
 

 

Vol.8 No.3 December 2010 416 

  
 
 

A Theoretical Framework for Modeling Asymmetric, Nonpositive 
Definite and Nonuniform Distance Functions on Rn 
 
H. Sánchez-Larios*1, S. Guillén-Burguete2 
 
1,2 Instituto de Ingeniería, Universidad Nacional Autónoma de México 
Edificio 12 del Instituto de Ingeniería, Circuito Exterior,  
Ciudad Universitaria, 04360 México, D. F 
*herica.sanchez@ciencias.unam.mx 
 
 
ABSTRACT 
In this paper, we give theoretical foundations for modeling distance functions on the usual Euclidean space Rn, where 
distance may refer to physical kilometers, liters of fuel consumed, time spent in traveling, or transportation cost. In our 
approach, a distance function d is derived from a function F0 called the fundamental function of d. Our distance 
functions, unlike metrics, can be asymmetric and non-positive definite, and unlike the Lp norms, they can be non-
uniform. We illustrate our theoretical framework by modeling an asymmetric and non-uniform distance function on R2 
which can take negative values. 
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RESUMEN 
En este artículo se dan bases teóricas para modelar funciones distancia sobre el espacio euclidiano usual Rn, donde 
distancia se puede referir a kilómetros, litros de combustible consumidos, tiempo de recorrido, o costo de transporte. 
En nuestro enfoque, una función distancia d se obtiene a partir de una función F0 llamada la función fundamental de 
d. Estas funciones distancia, a diferencia de las métricas, pueden ser asimétricas y no positivas definidas, y a 
diferencia de las normas Lp, pueden ser no uniformes. Se ilustra el marco teórico propuesto a través del modelado de 
una función distancia asimétrica y no uniforme sobre R2 la cual puede tomar valores negativos. 
 

 
1. Introduction 
 
Distance functions are involved in a wide variety of 
applications such as continuous location problems, 
distribution and transportation planning, 
geographical information systems, and robotics; 
see [1,2] and references therein for a more detailed 
description of applications of distance functions. In 
most of the applications, the distance functions 
have been modeled by way of weighted sum of Lp 
norms (see, e.g., [3,4,5,6]). By definition, norms are 
symmetric, non-negative and uniform and hence 
the derived distance functions also have these 
properties. 
 
In several real situations, symmetry, non-negativity 
and uniformity are violated. Real-world distances 
are usually more complicated than the distances 
determined only by the coordinates of points; in the 
former there are obstacles (such as rush-hour 
traffic, rivers, lakes or mountains) and favorable 
conditions (e.g., shortcuts, winds, flows, and  
 

 
 
slopes) which increase or decrease the distances,  
respectively. Therefore, if we want a really close 
description of real world distances, much more 
complex distance notions have to be considered. 
 
From a theoretical framework proposed by 
Sánchez-Larios H and Guillén-Burguete S [7] on 
distance functions defined on manifolds, in this 
paper we develop theoretical foundations for 
modeling asymmetric, non-positive definite and 
non-uniform distance functions on Rn (the space 
on which many engineering problems involving 
distances are formulated). In our approach, a 
distance function d is defined in terms of a function 
F0 (called the fundamental function of d) as follows: 

d(a, b) is the F0 –length, 0 ( ( ), ( )) ,F s s ds x x of the 

“shortest path” connecting a to b. A distance 
function obtained in this way satisfies the triangle 
inequality and the identity property (d(a, a) = 0); a 
distance function satisfying these two properties is 



 

A Theoretical Framework for Modeling Asymmetric, Nonpositive Definite and Nonuniform Distance Functions on Rn, H. Sánchez‐Larios  et al., 416‐425 

Journal of Applied Research and Technology 417

called a premetric. Here, distance may refer to 
physical kilometers, liters of fuel consumed, time 
spent in traveling, or transportation cost. 
 
The organization of the paper is as follows. In Section 
2, we give some concepts (such as distance function, 
arc length associated to a distance function, geodesic 
arc, and arc induced by a distance function) required 
to prove some theorems useful for modeling distance 
functions on Rn.  
 
Some properties of a distance function (such as 
uniformity and isotropy) are applicable only when 
the manifold on which the distance function is 
defined is Rn. In Section 3, we show that any of 
these properties of a distance function is implied 
by the corresponding property of its respective 
fundamental function, e.g., we show that if a 
fundamental function is uniform (resp. isotropic) 
then the corresponding distance function remains 
invariant under translation (resp. invariant under 
rotation). In practice, a distance function can be 
obtained by summing several simple distance 
functions; from this, we prove that if an arc is a 
geodesic arc of several premetrics on Rn, then this 
arc is a geodesic arc of the sum of these 
premetrics.  
 
