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ABSTRACT 
The vibration behavior and the energy exchange among the normal modes of a clamped-free self-excited elastic 
beam are analyzed in this work. To model this kind of beam, the damping term of a van der Pol oscillator is directly 
added to the equation of a linear elastic beam, yielding a single nonlinear partial differential equation. To solve this 
equation, a spectral method is employed. Three vibration modes are considered in the analysis, and the values of the 
self-exciting constant are varied in order to cover from linear to nonlinear vibration behavior. Multiple frequencies of 
the nonlinear beam are determined through the power spectral density of the beam free-end time series. Given that 
this relatively simple model mimics at least in a qualitative way some key issues of the fluid-structure problem, it could 
be potentially useful for fatigue studies and vibration analysis of rotating blades in turbomachinery. 
 
Keywords: Beam vibration, fluid-structure problem, modal interaction, self-excited beam, spectral method, turbine 
blade vibration, van der Pol oscillator. 
 
 
RESUMEN 
En este trabajo se analizan el comportamiento bajo vibración y el intercambio de energía entre los modos normales 
de una barra elástica autoexcitada con un extremo fijo y el otro libre. Para modelar esta clase de barra se le agrega 
directamente el término de amortiguamiento de un oscilador van der Pol a la ecuación de una barra elástica lineal, 
obteniéndose una sola ecuación diferencial parcial. Para resolver esta ecuación se usa el método espectral. En el 
análisis se consideran tres modos de vibración, y los valores de la constante de auto-excitación se varían a modo de 
cubrir un comportamiento a la vibración desde lineal hasta no lineal. Las múltiples frecuencias de la barra no lineal se 
determinan mediante el espectro de potencias de las series de tiempo del extremo libre. Dado que este modelo 
relativamente simple reproduce, al menos cualitativamente, algunos aspectos clave del problema fluido-estructura, 
puede ser potencialmente útil para estudios de fatiga y análisis de la vibración de álabes rotatorios en 
turbomaquinaria. 
 
 
1. Introduction 
 
Vibration of turbine blades in turbomachinery may 
cause failure by fatigue [1,2]. Experimental 
analysis of blade vibration is very difficult because 
sensors are intrusive and interfere with machine 
operation. Also, noncontact measurement 
techniques have been proposed; however, 
frequently, they are expensive [3]. On the other 
hand, numerical studies of blade vibration require 
a lot of computational power given that the fluid-
structure problem must be solved [4-6]. From a 
formal point of view, the fluid-structure problem 
requires the numerical solution of the Navier-
Stokes equations coupled with the equations of 
elasticity for the structure using Direct Numerical 
Simulation and Finite Element techniques, 

respectively; however, both approaches can be 
very expensive from a computational point of view 
[7,8]. Then, a simplified model which simulates the 
fluid-structure interaction of a turbine blade, but at 
the same time not be very computationally 
demanding, is required. 
 
Frequently turbine blades are represented in the 
literature as elastic clamped-free beams, both in 
numerical [9-14] and experimental [15] studies. 
Self-excitation can be taken into account by 
introducing a nonlinear damping term in the 
classical linear beam equation to simulate the fluid-
structure interaction in turbine blades [13]. This is 
justified by fact that the natural frequency of the 
self-excited oscillator is proportional to the free 
stream velocity and the structure motion interacts 
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with the oscillator [16]. The van der Pol oscillator is 
one that has been used in the literature: in [17] it is 
suggested that a van der Pol type oscillator can be 
used to represent the time-varying forces on a 
cylinder due to vortex shedding. In [18] this 
oscillator is used for the study of an aeroelastic 
system possessing limit cycle oscillations. Also, in 
[19] a van der Pol-based model that captures 
many of the features seen in experimental results 
of an elastically mounted cylinder exposed to wind 
is introduced. Sometimes, self-excitation in fluid-
structure problems is considered by introducing an 
additional van der Pol equation, which is named in 
the literature as a wake-oscillator model [16,20]. 
Both the beam equation and the wake-oscillator 
model are coupled through the acceleration term 
and they are simultaneously solved using 
numerical techniques, i.e. finite differences [6] and 
collocation [21]. Unfortunately, wake-oscillator 
models are best suited for long flexible slender 
structures exposed to vortex induced vibration, and 
therefore they have been mainly applied in the 
ocean engineering field in structures such as 
mooring cables and oil risers [6,22]. 
 
