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ABSTRACT

In Markov random field (MRF) models, parameters such as internal and external reference fields are used. In this
paper, the influence of these parameters in the segmentation quality is analyzed, and it is shown that, for image
segmentation, a MRF model with a priori energy function defined by means of non-homogeneous internal and
external field has better segmentation quality than a MRF model defined only by a homogeneous internal reference
field. An analysis of the MRF models in terms of segmentation quality, computational time and tests of statistical
significance is done. Significance tests showed that the segmentations obtained with MRF model defined by means of
non-homogeneous reference fields are significant at levels of 85% and 75%.

Keywords: Image segmentation, unsupervised segmentation, Markov random field, non-homogeneous random field.

RESUMEN

En modelos de Campos Aleatorios de Markov (MRF) se emplean parametros como el campo de referencia interno y
externo. En este articulo, analizamos su influencia en la calidad de la segmentacion final, y mostramos que, para
segmentacion de imagenes, un modelo MRF con una funcion de energia definida mediante un campo de referencia
interno y uno externo no homogéneos, obtiene mejores calidades de segmentaciéon que un modelo MRF definido a
través de un solo campo de referencia interno homogéneo. El analisis de los modelos MRF es realizado en términos
de la calidad de segmentacién, tiempo computacional y pruebas de significancia estadistica. Las pruebas de
significancia mostraron que los resultados de segmentacion obtenidos con el modelo MRF definido a través de
campos de referencia no homogéneos son significativos en un nivel del 85% y 75%.

1. Introduction recognition and surface description. In all these
tasks, the segmentation results affect severely the
Image segmentation is a low-level image results of subsequent processes.

processing task that aims at partitioning an image

into homogeneous regions [1]. With exception of
trivial cases, segmentation is not a simple task
because the homogeneity concept in regions is
difficult to threat in automatic processes. In real
images, the objects that can be segmented easily
by a human could be erroneously segmented and
partitioned in a great amount of small regions by
an automatic process.

Image segmentation is important because many
high level processing tasks make use of a
segmented image, for examples: satellite image
classification in remote sensing applications,
image understanding and interpretation, object

Markov random field [2] is a probabilistic model
that has been successfully applied to problems of
image segmentation [3, 4]. MRF models provide a
convenient way of modeling spatial contextual
information among neighboring pixels. MRF
models in computer vision for image segmentation
are formulated within the Bayesian framework. The
optimal solution of a segmentation problem is
defined as the maximum a posteriori (MAP)
probability estimate, and it is computed minimizing
the posterior energy p(x]y). This energy depends
on a data likelihood model p(y|x) and a priori model
p(x) in which contextual constraints are defined.
The practical use of MRF models is largely
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ascribed to the equivalence between MRF and
Gibbs probability distributions [2, 5].

A MRF model called TS-MRF (tree-structured
Markov random field) [6, 7, 8] has been recently
used for segmentation [7, 8, 9, 10]. TS-MRF is a
recursive model with a fast optimization, capable to
split highly correlated classes. The differences
between TS-MRF model and a FLAT MRF model
are 1) TS-MRF uses a binary tree structure to carry
out the segmentation and 2) in each tree node a
binary FLAT MRF is estimated along with all its
associated parameters [6]. In the literature on MRF
model based image segmentation [3, 4, 7, 8, 9, 10,
11, 12, 13, 14], the Gibbs energy is defined by an
auto-model [5], which is a second-order energy
function that involves up to pair-site cliques. In this
energy only pair-site cliques and a homogeneous
internal reference field are used. In [15, 16] a
Texture Energy Function (TEF) for MRF models
used for image segmentation is presented. The
TEF consists of a likelihood model with Gaussian
distribution p(y|x) and a second-order energy
function with non-homogeneous internal and
external fields obtained by means of the 2-D Wold
decomposition [17]. Unlike models in literature,
where homogeneity is assumed for mathematical
and computational convenience, in this function
both fields are considered as non-homogeneous.

In this paper, we analyze the importance of non-
homogeneous reference field parameters, as in

function TEF, to obtain better image segmentation
quality. The analysis is done in terms of
segmentation  quality, tests of statistical
significance and computational time. Significance
tests showed that segmentations obtained with the
MRF model defined by means of non-
homogeneous reference fields are significant at
levels of 85% and 75%.

2. Texture Energy Function

References [15, 16] define a prior energy function
by means of a non-homogeneous auto-model. The
a priori energy function, or Gibbs energy, consists
of a second-order energy function with clique
potentials defined from texture fields obtained by
means of the 2-D Wold decomposition [17]. In 2-D
Wold decomposition, the texture image is assumed
to be a realization of a 2-D homogeneous random
field, and based on Wold decomposition, the
texture image is decomposed into a sum of two
texture fields: a structural texture field V and a
stochastic texture field W.

