sensors are 
generally not available for measurement of 
substrate with rapid dynamics for feedback 
application; and thirdly, there is also generally not 
available a sensor for the biomass concentration 
without which the state of the system can not be 
estimated (Fordyce, et al, 1987) 
 
Given the above objectives, broadly speaking, 
there are two ways to design an appropriate 
control system. The most frequently used method 
is to pre-select a controller structure and then to 
tune the parameters of this controller so that the 
desired closed-loop response is obtained. This is 
referred to as a parameter optimized control 
system; the most well-known example is probably 
the Proportional Integral Derivative (PID) controller 
(Bastin and Dochain, 1990). The other approach is 
the use of structure optimal control systems where 
both the structure and parameters of the controller 
are adapted to those of the process model 
(Betancour, et al, 2006). In practice, however, the 
use of the latter method is severely restricted 
because exact dynamic term cancellation is 
required in order to produce the optimal controller 
structure. This is usually not possible for various 
reasons: the lack of an appropriate process model, 
non-linearities and physical constraints on the 
process variables. 
 
From the above, in this paper a class of nonlinear 
single-input single-output controller with polynomial 
output structure in order to provide stabilization to 
a class of continuous sulfate reducing bioreactor is 
proposed. 
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2. Experimental 
 
In this paper, a sulfate-reducing bacterium (6SR), 
isolated from a biofilm sample obtained from the 
inner surface of pipelines that transport oil crude, is 
considered. The molecular identification of 6SR 
isolated showed a phylogenetic relation with 
Desulfovibrio alaskensis so the strain is named 
Desulfovibrio alaskensis 6SR (Neria-Gonzalez et 
al.; 2006). Desulfovibrio alaskensis 6SR was 
cultured and conserved in Ravot medium under an 
atmosphere of N2-CO2 (80:20, v/v). 
 
2.1  Growth kinetic 
 
A sample of congenital water medium (CW) was 
obtained from an oil pipeline located in the 
Mexican Southeast region. Chemical determination 
of water: chlorides 64 000 ppm, sulfur 178 ppm, 
sulfate 350 to 400 ppm, pH 8.84. A 1000 mL 
aliquot of congenital water was saturated whit N2 
for an hour and was enriched with sodium lactate 6 
mL, yeast extract 0.5 g, and reducing solution 5 
mL (acid ascorbic 1 g L-1, and sodium thioglicolate, 
1 g L-1). The pH was adjusted to 7 with KOH 1N. 
The CW medium was distributed in serum bottles 
of 60 mL usingthe  Hungate’s technique (Hungate, 
1969) and they were autoclaved at 120 ºC for 15 
minutes. 
 
The original cultures of D. alaskensis 6SR in 
medium Ravot were used to inoculate 45 mL of 
CW medium. The culture was incubated for 20 
days at 37ºC. This was used to inoculate three 
bottles with CW medium for different periods of 
time: zero, 24 and 36 hours, respectively, and 
were incubated under same conditions. The 
bacterial growth was followed through Optical 
Density (OD) measurements, consume of sulfate 
and production of sulfide. Samples from the 
cultures were taken anaerobically each hour. 
Sulfate in the medium was measured by the 
turbidimetric method based on the precipitation of 
barium (Kolmert Å et al., 2000). Also, the 
production of sulfide was measured by a 
turbimetric method (Cord-Ruwisch, 1985).  The OD 
reading for cell growth was transformed to dry 
weight (mg/mL) through a standard curve of 
growth. The data were analyzed and only the 
points that adjusted a straight line (exponential 
phase) were used to determine the growth kinetic 
parameters according to the Monod model. 

3. Process modeling 
 
Sulfate reduction can be applied beneficially to 
biotechnology, i.e. for the the removal of heavy 
metals from groundwater and waste water. These 
applications take advantage of differences in the 
chemical properties of metal sulfates and 
sulphides. Metal sulfates (cadmium, cobalt, 
copper, iron, nickel and zinc) are highly soluble but 
the corresponding metal sulphides have low 
solubility. Thus, by sulfate reduction, metals can be 
precipitated, recovered and reused. This concept 
has been applied to immobilize metals from 
surface water and process water from mining 
industries. Organic waste materials (for example, 
straw) are often used to immobilize heavy metals 
in lake sediments. From the above, the necessity 
to improve the operating performance of these 
processes seems very important and the system 
modeling, simulation, optimization and control 
appear to be tools for a complete process analysis. 
 