In Section 4, we first describe a fundamental 
function F0 and its premetric d as formulated by [7]. 
Function F0 is obtained from a simple physical 
model consisting of an object sliding along a path 
on a smooth surface f embedded in the Euclidean 
space R3. F0 is determined by the surface f. Next, 
considering that a half-sphere is one of the 
simplest nonplanar surfaces, in this section 
attention is given to the problem of modeling a 
premetric on this surface, as a guide to 
generalization of the findings to more complex 
surfaces. Then, we develop the fundamental 
function F0 for this surface and obtain the 
corresponding premetric which is asymmetric, non-
uniform, and can take negative values.  
 
2. Basic concepts 
 
In this section, we give basic concepts, such as 
distance function, one-sided directional derivative 
of a distance function, arc length associated to a 
distance function, arc induced by a distance 
function, and geodesic arc. Also, we show some 
theorems needed for modeling distance functions.  

The following properties PX, X  1,,9 allow us to 
characterize binary functions. A binary function d 
satisfies the property PX if for all a, b, c, u, vRn:  
 
P1. d(a, b) ≤ d(a, c) + d(c, b)   (Triangle inequality) 
P2. d(a, a) = 0             (Identity) 
P3. d(a, b)  0             (Non-negativity) 
P4. d(a, b) = d(b, a)            (Symmetry) 
P5. d(a, b) = 0  a = b            (Definiteness) 
P6. d(a + c, b + c)  d(a, b)      (Uniformity) 
P7. d(a, b) =  d(b, a)            (Antisymmetry) 
P8. d(a, b) = d(a, b)  
for all R                          (Positive homogeneity) 
P9. d(a, a +v) = d(a, a + u) for all   0 small 
enough                          (Isotropy) 
 
According to [7], a distance function d on Rn is a 
binary function d: Rn  Rn  R satisfying the identity 
property (P2), and a premetric is a distance function 
d on Rn satisfying the triangle inequality (P1).  
 
The following theorem can be proved directly. It 
will allow us to construct distance functions from 
positive linear combinations of distance functions.  
 
Theorem 1 (Properties PX are closed under 
positive linear combinations). Let d1,,dm be m 
distance functions on Rn satisfying the property PX 
(X  1,,9), and let k1,,km be m non-negative 
real numbers. Then the distance function on Rn 
defined by d  k1d1  kmdm satisfies the same 
property PX. 
 
A path on Rn from aRn to bRn is a continuous 
function x: a, b  Rn where x(a)  a and x(b)  b, 
and a  b are real numbers. The directed image 
C(a,b)  Rn of a path on Rn from aRn to bRn, x: 
a, b  Rn, is called a directed arc on Rn 
connecting a and b. A parametrization of an arc 
C(a,b) is a path x: a, b  Rn whose image is 
C(a,b). A parametrization of an arc is smooth if the 
derivative of x: a, b  Rn is both continuous and 
not equal to zero for any ta, b. An arc is said to 
be a smooth arc if it is possible to find a smooth 
parametrization of C(a,b). Throughout this paper, 
an arc will mean a smooth directed arc; the set of 
all the smooth arcs on Rn is denoted by . By 
simplicity, the set of all the smooth arcs from a to b 
and the set of their smooth parametrizations are 
denoted by a,b]. 
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Let d: Rn  Rn  R be a distance function on Rn. 
The one-sided directional derivative F: Rn  
Rn\0 R of the distance function d at xRn in 
the direction vRn\0 emanating from x is defined 
to be the limit 
 

0

( , ) ( , )
( , ) lim

h

d h d
F

h

 


x x v x x
x v            (1) 

 
if it exists. By the identity property of d, (1) 
becomes 

0

( , )
( , ) lim .

h

d h
F

h




x x v
x v                    (2)  

 

The function F: Rn  Rn\0 R given by (2) 
evaluated at the point x in the direction v will be 
denoted by F(x, v), and the function F along a path 
x: a, b Rn will be denoted by ( ( ), ( ))F s sx x  and 

it is given by 
    

0

0

( ( ), ( ) ( ))
( ( ), ( )) lim

( ( ), ( ))
                    lim ,

h

h

d s s h s
F s s

h
d s s h

h















x x x
x x

x x




                    

 
                                     (3) 

   
where ( )sx  is the derivative of x(·) at s. 
 