Therefore, the external field of a priori energy
function a5 is defined by means of a structural
texture field V and internal field of a priori energy
function B, is defined by means of a stochastic
texture field W.

Let B, be a function defined as follows:

V,(x) ={ﬁ” = |lwg—w,| if s#rands,r € C, and w,,w,, E W (1)

0

otherwise

where C; is the set of pair-site cliques of second order, ws; and w, are the gray

values at sites s and r for pixels in W.

Based on this, the a priori energy is defined by means of reference texture fields V

U(x) = Z VsXs + Z BST xx, (2)

and W as:

seC1l

s,reC2
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where xs and x, are values at sites s and r for pixels in X, 8% is obtained by (1), vs€V
and C; is the set of single-site cliques. On the other hand, the likelihood model is
defined as in [7], and finally, the posterior texture energy function TEF is defined as

B 1 _
Xuap = argmin )" |m2n2iCovel V% + 2 (v, = )" + Cov) ™ (3 — 1)

SES

1 ST
+1nZ+E szxs+ z B> xsx,

SECy

where px and Cov, are the mean and the
covariance matrices of class k respectively, y; is
the gray value in the site s, B is the band number
in the image and Z is the partition function. The
TEF is integrated within a TS-MRF model and,
contrary to models in the literature and to TS-MRF
original model, this posterior energy uses both
reference fields different from zero (vs=0,£0, B* £0)

and allows non-homogeneous sites.

VisTex

@)

S,r€Cy

3. Analysis of reference fields to improve image
segmentation

We carried out experiments to analyze the
influence of parameters such as internal and
external reference fields in segmentation quality.
Particularly, the performance of the Texture
Energy Function (TEF) proposed in [15, 16] is
evaluated. The TEF uses an a priori energy
function with non-homogeneous internal and

Figure 1. Examples of real and synthetic images.
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external fields obtained by means of the 2-D Wold
decomposition [17]. The structural component is
defined to be the external field of a priori energy
function as and the stochastic component is
defined to be the internal field of a priori energy
function 8% (Eq. 1 and 2). The function TEF is
integrated within an unsupervised flat MRF model
(MRF-FUS), and an unsupervised tree-structured
Markov random field model (TS-MRF) in order to
evaluate its performance. The function TEF is
tested on a variety of synthetic and real images.
Real images have been obtained from MIT’s
VisTex [18] and Corel [19] databases. Real images

are segmented manually to obtain the
segmentation map and quality is obtained
evaluating the percentage of mis-segmented

pixels. The synthetic images have been obtained
from [20] and synthetic noise is added. Noisy
synthetic images were produced by adding 3 kinds
of common radiometric noise on remote sensing
images [21, 22]: 1) striping (different over all
brightness of adjacent lines), 2) drop line (null scan
line) and 3) noise (dark and bright points at the
background). The first noise is simulated by
randomly selecting three lines and setting pixel
values to white (255). The second noise is
simulated by randomly selecting three lines and
setting pixel values to black (0). Finally, the third
noise is simulated by adding 0 mean Gaussian
noise to the original synthetic image.

100

Examples of real and synthetic images are shown
in Figure 1.

3.1 Sensitivity of reference fields in the
segmentation quality

First, experiments on synthetic images were
carried out in order to analyze how the values of
internal and external reference fields are sensitive
to initialization. Figure 2 shows how the
segmentation quality is influenced by the reference
fields B and/or a. The plot in Figure 2 (—°-)
represents segmentation accuracy for the case of
a flat MRF model, defined by means of an energy
function with an homogeneous internal reference
field (a=0 and B.0),) whereas the plot in Figure 2

(—+-) represents accuracy for the case of a flat
MRF model defined by means of an energy
function with homogeneous internal and external
fields (ax0 and Bx0). We can see that a slightly

change of initial values of a and 8 may cause that
final segmentation accuracy changes. In domains
where segmentation depends on very similar
object attributes, the problem complexity increases
[15, 23] and becomes desirable to increase
segmentation accuracy in few pixels because on
studies on land cover segmentation in remote
sensing applications, the final amount of mis-
segmented pixels involves km® of surface when
they are corresponded to the ground. In these

—c— beta
—— beta‘alpha

jeie]
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Segmentation accuracy

96

95

0 1 2 3

4 5 5 7 8

Initial value of alpha and beta

Figure 2. Plot of segmentation accuracy using different values of alpha and beta.

