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ABSTRACT 
In this paper, the uniform circular antenna array pattern synthesis problem is solved by means of the real coded 
genetic algorithm (GA). At the same time, the impacts of the mutation rate and the crossover position on the GA 
performance are also investigated. For this purpose, a circular antenna array with uniformly spaced isotropic elements 
having identical excitation amplitudes is used as a model. Unlike the conventional GA (with fixed mutation rate and 
random crossover positions), typical GA implementations with variable mutation rate and restricted crossover position 
are considered for performance improvement. In conclusion, for the specific problem, decreasing mutation rate with 
negative derivative is observed to be outperforming the implementations with different mutation rate behaviors. 
Moreover, regarding the crossover technique, it is observed that imposing some restrictions on the crossover 
positions (rather than fully random position selection) yields better solutions. 
 
Keywords: Circular antenna array, pattern synthesis, genetic algorithm, mutation rate, crossover point. 
 
RESUMEN 
En este trabajo, se le da solución a un problema de síntesis de patrones de arreglo de antenas circular uniforme por 
medio del algoritmo genético con codificación real (GA). Se investigan, al mismo tiempo, los impactos del índice de 
mutación y la posición de cruce sobre el desempeño del GA. Con tal propósito, se utiliza un arreglo de antenas 
circular con elementos isotrópicos espaciados uniformemente con amplitudes de excitación idénticas. A diferencia del 
GA convencional (con índice de mutación y posiciones de cruce aleatorias), se consideran implementaciones de GA 
típicas con índice de mutación variable y posición de cruce restringida para la mejora del desempeño. En conclusión, 
para el problema en cuestión, se observa que un índice de mutación descendiente con derivativa negativa supera las 
implementaciones con comportamientos de índice de mutación diferentes. Además, con relación a la técnica de 
cruce, se observa que imponer algunas restricciones sobre las posiciones de cruce (en lugar de la selección de 
posición completamente aleatoria) arroja mejores soluciones. 
 

 
1. Introduction 
 
The genetic algorithm (GA) is a probabilistic search 
method based on the principles of Darwin’s natural 
selection and evolution theory. So far, GA has 
efficiently been used for the solution of 
combinatorial optimization problems [1-4]. In this 
sense, it has been quite successful in many 
engineering applications. Additionally, it has also 
been applied to certain problems in the 
electromagnetic theory. The antenna array 
synthesis problem constitutes a major portion of 
such applications. 
 
The main purpose of the construction of antenna 
arrays, which is one of the popular research topics  

 
in electromagnetics, is nothing but to obtain the 
desired pattern (which cannot be achieved with a 
single antenna generally) with minimum error. In 
such a problem, electrical specifications and 
geometrical placements of the array elements are 
important. 
 
Generally, the main expectations of the designer 
from antenna arrays are radiation patterns 
consisting of narrow main beams in the desired 
direction, and low-level side beam. Quite different 
antenna array configurations might be constructed 
but, due to their simplicity, the most widely applied 
configurations are linear, planar and circular arrays 
[5-6]. 
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In the literature, there are studies on antenna array 
design, synthesis and pattern forming using 
optimization methods such as the genetic algorithm 
and particle swarm optimization [7-9]. In [7] and [8], 
the side lobe reduction on circular antenna arrays 
was aimed by using the method of the genetic 
algorithms and particle swarm optimization. In [9], 
radiation pattern synthesis was performed through 
a hybrid GA algorithm consisting of simplified 
quadratic interpolation and real coded GA. 
 
The effect of mutation and crossover on the GA 
performance has been the focus of attention of 
many researchers since the beginning of the 
1990s. There are currently a considerable number 
of studies in the literature on this subject [10-23]. In 
[10], adaptive crossover and mutation probabilities 
have been realized in order to maintain the diversity 
in the population while, at the same time, sustaining 
the convergence capacity of the GA. In [11], a 
mutation rate strategy, which principally depends 
on a variable (per individual) mutation rate based 
on the individual’s relative performance within a 
given generation, was proposed. In [12], in order to 
improve the performance of genetic algorithms, 
three variable mutation rate schemes were 
described for the fuzzy logic controller design 
problem. In [13], a per-individual mutation-rate 
strategy, which is based on determining the 
mutation rate according to the fitnesses of the 
individuals in the population, was proposed. In [14-
16], the adaptive mutation rate was used for 
improvement in the GA performance. The floating 
point crossover and the mutation approach were 
discussed in [17]; some GA variants (hybridized or 
parallelized versions) with variable mutation and 
crossover rate have also been proposed and 
applied for optimization of bound constrained non-
linear multi-modal functions in [18-20]. Studies 
conducted with similar motivations but concerning 
the mutation rates in genetic programming are also 
available in the literature (such as [21]). 
 