For biological systems, the unstructured kinetic 
models are the simplest of all modeling 
philosophies used to describe the biological model. 
They consider the cell mass as a single chemical 
species and do not consider any intracellular 
reactions occurring within the cell. Unstructured 
models typically describe the growth phenomena 
based on a single limiting substrate and consider 
only substrate uptake, biomass growth, and 
product formation in the modeling framework. Thus 
the biological component of the system depends 
directly on the macroscopic reactor variables. 
These models give an adequate representation of 
the biological growth phenomena in relatively 
simple cases, when the cell response time to 
environmental changes is either negligibly small or 
much longer than the batch time (Schugerl, 1987). 
 
The most commonly used unstructured model in 
the literature is the Monod model (Alford, 2006). 
And it is one of the earliest attempts at modeling 
biological systems. In this model the growth 
kinetics are expressed in terms of the specific 
growth rate. The parameters are obtained 
experimentally and they do not have a direct 
physical interpretation (Schugerl, 1987). A 
drawback of this model is that it does not capture 
the initial lag phase of growth which is observed in 
most batch cultures. There are variants to the 
Monod  model that have also been used, such as 



 

Control of a Class of Sulfate Reducing Chemostat Via Feedback Polynomial Injection, R. Aguilar‐Lopez et al., 274‐287 

Journal of Applied Research and Technology 277

the models by Messier, Contois etc. reported in the 
open literature (Bailey and Ollis, 1986). These 
models differ in their substrate dependence and 
some include terms to account for saturation due 
to high substrate concentration and inhibition due 
to product or a competing inhibitor; however, these 
models do not differ significantly from the Monod 
model in the fact that they are empirical and 
represent all of the cellular processes with just a 
single equation for the specific growth rate. 
 
Nevertheless, for control purposes, a reduced 
order model which can describe the dynamic 
behavior of the main state variables is adequate. 
The kinetic parameters can be determinated via 
standard methodology (Bailey and Ollis, 1986) in a 
batch culture (Neria-González and Aguilar-Lopez, 
2007). 
 
 
By employing a Monod model for the specific 
growth rate, the following is obtained: 
 

 
                                                 (1) 

 
or 

 
                                                 (2) 

  
 
The corresponding kinetic parameters can be fitted 
by plotting μ-1 versus S-1 (Lineweaver-Burk plot). 
For our particular study case, the maximum 
specific growth rate is calculated as 

1
max 035.0  h and the affinity constant

Lgks /9.0  with a correlation factor of R2 = 

0.9786. 
 
Therefore: 
 

                                                 (3) 
 
 
 
and YS/X    = 0.25  and YP/X  = 0.263. 

The following mathematical model for the 
continuous bioreactor is hence proposed, based 

on classical mass balances for biomass, sulfate 
(substrate) and sulfide (product) concentrations: 
Sulfate (S).- 

   
S/X

in
Y

X
sμSSD

dt

dS


                 

(4) 

Biomass (X).- 

 

 XSμDX
dt

dX


                           
(5) 

 
Sulfide (P).- 
 

 
P/XY

X
SμDP

dt

dP


                    
(6) 

 
Here D is the dilution rate (control input), μ is the 
specific growth rate, YS/X  is the sulfate coefficient 
yield and  YP/X is the sulfide coefficient yield. 

 
In a previous paper (Neria-González and Aguilar-
López, 2007), some operating regions related with 
specific process applications (for example, heavy 
metal removal) were determined. From the above, 
two open-loop steady states were selected as 
mentioned below; the first equilibrium point for 
heavy metal remotion regimen is Seq = 2.25 g/L; 
Xeq = 0.68 g/L; Peq = 2.61 g/L. The second 
equilibrium point: Seq = 0.36 g/L; Xeq = 1.16 g/L; 
Peq = 4.4 g/L,  is related to high sulfate 
consumption. 
 
Now, evaluation of the the stability conditions of 
the above equilibrium points is necessary, this is 
done via the first Lyapunov criteria, where the 
corresponding eigenvalues for the first equilibrium 

point are 280/43;40/1;40/1 321    , 

note that the real part of the eigenvalue 
corresponding to sulfide concentrations is positive; 
therefore, the equilibrium point is unstable. 

 
On the other side, the corresponding eigenvalues 
for the second equilibrium point are 

350/59;100/1;100/1 321   ; as 

above, the the equilibrium point is unstable too. 
 

μሺSሻ=μmax SKS+S 
1μ = 1μmax + KSμmaxS    

μሺSሻ= 0.035S
0.9+S
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From the above results, it can be concluded that 
the open-loop operation is locally unstable in such 
a way that any disturbance arriving to the 
bioreactor can lead to the process to other, 
possibly undesirable, operating point; this justifies 
the application of a control law to force the 
bioreactor to remain on the selected operating 
points. 
 