Journal of Applied Research and Technology




Reference Fields Analysis of a Markov Random Field Model to Improve Image Segmentation, E.D. Lopez-Espinoza et al., 260-273

experiments, we can see from Figure 2 that using
an a priori energy function with internal and
external fields helps to obtain better accuracy that
by using an energy function with only an internal
reference field. For example, if we considered
a=0.5 and B=0.5, a 95.2% of segmentation
accuracy is reached whereas with only 8 =0.5, the
percentage falls to 94%. Another example can be
seen with a=1.75 and B=1.75 where a 97%
segmentation accuracy is reached and a 96% with
only 8=1.75.

3.2 Tests of segmentation accuracy

The application was developed in MATLAB 7.1 to
obtain the Wold decomposition and the
segmentation using MRF models. The application
software has been executed in a computer with an
Intel Centrino processor at 1.66GHz, 1GB RAM in
memory and a Linux operating system. To carry
out segmentation using the function TEF and any
MRF model, first it is necessary to estimate the
texture reference fields V and W using Wold

decomposition. The Wold algorithm used in the
implementation can be found in [24]. The
parameters of cut frequency f,, evanescent line
number L, edge fiter and edge threshold
threshold,, necessary for the decomposition, were
manually selected and fitted to each image. An
example to obtain the harmonic component of
Wold decomposition can be seen in Figure 3 using
a cut frequency f.=11.5. Figure 4 shows an
example to obtain the evanescent component of
the same image using 2 evanescent lines Lg; the
edge filter used was Canny and edge threshold
threshold.=0.03. The structural component W is
estimated by summing the harmonic and
evanescent component as shown in Figure 5.
Finally, the stochastic component is obtained by
the remaining image (see Figure 6).

Once the Wold decomposition has been carried
out, the segmentation can be obtained using the
function TEF and the TS-MRF model (see Figure
7).

The Correct Segmentation Accuracy (CSA) is
estimated using Equation (4).

Total number of correct segmented pixels

CSA =

Total number of pixels at the image
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Figure 3. Obtaining harmonic component.
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The correct segmentation accuracy obtained with
Equation (4) for synthetic images using MRF
models is presented in Tables 1 and 2. We can
see that, for the TS-MRF/TEF model, the correct
segmentation accuracy decreases as the image is
contaminated by a greater amount of noise.
Something similar happens with the TS-MRF
original model. In the six experiments, the TS-
MRF/TEF model obtained the best results.

Figure 8 shows a visual comparison between the
segmentation obtained with MRF-FUS and the
segmentation obtained with TS-MRF/TEF. In this
image, 2 classes were defined: airplanes and sky.
We can see that the image is better segmented
using the TS-MRF/TEF model.

Figure 9 shows a visual comparison for two
images between the segmentation obtained with
MRF-FUS, MRF-FUS/TEF and TS-MRF/TEF. The
segmentation is improved, when the function TEF

9c shows how a FLAT segmentation with function
TEF is improved when both an MRF model not
FLAT (i.e. a model based in a binary tree structure)
and the function TEF are introduced.

Figure 10 shows a visual comparison for a remote
sensing image. In this case, segmentations
obtained with TS-MRF (Figure 10a) and TS-
MRF/TEF models (Figure 10b) are compared.
Table 3 shows other correct segmentation
accuracies for real images. We can see that the
segmentation accuracy is improved when the
function TEF is introduced.

Image | TS-MRF | TS-MRF/TEF
13dB 91.64 92.02
5dB 59.2 74.44
3dB 64.19 64.29

is introduced to an MRF-FUS model (see Table 1. Segmentation accuracy using TS-MRF
examples in Figure 9a and 9b). Figure and TS-MRF/TEF models for Gaussian noise.
Image TS-MRF TS-MRF/TEF
13dB + Striping + Drop line 89.32 89
5dB + Striping + Drop line 65.7 65.82
ping P 59.39 59.51

3dB + Striping + Drop line

Table 2. Segmentation accuracy using TS-MRF and TS-MRF/TEF models for Striping,
Drop line and Gaussian noise.

Figure 8. Segmentation using a) MRF-FUS, b) TS-MRF/TEF and c) original image.
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Figure 9. Segmentation using a) MRF-FUS, b) MRF-FUS/TEF, c) TS-MRF/TEF and

d) original image.

%
™~

Figure 10. Segmentation using a) TS-MRF, b) TS-MRF/TEF, c) real segmentation
obtained by means of field studies and d) original image.