Regarding the “restrictions” on the crossover, a 
considerable number of studies exists in the 
literature. Even though the nomenclature of 
“restricted crossover” can be found in some other 
publications (such as [22] and [23]), the term has 
been used in different senses. For example, in 
order to apply the genetic algorithm in permutation-
type problems (such as the traveling salesman or 
the generalized assignment problem), due to the 

nature of the problems, specialized crossover 
operators should be defined in order to guarantee 
the validity of the relevant children [24]. But in this 
study, even though the problem imposes no 
specific and explicit restrictions to the crossover 
operator, we define a constraint yielding a 
“restricted crossover” operator while seeking some 
means of performance improvement. 
 
In this study, unlike the other studies in the 
literature, methods for performance improvement 
are investigated in order to obtain a desired pattern 
of circular antenna array with GA. For this purpose, 
instead of the fixed mutation rate approach used in 
the classical GA, the mutation rate is reduced along 
with new generations, which become increasingly 
more qualified throughout the evolution process; 
and these decreasing mutation rates are 
categorized to compare the impact of the mutation 
rate variation on the performance. 
 
As a second aspect, the impact of the crossover 
scheme to the solution performance is investigated. 
Instead of determining the crossover point in a 
totally random fashion, the probable crossover 
points have been kept limited in such a manner that 
the sub-gene groups representing the angular 
position of a particular element of the antenna array 
is preserved. In other words, in the restricted 
crossover scheme, the crossover is only applied to 
the joints of the angular positions of the antenna 
array elements. 
 
As stated before, the effects of variable mutation 
and crossover rates as well as restricted crossover 
strategies have been studied many times so far. To 
our belief, the originality of this study comes from 
the following reasons:  
 
- Even though in some previous publications (such 
as [12] and [18]), it has been mentioned that a 
decreasing mutation rate yields better performance, 
to our knowledge, there exists no publication 
explicitly explaining how to decrease the mutation 
rate ideally. From this aspect, the paper comes up 
with an answer to such a question. 
 
- The experiments in this study are performed on 
an antenna array synthesis problem. In this study, 
for this particular problem, it is also demonstrated 
that preserving the integrity of fittest sub-gene 
groups corresponding to some parameters (i.e. the 
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angular positions of the element in this problem) by 
means of a restricted crossover operator. This 
could be considered as a second aspect of 
contribution to further studies of this sort. 
 
After this introductory section, in Section 2, basic 
definitions of GAs are revisited. In Section 3, 
formulations regarding the circular antenna arrays 
and the relevant synthesis problem are presented. 
In Section 4, material and method are presented 
together with the obtained results and relevant 
discussions. Section 5 concludes the paper with 
some remarks. 
 
2. Genetic Algorithm (GA) 
 
The genetic algorithm (GA) was first introduced in 
1975 by Holland [1]. Dense usage of this algorithm 
has been realized especially after Goldberg’s 
studies [2]. The genetic algorithm provides the 
necessary solution yielding the global minimum or 

maximum values of multidimensional and 
complicated functions [2-3]. They are used widely 
for the solution problems which are considered 
very difficult for conventional optimization methods. 

 
GA simulates the survival of the fittest among 
individuals over consecutive generations 
throughout the solution of a problem. Each 
generation consists of a population of character 
(usually binary) strings that are analogous to the 
chromosomes. Each individual represents a point 
in the search space and a solution candidate. The 
individuals in the population are then exposed to 
the process of evolution. Genes from good 
individuals propagate throughout the population. 
Thus, each successive generation will literally 
become more suited to its environment. In the 
optimization terminology, this corresponds to the 
situation that newer generations have better fitness 
values [1-4]. Figure 1 presents the general 
structure of the genetic algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. General structure of the genetic algorithm. 
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3. Circular Antenna Arrays 
 
Antenna arrays are antenna systems which are 
created by combining different or similar antennas 
in different forms. Antenna arrays are used to 
provide the desired specifications such as low-
level side lobe, narrow main lobe and high 
directivity [5-6].  
 
Furthermore, thanks to adding together power of 
the elements in the array, high-power radiation 
pattern is achieved, and without requiring 
mechanical movement, the main beam can be 
moved to a desired direction [5-6]. This yields a 
very wide application spectrum for the antenna 
arrays. Arrays may have different geometric 
shapes. If elements of the array are located on a 
circle, this type of array is called a “circular 
antenna array” as seen in Figure 2. 
 