One can interpret the value of F(x, x + dx) as the 
infinitesimal length of a line element going from the 
point xRn to another point x + dx close to x on 
the direction dxRn emanating from x. Hence, the 
length of an arc is determined by integrating F. 
Then we have the following theorem.  
 
Theorem 2 (Length of an arc with respect to a 
distance function d). The arc length with respect to 
a distance function d: Rn  Rn R is given by 
 

( ( , )) ( ( ), ( )) ,       ( , )
b

a

l C F s s ds for all C  a b x x a b

(4) 
 

if and only if F: Rn  Rn \0 R is the one-sided 
directional derivative  of  d, and it is continuous 
where x:a, b Rn is a smooth parametrization of 
the arc C(a,b). 

There are many practical cases in which the 
foregoing integral arises: (a) Certain physical 
examples where x(s) stands for position and ( )sx  

for velocity; in these cases, F0 would have the 
meaning of speed, s would play the role of time, and 
then the above integral measures distance traveled; 
(b) Optics problems where in an anisotropic medium 
the speed of light depends on its direction of travel 
(see, e.g., [8]). In this context, the speed of an 
object, in general, depends on its position and on its 
direction of travel; (c) Facility location problems 
formulated with a geometrical approach, see [9]. 
 
We call the length of the arc C(a,b) with respect to a 
distance function d the d-length of C(a,b). If the d-
length of an arc C(a,b) is finite, then C(a,b) is said to 
be d-rectifiable. It is immediate that all the subarcs 
of any subdivision of a d-rectifiable arc C(a,b) are d-
rectifiable, and that the sum of their d-lengths is 
equal to the d-length of C(a,b). 
 
A function F: Rn  Rn \0 R is convex at a point 
xRn if F(x, v  (1  ) w)  F(x, v)  (1  ) F(x, 
w), for all v, wRn \0, 0,1. Considering that 
the function F(x, v) is positively homogeneous of 
degree one in v, F is convex at x if and only if F(x, v 
 w)  F(x, v)  F(x, w), for all v, wRn \0. 
Function F is said to be a convex function if F is 
convex at all xRn. 
 
Theorem 3 (Properties of the one-sided 
directional derivative F of a distance function d). 
Let d: Rn  Rn  R be a distance function, and let 
F : R

n  Rn \0  R be the one-sided directional 
derivative F of d. Then we have: 
 
(a) The function F is positively homogeneous of 
degree one in v, i.e., F(x, v)  F(x, v) for all   0 
and for all xRn and vRn \0. 
 
(b) For n  2 ( ( ), ( ))F s sx x  does not depend 

explicitly on the parameter s of the path. 
 
(c) The d-length of a d-rectifiable arc does not 
depend on the parametric representation of the arc. 
 
(d) If d satisfies the triangle inequality, then F is 
convex, i.e., F(x, v  (1  ) w)  F(x, v)  (1  
) F(x, w) for all 0, 1. 
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Proof: 
(a) For   0, 
 

 

0 0

β 0

( , α ) ( , α )
( ,α ) lim α lim   

α
( , β )

             α lim α ( , ).
β

h h

d h d h
F

h h
d

F

 



 



 
 


 

x x v x x v
x v

x x v
x v

 
 
 
 
(b) As one can see, the one-sided directional 
derivative F of the distance function d along the path 
x: a, b  Rn, given by (3), does not depend 
explicitly on s. 
 
(c) The d-length of a d-rectifiable arc is given by (4). 
Let s  s(t) be an orientation-preserving 
transformation of x(t). Therefore ds/dt  0 and s(t) is 
an invertible function. The positive homogeneity of F 
and ds/dt  0 imply that F(x,dx(t)/dt)dt = F(x,ẋds/dt)dt 
= F(x,ẋ)(ds/dt)dt = F(x, ẋ)ds. Since F does not 
depend explicitly on the parameter s, F(x(s),ẋ(s))ds is 
invariant under the transformation s  s(t). 
 
(d) From equation (2) and using (5), we obtain F(x, 
v  (1  ) w)  F(x, v)  (1  ) F(x, w) for all 
0, 1.        
 