4. Proposed controller 

 
A general model of the bioreactor can be 
described by Equations (7a) and (7b), which is 
related to an affine control law system for the 
considered process, as follows: 
 

   UXXU)f(X,X 


         (7a) 

Y = h(X) = CX                      (7b) 

Where: 
 

  3,,  TPXSX is the corresponding state 

vector. Now consider the set 3 as the 
corresponding physically realizable domain such 
that   maxmax;

3 0;0;0/,, PPXXSSPXS in  

;    XCX  , i.e. this is a smooth function;   00   

and     whereXX ,3 , this 

means that   is bounded. 
 
Defining the vector error as 

spXXe  , where Xsp 

is the considered reference trajectory; therefore, 


 spXXe ; where it is assumed that  spsp XX 


 

; this means that the proposed trajectory (sulfate 
concentration) obeys the mass conservation  
 
 
 
 
 
 
 
 
 
 
 

principle despite the corresponding mass balance 
equation under the action of the considered control 
law. From the above, the corresponding error 
dynamic equation considering (7a) is as follows: 

     UXXXe sp 


      
          (8) 

 
Now, let us consider the following hypothesis: 
H1. For the realized control input vector ))(( tXU  ,  

 max))(( UU tX , the nominal closed-loop nonlinear 

system is quadratically stable; therefore, there 
exists a Lyapunov function 0  that satisfies 
the following:  

 

where      spXX   , such that the 

uncontrolled states of Equation (7) are stable on 
the quadratic domain given by (9). 
 

H2. The nonlinear vector function    is 

Lipchitz bounded i. e.:   e    . 

 

H3. It is considered that     X ,  where   is 

an upper bound. 
 
Proposition 1. For system (7) the following control 
U is considered: 
 

   wsp
w

2sp1 xxCgxxCgU 
      

(10) 

 
then U is able to provide semi-global stabilization 
to system (7). 
 
Sketch of proof of Proposition 1. 
 
Taking into account the above assumptions and 
applying the triangle inequality, the following 
expression can be obtained: 
 
 
 
 
 
 
 
 
 
 
 

(9) 
     0,,X

X

Ψ
,XUXΔ

X

Ψ
212

2

1 





 

   

 

  ww
21

ww
21 eCgeCgΛeCgeCgeΛe 



   
(11) 
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Considering a scalar element i of the above vector 
differential inequality and employing the equality: 

 eesigne   , the following equation is obtained: 

 
Therefore, after algebraic manipulations, the 
following differential inequality is generated: 
 

w

ii2ii1i eλeλe 


                                        
(13) 

 
Where: 
 

   
















i

ii1
1i

esign

esignCgΛ
λ


 

 

and   
   














i

w
ii

w
2

2i

esign

esignCg
λ


       

 
To solve the above inequality, consider the change 
of variable: 
 

1w,e
w1

ii                                           (15) 

 
Thus 
 

..,00

00

eieif

and

eif

ii

ii








 

 

0
oddw0,e

0e
i

i

i 











  

 
 
Here after we consider  

1,,0   woddwZwwithei  . 

 
 

 
 
 
 
 
Considering that inequality (12) is a Bernoulli type 
differential inequality and taking into account the 
change of variable (15), the next first order 
ordinary differential inequality is generated: 
 

   
i2ii1i λw1λw1 




             

(17) 

 
By solving the above: 
 

      tλ1wexp1
λ

λ
tλ1wexp

i1

i1

i2

i1i0i 

 
                                                            (18) 

  

For   tt  
 

i1

i2
i

λ

λ


                                                           

(19) 

 
To get back to the original variable (regulation 
error): 
 

 
  1w,

)sign(eCg

)sign(eCgΛ

λ

λ
e

1w

1

q

ii

w
2

ii1
1w

1

i2

i1
i 









 





















 
                                                               (20) 

 

Defining the maximum error as ii ee max  . it can 

be concluded that )0(Be  .2 

 
Remarks: 
 
Note that the estimation error can be diminished as 

desired, considering 2g   large enough or 

considering   11

 iCg   , both considerations 

can be used as tuning rules guidelines; besides, as 
w increases, the regulation error is diminished as 
shown in Equation (20). 
 

    w

i

w

ii
w

2iii1ii eesign)C(geesign)Cg(Λeesign 











      

(14) 

  (12) 

(16) 
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5. Numerical experiments and results 
 