The radiation pattern of the circular antenna array 
consisting of N isotropic elements can be 
expressed by means of the array factor. The array 

factor of the circular antenna array can be 
formulated as follows [8]: 
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Here, AF is the array factor, N is the number of 
elements in the array, In is the excitation amplitude 
of the nth element, a is the radius of the circle, 
k=2π/λ is the wavenumber, 0 is angle of direction 
of the main beam, n is the angular position of the  
nth element with respect to 0. ka and n are given 
by 
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Figure 2. Geometry of a uniform circular antenna array with N isotropic elements. 
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4. Material and Method 
 
In our study, a circular antenna array with 8 
uniformly spaced isotropic elements having 
identical excitation amplitudes is used as a model. 
 
For this purpose, the radiation pattern of a circular 
antenna array, for which  
 
-  the angle of direction for the main beam is equal 
to zero degree;  
 
-  the angular positions of the elements (n) are 25, 
70, 115, 160, 205, 250, 295 and 340°; and  
 
-  the radius of the circle is 20 cm,  
 
is determined as reference. The Half Power Beam 
Width of the reference pattern is chosen to be 56°, 
and the operating frequency is chosen to be 750 
MHz. 
 
To obtain the desired pattern through the genetic 
algorithm, an initial population consisting of 100 
individuals is created. Then, angular positions of 8 
elements are converted to binary codes. 
Afterwards, the created population is subjected to 
the genetic algorithm operators: selection, 
crossover and mutation.  
 
Throughout the study; all comparisons in all 
experiments were performed by considering 
independent executions of each GA scheme in 
order to eliminate the “chance factor” and to be 
able to perform a fair comparison. Table 1 lists the 
parameter setup used throughout the experiments 
in this study. 
 

Parameter 
Values 

used in GA 
Number of individuals in the 
population 

100 

Element number of array 8 
Number of iterations 
(generations) 

250 

Crossover rate 0.2 
Initial mutation rate  0.01 
Number of independent 
executions 

300 

 
 
 

 
In the implementation, the radiation diagram is 
divided into 360 equal parts in (-π, π) radians. Thus, 
a sensitivity of one-degree is achieved. GA is 
implemented in MATLAB 7.3.0, but no third party 
tool or another standard product or library (such as 
MATLAB Genetic Algorithm Toolbox) is used. The 
main reason for this is to preserve the flexibility to 
modify the architecture of the GA in our 
ongoing/future studies in order to investigate further 
performance improvement possibilities. 
 
4.1. The Impact of the Mutation Rate 
 
In addition to the constant mutation rate approach 
of the classical genetic algorithm, increasing and 
decreasing mutation rates are examined in this 
study. As mentioned in previous studies, such as 
[12] and [18], results show that a decreasing 
mutation rate along with the generations outperform 
constant and increasing mutation rates. 
Nevertheless, an increasing mutation rate along 
with the generations reduce the performance (i.e. 
worse than the constant mutation rate). 
 
One of the main aims in this study is to determine 
the best mutation rate to obtain the best algorithm 
performance. For this purpose, an initial mutation 
rate mr0=0.01 is chosen, and the performances of 
different mutation rates changes are examined. We 
use five decreasing mutation rate schemes, mainly. 
These are 
 
-  constant mutation rate,  
-  linearly decreasing mutation rate,  
-..decreasing mutation rate with increasing 
derivative,  
-..decreasing mutation rate with decreasing 
derivative,  
- mixed type decreasing mutation rate. 
 
In the equations, itn represents the iteration 
(generation) number. 
 
Scheme-1: Constant Mutation Rate  
 
In this scheme, the mutation rate equals the initial 
mutation rate for all iterations. 
 

01 mrmr                                          (4) 
Table 1. Parameter values used in the 

genetic algorithm. 
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Scheme-2: Linearly Decreasing Mutation Rate 

 
In this scheme, the mutation rate decreases 
linearly. In the following equation, c1 (>0) 
determines the slope of the decay. 

 
102 citnmrmr                            (5) 

 
In Figure 3, different mutation rate behaviors for 
different values of c1 are given. 

 
Among those, our tests show that mr22 scheme 
outperforms the mr21 and mr23 schemes, as seen in 
Figure 4. 
 

Scheme-3:Decreasing Mutation Rate with 
Increasing Derivative 
 
In this scheme, the mutation rate decreases in a 
nonlinear manner so that its derivative is 
increasing. Such a characteristic can be 
parametrically expressed as 
 

3/1
203

citncmrmr                  (6) 
 

where c2 and c3 nonnegative real numbers. In 
Figure 5, different mutation rate behaviors for 
different values of c2 and c3 are given.  
 