An arc C(a,b) is a geodesic arc with respect to a 
distance function d (d-geodesic arc) if it is d-
rectifiable and its d-length is at least as small as 
the d-length of any other arc going from a to b. It is 
immediate that each subarc of a d-geodesic arc is 
a d-geodesic arc. A distance function d is complete 
if for every ordered pair of points (a, b) in Rn there 
exists at least one smooth d-geodesic arc 
connecting a and b.  
 
It is worth to notice that the left-hand side of the 
triangle inequality d(a,c) + d(c,b)  d(a,b)  0 
reaches its minimum value when it is equal to zero. 
Thus, the following definition, which will be used to 
characterize the geodesic arcs, makes sense.  
 
We define an arc induced by a distance function d (d-
induced arc) as an arc C(a,b) holding, for a 
parametric representation of the arc C(a,b), x: a,b
nR , with x(a)  a and x(b)  b, the triangle equality: 

 

d(x(s), b)  d(x(s), x(t))  d(x(t), b),    for all sa, 
b and for all ts, b. 

 
 (6) 

 
It can be proved directly that expression (6) is 
equivalent to any of the following two conditions:  
 

d(x(s), x(z))  d(x(s), x(t))  d(x(t), x(z)),  
where a  s  t  z  b, 

d(x(s), x(r))  d(x(s), x(t))  d(x(t), x(z))  d(x(r), 
x(z)), where a  s  t  r  z  b. 

 
(7) 

 
Condition (7) expresses the triangle equality for 
any three ordered points on C(a, b). 
 
In the following theorem, we prove that if a 
distance function is complete and satisfies the 
triangle inequality, then every d-geodesic arc is a 
d-induced arc. 
 
3. A premetric derived from a given function 
 
The proposed approach to model a premetric from 
a given function is based on the fact that any 
complete distance function satisfying the triangle 
inequality (P1) and the identity property (P2) can 
be represented by a function F0(x, v) depending on 
the position xRn and on a direction vRn 
attached at x: 
 

 ,
0( , ) min ( ( ), ( )) ,  for all , .nd F s s ds R


 

a b

b

x
a

a b x x a b

            
(8) 
 

Function F0 is called the fundamental function of d, 
which is not necessarily the one-sided directional 
derivative of d. It can be proved that F0 is the one- 
sided directional derivative F of d if, and only if, F0 
is convex. 
 
Notice that a premetric obtained from a 
fundamental function F0 through (8) may not satisfy 
the conditions of nonnegativity (P3), symmetry 
(P4), definiteness (P5), and uniformity (P6).  

 
 

(5) 
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Theorem 4 (A d-geodesic arc is a d-induced arc if 
d is a complete premetric). Let d: Rn  Rn  R be a 
complete premetric. If C(a, b) is a geodesic arc of 
the premetric d, then C(a,b) is a d-induced arc. 
 
Proof: 
Let x: a, b  Rn be a smooth parametric 
representation of the geodesic arc C(a, b), and let s, 
t and z be real numbers such that a  s  t  z  b. 
The subarcs C(x(s), x(t)) and C(x(t), x(z)) are also 
geodesic arcs, and the sum of their lengths is equal 
to the length of the arc C(x(s), x(z)), i.e., l(C(x(s), 
x(z))  l(C(x(s), x(t))  l(C(x(t), x(z)). Due to C(x(s), 
x(t)) and C(x(t), x(z)) are geodesic arcs, i.e., C(x(s), 
x(t)) and C(x(t), x(z)) are arcs of minimum d-length, 
then by (8) and due to that d is a complete 
premetric, d(x(s), x(t))  l(C(x(s), x(t))) and d(x(t), 
x(z))  l(C(x(t), x(z))). Hence, condition (7) is 
satisfied, and therefore C(a, b) is a d-induced arc. 
 
The geodesic arcs solving (8) can be found by 
solving the Euler-Lagrange equations:  
 

0 0 0,      1, 2,..., .
i i

F Fd
i n

x ds x

 
  

 
        (9) 

 
The distance functions involved in many 
applications are defined on the two-dimensional 
Euclidean space R2. For n  2 the coordinates of 
each point can be denoted by (x, y); in these 
terms, equations (4), (8) and (9) induce to the 
following Euler-Lagrange equations:  
 

2 2 2 2
0 0 0 0 0

2
0,

F F F F F
x y x y

x x x x y x yx

    
     
      

       
       
       

   
   

       
  (10) 

 
2 2 2 2

0 0 0 0 0
2

0.
F

y
F F F F

x y x
y y x y y y x y




          
           
              

  
    

       
  (11) 

 
The d-length of an arc C(a, b) in R2 can be 
expressed in terms of the variable y. This is 
because of the positive homogeneity of degree 
one in ẋ and ẏ of F0. Thus, the Euler-Lagrange 
equations (10) and (11) are reduced to 
 

2 2 2
0 0 0 0

2
'' ' 0.