 
In this work the transient and long-term vibration 
behavior and the energy exchange among modes 
of a clamped-free self-excited elastic beam are 
analyzed. A van der Pol self-exciting term is 
directly added to the equation of a linear beam to 
represent through a single partial differential 
equation the fluid-structure interaction problem and 
model nonlinearities of a turbine blade. The 
parameter that indicates the strength of the 
damping is the self-excitation constant, A. By 
means of the spectral method, the partial 
differential equation is transformed into a set of 
coupled nonlinear ordinary differential equations 
which are numerically solved. Given that high 
vibration amplitudes associated to low frequencies 
are significant for failure by fatigue [23], to simplify 
the computational task and the analysis of the 
modal interaction, just three vibration modes are 
considered. Values of A are varied from 0 to 10 in 
order to study from linear to nonlinear the vibration 
behavior of the self-excited beam. For AЄ[0,0.33], 
a single vibration frequency is present and the 
beam remains vibrating in the initially excited 
mode, i.e. no energy transfer between modes 
arises and the beam behaves in a linear fashion. 
For A>0.33 multiple frequencies are present and 

the vibration behavior is nonlinear. In this case the 
power spectral density based on the backward 
Discrete Fourier Transform of the beam free-end 
time series is employed to determine the dominant 
frequency. 
 
2. Mathematical model 
 
Formally, tackling the fluid-structure problem 
requires the numerical solution of the Navier-
Stokes equations [6-8]. This procedure results 
expensive from a computational point of view; 
therefore, new less computationally expensive 
models to study fluid-structure interaction in turbine 
blade and elastic beam vibration problems are 
needed. 
 
To simplify the vibration analysis, turbine blades 
are frequently modeled in the literature as elastic 
clamped-free beams in numerical [9-14] and 
experimental [15] studies. The required fluid-
structure interaction is taken into account by 
introducing a self-exciting function, such as the 
given by the van der Pol oscillator, in the classical 
linear beam equation. This is justified by fact that 
the natural frequency of the self-excited oscillator 
is proportional to the free stream velocity and the 
structure motion interacts with the oscillator [16]. 
Besides, a van der Pol type oscillator can be used 
to represent the time-varying forces on a cylinder 
due to vortex shedding [17]. 
 
The transverse motion of an elastic beam of 
homogeneous section and properties is governed 
by Equation [24]: 
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where x is the distance from the root, y(x,t) is the 
transverse displacement, t is time, and E, I, ρ and 
Ac are the Young's modulus, the moment of inertia, 
the mass density per unit volume, and the cross 
sectional area of the beam, respectively. Defining 
the non-dimensional variables X=x/L, Y=y/L, τ= 
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ta/L2, where L is the beam length, the following is 
obtained: 
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The van der Pol equation is a well known second 
order ordinary differential equation used in 1928 by 
B. van der Pol and J. van der Mark [25,26] to 
represent, by first time, non-electrical nonlinear 
oscillators. As time has elapsed, it has been widely 
used in many disciplines to model any kind of 
relaxation oscillator. In this work the following 
version of the van der Pol equation is proposed: 
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where A is the self-exciting constant, which is a 
parameter that measures the strength of the 
nonlinear damping [27]. Besides, self-sustained 
oscillations are provided by the term Y2-1. 
 