Among those, our tests show that mr33 scheme 
outperforms the mr31 and mr32 schemes, as seen in 
Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

mr21 = 0.01 – 410-5itn 
mr22 = 0.01 – 310-5itn 
mr23 = 0.01 – 210-5itn 

Figure 3. Linearly decreasing mutation rates (mr21, mr22 and mr23 yielded by c1=4x10-5, 
c1=3x10-5 and c1=2x10-5, respectively). 



 

 

Impacts of Genetic Algorithm Parameters on the Solution Performance for the Uniform Circular Antenna Array Pattern Synthesis Problem, F. Yaman  et al., 378‐394 

Vol.8 No.3 December 2010 384 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Population average fitness values of linearly decreasing mutation rates 
(computed after 300 independent experiments). 

mr21 = 0.01 – 410-5itn 
mr22 = 0.01 – 310-5itn 
mr23 = 0.01 – 210-5itn 

Figure 5. Decreasing mutation rates with increasing derivative (mr31, mr32 and mr33 
yielded by (c2=1.3x10-4, c3=1.2725), (c2=4.7x10-4, c3=1.8018), and (c2= 9x10-4, 

c3=2.1881), respectively). 

mr31 = 0.01 – 1.310-4itn1/1.2725

mr32 = 0.01 – 4.710-4itn1/1.8018 
mr33 = 0.01 – 910-4itn1/2.1881 



 

Impacts of Genetic Algorithm Parameters on the Solution Performance for the Uniform Circular Antenna Array Pattern Synthesis Problem, F. Yaman  et al., 378‐394 

Journal of Applied Research and Technology 385

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme-4: Decreasing Mutation Rate with 
Decreasing Derivative 
 

In this scheme, the mutation rate decreases in a 
nonlinear manner so that its derivative is also 
decreasing. Such a characteristic can be 
parametrically expressed as 
 

5
404

citncmrmr                           (7) 

 
where c4 and c5 nonnegative real numbers. In 
Figure 7, different mutation rate behaviors for 
different values of c4 and c5 are given. 
 

Among those, our tests show that mr42 scheme 
outperforms the mr41 and mr42 schemes, as seen in 
Figure 8. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme-5: Mixed Type Decreasing Mutation 
Rate  

 
In this scheme, the mutation rate behavior is 
defined as a cascaded combination of two other 
schemes. During the first half of all iterations (i.e. 
from iteration 1 to 125), one of the schemes is 
applied whereas, during the second half (i.e. from 
iteration 126 to 250), another scheme is applied. 
Two particular examples of such numerous 
variations are given in Figure 9. 

 
Among those, our tests show that mr51 scheme 
outperforms the mr52 scheme, as seen in Figure 10. 
 
 
 
 
 
 

Figure 6. Population average fitness values of decreasing mutation rates with increasing 
derivative (computed after 300 independent experiments). 

 

mr31 = 0.01 – 1.310-4itn1/1.2725

mr32 = 0.01 – 4.710-4itn1/1.8018 
mr33 = 0.01 – 910-4itn1/2.1881 
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Figure 7. Decreasing mutation rates with decreasing derivative (mr41, mr42 and mr43 
yielded by (c4=9.3x10-10.163, c5=3), (c4=1x10-11.6, c5=4),  

and (c4=1x10-16.4, c5=6), respectively). 

mr41 = 0.01 – 9.310-10.163itn3

mr42 = 0.01 – 110-11.6itn4 
mr43 = 0.01 – 110-16.4itn6 

 
Figure 8. Population average fitness values of decreasing mutation rates with decreasing 

derivative (computed after 300 independent experiments). 

mr41 = 0.01 – 9.310-10.163itn3

mr42 = 0.01 – 110-11.6itn4 
mr43 = 0.01 – 110-16.4itn6 
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Figure 9. Mixed-type decreasing mutation rates.

 

Figure 10. Population average fitness values of Mixed-type decreasing mutation rates 
(computed after 300 independent experiments). 
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Next, the outperforming mutation rates of all 
schemes (mr1, mr22, mr33, mr42 and mr51) are 
compared, where the scheme with mr1 corresponds 
to nothing but the conventional GA. The best 
average fitness values of each scheme are shown 
in Figure 11. It is seen that for this particular 
problem, all mutation rates proposed by us yielded 
equal or better results than the conventional GA 
(indicated by mr1). However, the best GA 
performance can be obtained via the scheme with 
decreasing mutation rate with decreasing 
derivative, more specifically with the mr42 scheme. 
 