' ''

F F F Fd
y y

dx y y y y xy

        
         

         
        

(12) 
 
3.1 Properties of a premetric deduced from 
properties of its fundamental function 
 
In practice, it is useful to know that some 
properties of a premetric, such as uniformity (P6), 
isotropy (P9), symmetry (P4), and antisymmetry 
(P7), can be deduced from the corresponding 
property of its fundamental function.  
 
Let d be a complete premetric on Rn, n  2. The 
premetric d is isotropic at xRn if its fundamental 
function F satisfies F(x, v / ||v||) = F(x, u / ||u||) for 
all u, vRn \{0}, i.e., F(x, v) = F(x, u) for all u, vRn 

\{0} with ||v|| = ||u||; otherwise, d is anisotropic at 
xRn. Isotropy means that the fundamental 
function F(x, v) does not depend on the direction 
v. If d is isotropic at every point of its domain, we 
say that d is isotropic on Rn, in whose case F(x, v) 
does not depend on v for all xRn. If d is not 
isotropic on Rn then it is anisotropic on Rn. A 
fundamental function F is uniform (invariant under 
translation) if, and only if, F(x, v) = F(y, v) for all x, 
yRn and for all vRn\{0}. The following theorem 
establishes relations between properties of a 
premetric d and properties of its fundamental 
function F.  
 
Theorem 5 (Relations between properties of a 
premetric and properties of its fundamental 
function). Let d : R

n  Rn  R be a premetric and 
let F : R

n  Rn \{0}  R the fundamental function of 
d. Then we have: 
 
(a) Invariance under translation: If F(x, v)  F(y, v) 
for all x, yRn and for all vRn \{0}, then d remains 
invariant under translation, i.e., d(a + c, b + c)  
d(a, b) for all a, b, cRn. 
 
(b) Invariance under changes of direction: If F(x, v) 
 F(x, u) for all xRn and for all u, vRn \{0} with  
||v|| = ||u||, then d is an isotropic premetric, i.e., 
d(x, x + v) = d(x, x + u) for all u, vRn \{0} with 
||v|| = ||u||, and for all   0 small enough. 
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(c) Invariance under inversions of direction: If F(x, 
 v)  F(x, v) for all xRn and for all vRn \{0}, then 
d is a symmetric premetric, i.e., d(a, b) = d(b, a) for 
all a, bRn. 
 
(d) If F(x,  v)   F(x, v) for all xRn and for all 
vRn \{0}, then d is an antisymmetric premetric, 
i.e., d(a,b) =  d(b, a) for all a, bRn. 
 
Proof: 
(a) Let x: a, b  Rn be a parametrization of the arc 
C(a,b).We assume that, for all x, yRn and for all 
vRn \{0}, F(x, v)  F(y, v). Then, for all cRn the 
arc C(a  c, b  c) admits the parametrization y: 
a,bRn, where y(s)  x(s)  c implies that 

( ) ( )s sy x  . Then, the integrand of (4) for the arc 

C(a,b) is equal to the integrand for the arc C(a  c, 

b  c), that is to say, ( ( ), ( ))F s s y y

( ( ) , ( ))F s s x c x ( ( ), ( ))F s sx x , and therefore 

l(C(a, b))  l(C(a + c, b + c)). Then, by equation (8), 

F(y(s), ( )sy )ds  F(x(s)  c, ( ))sx ds implies that 

min F(y(s), ( )sy )ds  min F(x(s)  c, ( ))sx ds, 

and therefore, d(a, b)  d(a  c, b  c). 
 
(b) If F(x, v)  F(x, u) for all xRn and for all u, vRn 

\{0} with ||v|| = ||u||, then by using equation (2), d(x, 
x + v) = d(x, x + u) for all u, vRn \{0} with ||v|| = 
||u||, and for a   0 small enough. 
 
(c) Assume that F(x,  v)  F(x, v) for all xRn and 
for  all vRn \{0}. Let x: a, b Rn and y: a’, b’  
Rn be two parametrizations of the arc C(a, b), and 
let s: a’, b’  a, b be a continuous and strictly 
decreasing real-valued function on a’, b’, with 
image a, b such that y(t)  x(s(t)) where a’  t  b’. 
Then x and y trace out C(a,b) in opposite directions. 