In this work the nonlinear term A(Y2-1) of the van 
der Pol equation is directly added into the linear 
non-dimensional beam equation to model the self-
sustained oscillations and include the fluid-
structure interaction. As stated above, this is 
justified by the fact that the van der Pol oscillator 
has been used in the literature for a long time to 
represent the time-varying forces on a cylinder due 
to vortex shedding [17,19]. Then, by adding the 
nonlinear damping and the self-sustaining terms of 
Eq. (4) into Eq. (3), a single partial differential 
equation arises: 
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Eq. (5) supposedly retains two key issues of the 
fluid-structure problem: the nonlinear fluid-structure 
interaction and the elastic response of the 
structure. These issues are responsible of the 
complex vibration behavior of rotating blades in 
turbomachinery. 
 
 

3. Boundary conditions 
 
A clamped-free beam, self-excited or not, is a 
beam that is only supported on one of its ends 
while the other end is free. Mathematically, for this 
kind of beam the boundary conditions are as 
follows [24]. For the clamped end, X=0: 
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and for the free end, X=L: 
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4. Spectral solution 
 
To determine the natural frequencies and normal 
vibration modes of the self-excited beam, the 
spectral method is employed. This method is 
based on the decomposition of a partial differential 
equation into an infinite summation of two series of 
orthogonal functions [28]. Then, the dimensionless 
transverse displacement Y(τ,X) of the beam can 
be expressed in terms of the natural vibration 
modes as [29]  
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where ai(τ) is a time dependent coefficient and 
Φi(X) is the ith normal vibration mode of the beam. 
The assumption of orthogonality requires that [24] 
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where βi is the eigenvalue corresponding to the ith mode, and Ci1, Ci2, Ci3 and Ci4 are 
constants associated to the ith mode, whose values are determined from the 
boundary conditions. Moreover, it can be verified that Eq. (12) satisfies the 
ortoghonality condition given by Eq. (11) [24]. The following relationship arises when 
Eq. (12) is four times derived respect to X: 
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where Φi'''' is the fourth derivative of Φi respect to X.Substituting Eq. (10) into Eq. (5) 
gives 
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where ai' and ai'' are the first and the second time derivatives of ai, respectively, and n 
is the number of vibration modes considered. Expanding and rearranging the above 
equation yields 
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Substituting Eq. (13) into Eq. (15), taking inner product against Φj and rearranging it is 
obtained: 
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Eq. (16) represents a set of n coupled second order nonlinear ordinary differential 
equations. Coefficients of such equations are given by 
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A solution for Φi(X) of Eq.(10) for the nonlinear beam in terms of a combination of 
sines, cosines, hyperbolic sines and hyperbolic cosines functions  can be assumed of 
the form [24] 
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5. Eigenvalues and eigenfrequencies 
 
Eigenvalues βi corresponding to the ith mode can 
be determined by numerically solving the following 
expression [24] 
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and the angular eigenfrequencies ωi associated to 
the corresponding eigenvalues are estimated from 
[24]  
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Substituting Eq. (12) into the boundary conditions 
in X=0 given by Eqs. (6-7) gives 
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Considering the boundary conditions in X=L 
defined by Eqs. (8-9), the following expression for 
Ci2 is obtained 
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6. Results and discussion 
 
To simplify the computational task and the analysis 
of the modal interaction, just three vibration modes 
are considered in Eq. (10). From a more practical 
point of view, this is justified by the fact that the  
first modes have low frequencies and high 
vibration amplitudes, factors which are significant 
in failure by fatigue of turbine blades [23]. 
 