Firstly, the performance of the experimental kinetic 
model is shown in Figure 1, where an adequate 
performance can be observed. On the other hand, 
several numerical simulations were carried out in 
order to show the performance of the proposed 
methodology. The mathematical model of the 
considered continuous bioreactor was simulated 
via Math Lab tools (23S ODE library) ®; the 
corresponding initial conditions for the sulfate, 
biomass and sulfide concentrations are 6.0 g L-1, 
1.0 g L-1 and 0.1 g L-1 , respectively. The bioreactor 
is operated in an open-loop mode from the zero 
time at 50 h when the controller is tuning up, the 
original set point is defined at 2.25 g L-1; at t = 75 
h, the set point changes to 0.36 g L-1 and, finally, at 
t = 125 h, the set point is 1.5 g L-1 of sulfate. For 
comparison purposes, several controllers were 
implemented; an ideal Input/Output linearizing 
controller (Kalafatis, et al, 2005), linear PI 
controller and the proposed methodology. The 
linear PI controller was tuned by Internal Model 
Control (IMC) guidelines (Rivera et al, 1986); the 
corresponding tuning is done via a step 
disturbance of 5% in the nominal value of the 
control input (D = 0.025 h-1), the steady-state gain 
is calculated as K = 1400 g h L-1, the characteristic 
time is   = 170 h, the time delay is   = 6 h and the 
the corresponding proportional gain is Kp = 4.857 
h-1 and integral time I = 170 h for the closed-loop 
time constant   = 35 h and the control’s gain for 
the linearizing I/O controller is   = 1.0 h-1, for the 
proposed controller the gains are selected as; g1 = 
-2.857 h-1 and g2 = 0.5 g-w+1L-w+1 h-1, considering w 
= 3. 
 
The “Integral Time-Weighted Squared Error” 
(ITSE) defined by (18) suggested by Ogunnaike 
and Ray (1994) is considered to measure the 
impact of the control error. ITSE provides the 
advantage of heavy penalization of large errors at 
long time; therefore, an adequate measure of 
resilience of the considered controllers. 
 





0

2 dtεtITSE

                              

(21) 

 
 
 

As can be observed in Figure 2, the proposed 
methodology acts almost immediately, leading the 
sulfate trajectory to the corresponding set points 
without overshots and settling times, with an 
adequate effort of the control as shown in Figure 3. 
Note that all the controllers act over reachable 
operating regions, which is feasible for a real 
implementation. Figure 4 shows the closed-loop 
behavior of the uncontrolled states (biomass and 
sulfide concentrations); as can be observed, they 
are stable trajectories; therefore, it can be 
concluded that the bioreactor is stabilizable. 
 
Figure 5 is related to a 3D phase-portrait, including 
all the trajectories of the state variables. Note that 
the trajectories remain in a bounded region. Figure 
6 shows a comparison of the performance of the 
proposed controller against other control 
structures.  As can be observed, the linear PI 
controller provides the worst performance, even 
more, the performance index (ITSE) does not 
reach a steady state value. The ideal linearizing 
I/O controller provides a satisfactory performance 
as observed because this controller cancels the 
nonlinearities of the system and imposes a closed-
loop linear behavior, leading the corresponding 
trajectory to the selected set points in an 
asymptotic and exponential way; however, note 
that the performance of the proposed controller is 
the best in comparison with the other control 
schemes, without the need for a perfect plant 
model. Figure 6 is related to the closed-loop 
behavior of the corresponding concentration 
trajectories, under different initial conditions, it can 
be observed that all of them reach the 
corresponding closed-loop steady-state. 
Furthermore, additional numerical simulations 
were done in order to show the effect of the 
polynomial degree on the proposed control 
performance. As proved in Section 3, when the 
order of the polynomial contribution increases, the 
corresponding closed-loop performance is 
improved. Figure 7 is related to the sulfate closed-
loop trajectory under several polynomial degrees 
and, finally, Figure 8 shows the corresponding 
performance index, which is in agreement with the 
expected result. 
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Figure 1. Experimental validation of the kinetic model. 
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Figure 3. Control input efforts. 
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Figure 4. Closed‐loop performance of the uncontrolled mass concentrations. 
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5. Concluding remarks 
 
In this paper, a class of nonlinear controller with 
polynomial output injection which provides semi-
global stabilization under the considered 
assumptions is proposed. The proposed controller 
is able to provide adequate performance for 
regulation and tracking purposes in a better way 
than a linearizing I/O control law does and it is able 
to avoid overshots and setting time, in comparison 
with the linear PI control. As predicted, when the 
order of the polynomial increases, a better 
performance is achieved.  No perfect knowledge of 
the model is required to design the controller which 
is a valuable feature process application. 
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