By the chain rule, ( )t y ( ( )) /s t ds dtx , where 

ds/dt is strictly negative, and due to the positive 

homogeneity of F: F(y(t), ( )ty )dt  F(x(s(t)), ( ( ))s tx

ds/dt)dt  F(x(s(t)),  ( ( )))s tx ( ds/dt)dt  F(x(s(t)), 

 ( ( )))s tx ( ds)  F(x(s(t)), ( ( )))s tx ( ds). Due to 

ds and dt have opposite directions, then by (4) l(x)  
l(y), and therefore d(a, b)  d(b, a). 
 
(d) This is proved in the same way that part (c), but 
in this case, the fundamental function is F(x,  v)   

F(x, v). Then, F holds F(y(t), ( )ty )dt  F(x(s(t)),

( ( ))s tx ds/dt)dt  F(x(s(t)),  ( ( )))s tx ( ds/dt)dt  

F(x(s(t)),  ( ( )))s tx ( ds)   F(x(s(t)), ( ( )))s tx ( 

ds). Due to ds and dt have opposite directions, then 
by (4), l(x)   l(y), and therefore d(a, b)   d(b, a). 
 
3.2 Geodesic arcs associated to a sum of 
premetrics on Rn 
 
The following theorem and its corollary are 
required for modeling a premetric on Rn from its 
fundamental function F. Recall that any sum of 
nonnegative premetrics on Rn is a premetric on Rn 
(Theorem 1).  
 
Theorem 6 (Geodesic arcs of a sum of 
premetrics). Let d1 and d2 be two premetrics on Rn, 
and let C(a, b)  R

n be a geodesic arc of each of 
the premetrics d1 and d2. Then C(a, b) is a 
geodesic arc of the premetric d  d1  d2. 

 
Proof 
Let d be the premetric defined by d(a, b)  d1(a, b) 
 d2(a, b) for all a, bRn. If C(a, b) is a geodesic 
arc of the premetrics d1 and d2, then by Theorem 
4, C(a, b) is both a d1-induced arc and a d2-
induced arc, i.e., d1 and d2 satisfy (6), then the 
distance function d = d1 + d2 also satisfies (6); thus 
C(a, b) is a geodesic arc of d.   
 
Any real-valued function on Rn determines a 
premetric with the property that all the arcs on Rn 
are geodesic arc of this premetric. Let h : Rn  R 
be a real-valued function. The binary function dh : 
Rn  Rn  R, defined by 

 
dh(a,b)  h(b)  h(a) for all a, bRn,        (13) 

 
satisfies the triangle equality dh(a,b)  dh(a,c)  
dh(c,b) for all a, b, cRn, and the identity property. 
Therefore dh is a premetric which we call premetric 
of the real-valued function h. This premetric dh is 
antisymmetric and hence the sum of dh and any 
premetric d is an asymmetric premetric. It can be 
proved directly that all the arcs going from aRn to 
bRn are arcs induced by the premetric dh. 
Therefore, all the arcs going from a to b have the 
same length with respect to the premetric dh: If the 
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function h is differentiable, then the one-sided 
directional derivative of the premetric dh becomes 
 

0 0

( , ) ( ) ( )
( , ) lim lim

            ( ) ,   for all  and for all ,

h
h

t t

n n

d t h t h
F

t t

h R R

  

  
 

   

x x x x x x
x x

x x x

 


 

        

 
(14) 

 

where h is the gradient vector of h and  denotes 
the inner product.  
 
Corollary of Theorem 6. Let dh be the premetric 
of a real-valued function h: Rn  R, and let dF be a 
premetric on Rn. Then, the geodesic arcs of dF and 
the geodesic arcs of the premetric d  dF  dh are 
the same. 
 
Notice that if dF is a symmetric premetric and h is 
not a constant function, then the premetric d  dF  
dh is an asymmetric premetric.  
 

4. Modeling of a premetric on r2 from a 
fundamental function 
 
In order to exemplify our theoretical framework, we 
model a non-uniform, asymmetric and non-positive 
definite premetric d on R2. Our premetric is 
obtained from a fundamental function F0 
determined by a smooth surface f. Function F0 is 
derived from a simple physical model consisting of 
an object sliding along a path on f. Considering 
that a half-sphere is one of the simplest examples 
of nonplanar surfaces, we model the premetric d 
for this particular surface, as a guide to 
generalization of the findings to more complex 
surfaces.  
 