Image MRF-FUS TS-MRF | TS-MRF/TEF
Image 6 52.43 64.51 64.74
Image 8 87.91 93.73 93.51
Remote sensing -- 57.05 58.39
image

Table 3. Segmentation accuracy using MRF-FUS, TS-MRF
and TS-MRF/TEF models for real images.
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3.3 Tests of statistical significance

In order to find the significance level of the results,
first the MRF-FUS model is compared against the
TS-MRF/TEF model. Afterwards, we compared the
original model TS-MRF against the TS-MRF/TEF
model. To estimate the significance level of
different observations in each sample with
homogeneous variance, the following equation
was used:

Xa = Xp
v ()
Yap | Vap
NA ~ NB

where X, and Xz denote the average of samples A
and B respectively, NA and NB are the number of
observations in A and B, respectively, and VZAB is
the variance of AB defined as

, _ (NA=1)y; + (NB— 1)y}
Yae =" (NA— 1)+ (NB—1) ©)

where y?4 and y% are the variances of samples A
and B, respectively.

First, the significance level for MRF-FUS and TS-
MRF/TEF models is obtained. Taking into account
the segmentation accuracy of the previous section,
and considering the TS-MRF/TEF model as
sample A and the MRF-FUS model as sample B,
we obtained the statistics for each sample (see
Table 4). In order to evaluate homogeneity of
variances, we divided the largest variance (sample
B) by the smallest variance (sample A) to give an
F-ratio. In this case a value of 1.11 is computed.
Now, searching in an F-Table using the numerator
degrees of freedom (NB-1), and the denominator
degrees of freedom (NA-1), a value of 3.074 is
found. Because the computed value is less than
the tabled value, we can assume homogeneity of
variances. Using Equation 4 in this experiment, a
value of 1.21018 is computed. Searching in a t-
table with (NA —-1) + (NB -1) degrees of freedom, a
value of 1.0880 is obtained at a significance level
of 85%. We can see that this value is less than the

tabled value t; therefore, we can assume that the

segmentation  differences  were  statistically
significant.
Sample A Sample B
N 8 4
Z 679.85 289.47
Xi
Average X 84.9812 72.3675
Z X2 59388.7655 21716.9215
L
y? 230.609 256.2338
Standard 15.1858 16.0073
eviation

Table 4. Statistics for TS-MRF/TEF
and MRF-FUS models.

On the other hand, in Table 5, statistics to obtain
the significance level between TS-MRF and TS-
MRF/TEF models are shown. In this test, the TS-
MRF model is considered as sample A and the TS-
MRF/TEF model is considered as sample B. The
computed value Fis 1.15, searching in the F-Table
using as numerator 10 degrees of freedom, and as
denominator 13 degrees of freedom, we found a
value of 2.138. Because the computed value is
less than the tabled value, we can assume
homogeneity of variances. Using Equation 4, a
value of 0.79104 is computed. Searching in a t-
Table with 23 degrees of freedom, a value of
0.6853 is obtained at a significance level of 75%.
This value is less than the tabled value t; therefore,
we can assume that the segmentation differences
were statistically significant

Sample A Sample B

N 11 14
X; 830.01 1125.37
Average X 75.4555 80.3836

Z x? 65210.6731 93378.2385
y? 258.1891 224.383
Standard 16.0683 14.9794
deviation

Table 5: Statistics for TS-MRF/TEF and TS-MRF models.
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Figure 11. CPU time.
3.4 Computational time analysis 4. Conclusion
Figure 11 shows the CPU time for some test This paper has analyzed the influence of

images. In general, the CPU time for the MRF-FUS
model is less than the CPU time for the TS-MRF
and TS-MRF/TEF models due to the fact that in
these models the reference field parameter
estimations are not done, and the internal
reference field B is set to 0.9 because this value
has been found to provide satisfactory results in
the experiments. On the other hand, the CPU time
for the TS-MRF/TEF model is less than the CPU

time for the TS-MRF model in 12 of 14
segmentations. In  both models, parameter
estimations are done. TS-MRF uses PML

(Pseudo-likelihood) [2, 25] whereas TS-MRF/TEF
uses Wold decomposition [17]. The non-
homogeneity of reference fields did not affect the
CPU time of the model. Average CPU time for
segmentations using an MRF-FUS model is one
minute, for the TS-MRF/TEF model is two minutes
and for the TS-MREF is three minutes.

parameters as internal and external reference
fields of MRF models in the segmentation quality.
Experiments are done on synthetic images to show
that an a priori energy function with internal and
external fields, as in texture energy function TEF,
helps to obtain better segmentation accuracy than
an energy function with only an internal reference
field. Experiments with synthetic and real images
show that the model that uses the function TEF
(TS-MRF/TEF) improves the segmentation quality,
and statistical significance tests showed that the
segmentations obtained with this model are
significant at the 85% level in comparison with a
flat MRF model, and are significant at the 75%
level in comparison with a TS-MRF model. In
conclusion, we can say that differences between
the obtained segmentations are caused by the
introduction of the function TEF. In addition, the
CPU time for TS-MRF/TEF model is comparable
with the CPU time for TS-MRF.
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