A qualitative comment on this result can be made 
as follows: In the early iterations (generations), 
where the overall population quality is relatively 
low, mutation is a performance-improving factor 
yielding diversity in the search process. On the 
other hand, as long as the population gets qualified, 
mutation starts to show a negative impact 
distracting the focus and the concentration of the 
population.  
 
Angular positions of the circular antenna array 
elements obtained through five different mutation 
schemes are shown in Table 2 for comparison. 
 
4.2. The Impact of the Crossover Point 
 
In addition to the study on the impact of different 
mutation rates on the algorithm performance, the 
impact of the crossover scheme (i.e. the method of 
selection/ determination of the crossover point) is 
also examined. For this purpose, the random 
crossover point scheme is compared to the so-
called “restricted crossover point scheme”. In the 
restricted crossover point scheme, the crossover 
position is randomly determined in such a manner 
that separation of a sub-gene group representing 
the angular position of a particular array element is 
not allowed. 
 
In this study, each solution candidate (i.e. 
candidate antenna array proposed as a solution) 
has 8 elements; where each element consists of 9 
genes. Thus, each individual has 72 genes. The 
main idea of the restricted crossover point scheme 
is illustrated in Figure 12. 
 
When compared, it has been observed that the 
restricted crossover point scheme outperforms the 
fully random crossover point scheme. The results of 

both methods are shown in Figure 13. For both 
methods, the mr42 mutation rate is used. 
 
The desired radiation pattern together with the 
obtained pattern by means of the GA (mr42 mutation 
rate and restricted crossover scheme) is shown in 
Figure 14. 
 
5 Conclusions 
 
In this study, the impact of the mutation rate and 
the crossover point on genetic algorithm 
performance is investigated. For this purpose, a 
circular antenna array with uniformly spaced 
isotropic elements having identical excitation 
amplitudes is used as a model. A fixed mutation 
rate method, which is used in the conventional 
genetic algorithm, is compared with several 
variable mutation rate schemes. Moreover, the 
ideal scheme for the determination of the crossover 
point is also investigated. 
 
In general, the following observations can be made 
regarding the mutation operator: In the early 
generations, the overall population is of relatively 
low quality; and hence, mutation is a performance-
improving factor, which creates unexpected 
diversity, but when the population gets qualified, 
mutation starts to cause loss of high-quality 
individuals, causes abnormal ones, and eventually 
decreases the average of the population. Hence, a 
decreasing mutation rate scheme outperforms 
others as expected. Moreover, decreasing mutation 
rate with decreasing derivative (causing the rate to 
decrease dramatically for late generations) 
increases the performance more and more. 
 
Regarding the crossover, it can be concluded that 
preserving the sub-gene groups corresponding to 
high-quality solutions (throughout the crossover 
might) yields better results as seen in the particular 
problem studied here. 
 
In conclusion, for this particular type of antenna 
array, the scheme of decreasing mutation rate with 
decreasing derivative yields the best results 
compared to others. Regarding the crossover, the 
restricted crossover point scheme outperforms the 
fully random crossover point scheme. 
 
It should be noted that these results are valid for 
this particular problem, i.e. the synthesis of this type 
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of antenna array only. Generalization of these 
results to all genetic algorithm applications would 

be incorrect. As future work, similar analyses will be 
performed over several benchmark functions in 
order to deduce some generalization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. Population average fitness values of different mutation rate  
schemes (computed after 300 independent experiments). 

mr1 = 0.01 (Conventional GA) 

mr22 = 0.01 – 310-5itn 

mr33 = 0.01 – 910-4itn1/2.1881 

mr42 = 0.01 – 110-11.6itn4      

mr22 (Mixed-Type)            
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Angular Positions n (degree) 

Desired  25 70 115 160 205 250 295 340 

Obtained via mr1 
(Conventional GA) 

25 63 115 159 205 250 295 340 

Obtained via mr22 25 63 116 159 206 250 295 340 

Obtained via mr 33 26 63 110 160 208 257 295 339 

Obtained via mr42 24 70 115 160 201 250 296 340 

Obtained via mr51 26 69 115 159 205 256 295 340 

 

Table 2. Angular positions obtained via GA with different mutation rate schemes. 
 

 

Figure 12. llustration of the restricted crossover point scheme. 
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Figure 13. Population average fitness values obtained with restricted  

and random crossover point methods. 

Figure 14. The comparison of desired and obtained radiation patterns. 
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