4.1 Modeling of a fundamental function in terms of 
an arbitrary surface 
 

In this subsection, we describe a fundamental 
function F0 and its corresponding premetric d as 
formulated by [7]. This function F0 is determined by 
a smooth surface embedded in R3 given by a 
function f defined on the horizontal plane R2. F0 is 
deduced from the following simple physical model: 
Suppose that an object is slid on the surface f. 
Assuming that the object has no acceleration over 
the path, and that path turns altogether involve 
insignificant energy loss, then the major external 
forces operating on the object are gravity and 

friction. This model can be interpreted in terms of 
(8) as follows: The quantity F0(x(s), ( )sx )ds 

represents the energy required to slide the object 
on f from the point f (x(s)) on f to the neighboring 
point f (x(s) + ( )sx ds) on f, where ( )sx  is the 

projection of the tangent vector to the curve on f at 
f (x(s)) onto the horizontal plane. The integral in (8) 
along a given curve x: a, b  R2 on the 
horizontal plane joining aR2 to bR2 is the total 
energy needed to slide the object from (a, f (a)) to 
(b, f (b)) along the corresponding curve on the 
surface z  f (x, y). Thus the distance d(a, b) from 
aR2 to bR2 is the minimum energy required to 
slide the object from (a, f (a)) to (b, f(b)) on the 
surface f. The energy needed to slide the object 
from the point (x, y) to another point in the XY-
plane at a Euclidean distance s in the direction 

( , )x y   is 0( , , , ) :F x y x y s W   , i.e.,  

 

0 ( , , , ) / .x y x y dW dsF                              (15) 

 
Function F0 is obtained as follows. Let Wg and 
Wf be the energies required to overcome the 
gravity force and the friction force, respectively. 
Then Wg  mgf  mgx(f /x)  y(f /y) and 
Wf  mgcos(x)2  (y)2  (xf /x  yf 
/y)21/2, where m is the mass of the object,  
denotes the angle between the tangent plane to f 
at (x, y, f (x, y)) and the horizontal plane, g denotes 
the gravitation acceleration constant, and  is the 
coefficient of sliding friction, which is supposed a 
constant parameter. By simplicity, it is considered 
that mg  1. Since cos  [1  (f  x)2  (f  y)2]-
1/2, the total energy is W  x(f /x)  y(f /y)  
1(f /x)2  (f /y)21/2 ·(x)2  (y)2  x(f 
/x)  y(f /y)21/2. Substituting W into (15), and 

considering that x 2 y 2 = 1, the fundamental 

function F0 becomes 
 
 

 
 
 
 

 (16) 
 
Observe that F0 in (16) can be seen as the sum of 
two expressions each corresponding to a 
premetric. The first expression corresponding to 

0

2 2 1/2

2 1/2

( , , , ) ( / ) ( / )

                     μ[1 ( / ) ( / ) ]

                     {1 [ ( / ) ( / )] } .

xF x y x y x f y f y

f x f y

x f x y f y



    

      

      

   

 
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the sum of the first two terms in (16), 

( / ) ( / )xx f y f y     , is the gradient vector of f, 

and by (14) it corresponds to the premetric df of the 
real-valued function f. Then, this premetric is given 
by df (a, b)  f (b)  f (a) for all a, bR2, which is 
antisymmetric. The second expression, which 
corresponds to the third term in (16), F(x, y, ,x y  ) 

: 1(f /x)2(f /y)21/2·1  [ x (f /x)  y
(f /y)]2}1/2, is continuous and positively 
homogeneous of degree one in ( , )x y  . Therefore 

F is well-defined, and then the corresponding 
premetric d can be derived from F through (8). 
 
By Corollary of Theorem 6, the geodesic arcs of 
the premetric d (a, b)  df (a,b)  d (a,b) 
corresponding to F0 are the same that the 
geodesic arcs of the premetric d. Therefore, the 
determination of the geodesic arcs of d is reduced 
to the determination of the geodesic arcs of d. 
These geodesic arcs can be obtained by solving 
the Euler-Lagrange equation (12).  
 
As one can see, for each surface f in (16) there is a 
fundamental function F0, and the corresponding 
premetric d is obtained through (8). If the surface f is 
a plane (the simplest example of a surface), the work 
function obtained by Hodgson et al. [10], formulated 
in the context of a facility location problem on an 
inclined plane, is a particular premetric derived from 
the fundamental function (16). 
 