Eq. (21) is numerically solved for the eigenvalues 
βi using the first order Newton-Raphson procedure. 
Eigenfrequencies ωi associated to the  eigenvalues 
are determined from Eq. (22). Table 1 shows the 
values of the eigenvalues and their corresponding 
eigenfrequencies for the first three vibration modes 
of the self-excited beam assuming the 
dimensionless value L=1. By fixing Ci1=1 and 
calculating Ci2 from Eqs. (25) and (26), values of 
Ci3 and Ci4 are easily determined from Eqs. (23) 
and (24). In Table 2 the values of the above 
constants are shown. The three natural vibration 
modes are calculated from Eq. (12) using the 
values of βi and Ci from Tables 1 and Table 2, 
respectively. The time dependent coefficients ai of 
Eq. (10) are obtained by numerically solving Eq. 
(16) through the classical Fourth Order Runge-
Kutta method using a dimensionless time step of 
∆τ =10-6. 
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ith Mode Βi Fi, Hz 

1 1.8751 0.5596 

2 4.6941 3.5063 

3 7.8548 9.8232 

Table 1. Eigenvalues  and  eigenfrequencies 
of the considered vibration modes. 
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Once ai(τ) and Φi(X) are known, the beam 
dimensionless transverse displacement Y(τ,X) is 
determined from Eq. (10). A dimensionless 
integration time of 1000 is considered for the long-
term runs given that the numerical simulations 
showed that in this time the vibration pattern of the 
beam remains stable. A tracking point is located at 
the free-end of the beam corresponding to X=L=1. 
Through a power spectral density analysis based 
on the backward Discrete Fourier Transform, 
singles or multiple frequencies of the free-end time 
series are determined. 
 
6.1 Linear beam 
 
For A=0, one has the classical and well-known 
linear beam whose vibration modes are uncoupled 
and no energy transfer is present among natural 
vibration modes. The self-excited beam remains 
vibrating, in transient or steady state, in the mode 
initially excited. For AЄ[0,0.27], the self-excited 
beam still behaves as a linear one; however, for 

 
 
 
 
 
 
 
 
 
AЄ[028,0.33], some energy transfer among modes 
is observed when the first mode is excited. This 
transfer is demonstrated through the presence of 
two frequencies of the free-end time series of Fig. 
1 for A=0.28, where it can be appreciated that the 
beam vibration consists of a high frequency 
component riding over a low frequency 
component. Besides, Fig. 1 shows a strongly 
modulated interaction between widely spaced 
modes, i.e. the first and the third modes. This 
behavior has been reported in actual beams with 
external excitation [23]. The dominance of a 
frequency of 0.56 Hz belonging to the first mode 
becomes evident in the power spectrum of the 
above time series shown in Fig. 2, where a small 
peak of 9.82 Hz, which corresponds to the third 
vibration mode, is present. This kind of power 
spectrum is reported in actual steam turbine 
blades [2]. In spite of the presence of an additional 
frequency, for the self-excited beam the long-term 
dominant frequency corresponds to the initially 
excited mode, i.e. the first one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ith Mode Ci1 Ci2 Ci3 Ci4 

1 1.0000 -1.3622 -1.0000 1.3622 
2 1.0000 -0.9819 -1.0000 0.9819 
3 1.0000 -1.0008 -1.0000 1.0008 

 
Table 2. Numerical values of the constants of Eq. (12).

Figure 1. Time series for A=0.28. The first mode is initially excited. 
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When the second or the third modes are excited 
for AЄ[0.28,0.33], the self-excited beam remains 
vibrating in the corresponding mode, and therefore 
the beam behaves in a linear fashion. 
 
6.2  Nonlinear beam 
 
Transfer of energy among vibration modes is 
characteristic of nonlinear beams [23]. For values 
of the self-exciting constant beyond a critical value, 
the considered nonlinear self-excited beam 
vibrates in a complex way. This behavior becomes 
apparent in the form of vibration attractors with 
multiple frequencies. Numerical results show that 
the dominant frequency of a particular attractor 
depends on the value of the self-exciting constant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and on the initially excited mode. Due to the 
energy transfer among modes, the long-term 
dominant frequency does not always correspond to 
the mode initially excited. 
 