4.2 Modeling of a premetric from a fundamental 
function in terms of a half-sphere 
 
In this subsection, we model a premetric on a half-
sphere. We first particularize the fundamental 
function (16) to this surface, and then we obtain 
the corresponding premetric.  
 
Suppose that in the above-described physical 
model, the surface on which the object slides is a 
half-sphere. We are going to model the 
corresponding premetric d as the sum of two 
premetrics: d  dF  dh. In this case, dF is the 
premetric obtained by considering that the object is 
not under the action of gravity (therefore, dF 
depends only on the surface f ), and dh is the 
premetric obtained by considering only the gravity 
(therefore dh is independent of the surface f ).  
 

In order to model the premetric dF, it is considered 
that the object is not under the action of gravity;  
 
therefore, ( / ) ( / ) 0xx f y f y      , and then (16) 

becomes:  
 

 
 
 
 

(17) 
 
Consider a half-sphere of radius r given by the 
function f(x, y)  (r2  x2  y2)1/2 whose domain is 
the open disk D  R2 given by x2  y2 r2. 
Substituting the function f (x, y)  (r2  x2  y2)1/2 
into the fundamental function (17), and considering 

that x 2  y 2 = 1 and that, due to the homogeneity 

of F, F(x, y, dx/ds, dy/ds)ds  F(x, y, dx/dx(dx/ds), 
dy/dx(dx/ds)ds  F(x, y, dx/dx, dy/dx)(dx/ds)ds  
F(x, y, 1, y’)dx, we obtain F0(x, y, y’)  1  y’2  
(r2  x2  y2)-1(x  y y’)21/2, for all (x, y)D. 
 
Then, the corresponding premetric (8) becomes 
 

 
 
 
 

 
(18) 

 
The geodesic arcs of (18) on D are the projections 
of half-great-circles of the half-sphere f (x, y)  (r2  
x2  y2) 1/2 onto D. Thus, the distance dF(a, b) from 
a  (a1, a2)D to b  (b1, b2)D is the product of  
and the Euclidean length of the geodesic arc 
connecting a and b. That is to say, dF(a, b) is the 
product of  and the length of the half-great-circle 
segment going from (a1, a2, (r

2  a1
2  a2

2)1/2) to (b1, 
b2, (r2  b1

2  b2
2)1/2) on the surface of the half-

sphere. Hence dF (a, b)   r , where   
cos1[(a1b1  a2b2  (r2  a1

2  a2
2)1/2(r2  b1

2  
b2

2)1/2)  r2]. Therefore, the premetric dF becomes 
 
 
 
 
  

(19) 
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This premetric is non-uniform and satisfies the 
conditions of symmetry, non-negativity and 
definiteness; i.e., dF in (19) is a non-uniform metric.  
 
In order to take into account the action of gravity, we 
consider that the premetric given by (13), dh(a, b)  
h(b)  h(a), represents the potential energy. 
Therefore, by Theorem 1, the sum dF + dh is also a 
premetric d, and it is given by 
 
 
 
 
 
 
 

(20) 
 
By Corollary of Theorem 6, the geodesic arcs of the 
premetric (20) and the geodesic arcs of the premetric 
(19) are the same.  
 
If h in (20) is a non-constant function, then the 
premetric given by (20) is asymmetric, non-uniform, 
violates the definiteness property, and it can take 
negative values. 
 
5. Conclusions 
 
We have given some theoretical basis and tools for 
modeling asymmetric, non-uniform and non-positive 
definite distance functions on Rn. Our approach is 
based on the fact that any distance function d(a, b) 
satisfying the triangle inequality can be obtained by 
solving a variational problem, where the integrand is 
a function F0(x, v), called the fundamental function of 
d, depending on the position xRn and on a direction 
vRn attached at x. The information contained in d(a, 
b) is the same as that contained in its fundamental 
function F: d gives “global information” because each 
value of it depends on the pair of points in Rn, and F 
gives “local information” because each of its values 
depends on a point in Rn and a direction that 
emanates from that point.  
 
In general, the distance functions have been 
modeled through the distances between points of a 
sample of empirical data consisting of a heap of 
ordered pairs of points (a, b) on a given region. 
However, when we do not have any a priori 
information about the distance function that we want 
to model, it may be advantageous to model it through 

a fundamental function F0(x, v) because it is less 
difficult to systematize local information 
corresponding to a heap of points x in the region and 
the directions v emanating from them than to find a 
pattern for a heap of ordered pairs of points (a, b) in 
the region.  
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