In Fig. 3 the dominant frequencies of the self-
excited beam at long times for AЄ[0,10] when each 
vibration mode is separately excited are shown. 
Similarly to the case of small values of the self-
exciting constant, Fig. 3 shows that the nonlinear 
self-excited beam resembles a linear one when the 
second and the third modes are individually 
excited. On the contrary, a rich nonlinear long-term 
behavior is exhibited by the self-excited beam 
when just the first mode is excited. The following 
results and discussion correspond to this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Power spectrum corresponding to the time series of Fig. 1. 

Figure 3. Beam dominant frequencies for long times as a function of the self-exciting constant. Excited 
vibration modes: thick line, first mode; dotted line, second mode; dashed line, third mode. 
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For AЄ[0.34,5.76], energy is transferred from the 
first mode to the third one, and the attractor has a 
single frequency of 9.82 Hz. The free-end time 
series and the power spectral density analysis 
indicate that the above frequency is a single one; 
therefore, no other frequency appears for the 
aforementioned range of values of A. Fig. 3 shows 
that for AЄ[5.77,6.21], the attractor frequency 
corresponds to the frequency of the second mode, 
i.e. 3.50 Hz. This implies that energy is transferred 
from the first to the second mode.  
 
A very complex long time nonlinear behavior is 
exhibited by the self-excited beam for AЄ[6.22,10]. 
Fig. 3 indicates that for this range of values of A 
the dominant frequency of the attractor 

 
 
corresponds to the frequency of the first mode; 
however, a closer look reveals a quasiperiodic 
behavior and the presence of multiple frequencies, 
as can be observed in Figs. 4 and 5, which show 
the free-end time series and the power spectrum 
for A=10, respectively. Power spectrum of Fig. 5 
unveils the existence of several frequencies for 
A=10, being the dominant one that corresponding 
to the first vibration mode. 
 
The aforementioned complex vibration behavior 
detected in this work for nonlinear self-excited 
beams is corroborated, qualitatively at least, by the 
fact that actual turbine and compressor blades 
exhibit multimodal interaction, the presence of 
multiple vibration frequencies and power spectral 
densities similar to that shown in Fig. 5 [30-32]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Time series for A=10. The first mode is initially excited. 
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6.3  Energy transfer among modes 
 
The transfer of energy among vibration modes 
occurs in nonlinear beams, such as the self-
excited beam proposed in this work. The transition 
among modes is observed in the free-end time 
series of Figs. 6 and 7 for A=3 and A=6, 
respectively, in which just the first mode is excited. 
In both cases this transition occurs from a high 
amplitude-low frequency mode to a low amplitude-
high frequency one. For A=3, around 115 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dimensionless time units are required to complete 
the transition, whereas 38 time units are required 
for A=6. This suggests that, at least for the two 
cases considered, dynamics is faster as the value 
of the self-exciting constant is increased. 
Experimental evidence of the energy transfer 
among modes, deduced from the time series of 
Figs. 6 and 7, has been reported in beams with 
external excitation [23,33]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Power spectrum corresponding to Fig. 4.

Figure 6. Transition among modes for A=3. The first mode is initially excited. 
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7. Conclusions 
 
A model of a clampled-free elastic beam with a 
directly added van der Pol self-exciting term to 
simulate the vibration behavior of a turbine blade is 
proposed. Regions of linear and nonlinear vibration 
behavior of the beam are found in terms of values 
of the self-exciting constant. In the nonlinear 
region, multiple frequencies in the long term 
vibration behavior are detected. Transfer of energy 
from a low frequency mode to a high frequency 
one is found. The dynamics of the above transition 
is faster as the value of the self-exciting constant is 
increased. 
 
From a qualitative point of view, the agreement 
between the obtained results and experimental 
results reported in the literature for actual beams 
and turbine blades is good; therefore, it can be 
concluded that the proposed model is potentially 
useful for fatigue studies and vibration analysis of 
blades in turbomachinery. 
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