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ABSTRACT 
Most of the proposals to compute the Euler number of a binary image have been designed to work with images 
composed of squared cells. Only a few of these methods (in the case of images composed of hexagonal cells) have 
been reported in literature, although it is known that images composed of hexagonal cells do not suffer from the 
problems of connectivity frequently found in the case of images composed of squared cells. In this paper, a new way 
to compute the Euler number (E) of a binary image composed of hexagonal cells is presented. For this, the perimeter 

P of the isolated regions in the image, their contact perimeter cP  and the type T of a cell are used to obtain this 

important invariant. The proposal can be used alone or in combination with other features to describe any binary 
planar shape composed of hexagonal pixels for its further recognition. 
 
Keywords: Binary image characterization, Perimeter, Contact Perimeter, Euler number or genus, Topological 
descriptor, Topological invariant. 
 
RESUMEN 
El principal objetivo de este trabajo es el presentar una nueva clase de controlador de tipo retroalimentado, el cual 
contiene en su estructura una forma polinomial del llamado error de control, el controlador propuesto es aplicado a un 
quimiostato sulfato-reductor, el cual pudiera ser usado para varios fines biotecnológicos, como la remoción de 
metales pesados en aguas residuales. El comportamiento a lazo cerrado del quimiostato considerado es 
teóricamente analizado y se prueba convergencia práctica a la trayectoria óptima seleccionada. La metodología 
propuesta es aplicada a un modelo cinético de una bacteria sulfato-reductora experimentalmente validado y 
experimentos numéricos complementarios muestran un comportamiento a lazo cerrado satisfactorio en comparación 
con otros controladores. 
 
 
1. Introduction 
 
Conventionally, images are digitized and stored as 
a rectangular array of values. The image is 
sampled at each point on a two dimensional grid, 
storing intensity and implicit location information for 
each sample. It is known that the rectangular grid 
is by far the most dominant of any grid structure in 
image processing, although the hexagonal 
structured pixel grid is considered to be superior to 
the rectangular grid system in many respects, 
including neighboring connectivity, [1] and [2]. 

 
 
The use of hexagonal grids to represent digital 
images has been studied recently, with 
improvements in charged coupled device (CCD) 
technology making hexagonal sampling attractive 
for practical applications and development of new 
interests in this area [3]. However, some 
algorithms have been developed to apply 
processing techniques directly to hexagonal 
images, [2] and [4].  
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The Euler number of an image is an important 
feature that can be used to describe the 
topological structure of that image. It is known that 
this describing feature is invariant up to several 
image transformations such as translations, 
rotations, scale changes, affinities, projections and 
even some non-linear transformations such as 
deformation of the shapes contained in the image. 
Mathematically, the Euler number of a binary 
image is defined as [5], [6], [7]: 

 
HNE                                               (1) 

 
where N is the number of regions of the image 
(number of connected components of the object) 
and H is the number of holes in the image (isolated 
regions of the image’s background). The Euler 
numbers of the two images shown, for example, in 
Fig. 1 (a) have, values: 1 (2 regions – 1 hole) and 
0 (3 regions – 3 holes), respectively. 

 
 

 
 
 

 
The Euler number of an image has proven to be an 
important feature in image analysis and visual 
inspection applications. The interested reader can 
make reference, for example, to the work reported 
in [8]. 

In [9], the authors propose computing so called 
fast Euler numbers to automatically threshold a 
binary image. Their proposal allows computing 
Euler numbers in just one single raster scan of the 
image. A modification of this algorithm that can be 
run in a Field Programmable Gate Array with a 
pipelined architecture as completely described in 
[10]. 
 
In [11], Euler numbers are used to analyze textural 
and topologial feaures of signature images, while 
in [12], this same feature is used to describe the 
structural effects caused by noise in binary 
images. In short, in [13], the Euler characteristic is 
used to extract lung regions from gray level chest 
x-ray images. 
 
In [14], the authors present a fast algorithm for 
computing the Euler number of an image and its 
VLSI implementation, while in [15], the authors 
describe the functioning of a pipeline architecture 
for performing the same task. In short, in [16], an 
on-chip computation of Euler number of a binary 
image for efficient database search is presented. 
 
A first patent to compute the Euler number of a 
binary image was introduced by Acharya et al in 
[17]. 
 
Other methods have been reported in literature to 
compute the Euler number of a binary image. 
Refer for example to [18-26]. In [18] the Euler 
characteristic is obtained by means of a quadtree 
representation of the image being analyzed. In 
[19], linear quadtrees are used to perform the 
same task, while in [20] a bintree representation is 
used. In [21] the Euler number is considered as a 
value of certain additive functional belonging to the 
so-called quermass-integrals family, while in [22] it 
is obtained in terms of the vertices, basic square 
faces and edges of the square graph of a binary 
image. In [23] it is computed by means of the so-
called connectivity graph of the image. In [24] an 
integral geometric approach is used to compute 
the Euler feature for spatial images. A proof of an 
Euler number equation is given in [25]. In short, in 
[26], the Euler number of a binary image is 
computed in terms of the number of terminal points 
(points with just one neighbour) and the number of 
three-edge-points (points with only three 
neighbours) of the skeletons of regions inside the 
image. If Tps is the number of terminal points of n 
skeletons from n regions in the image and TEps is 

Figure 1. Euler numbers of two simple images.
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the number of three-edge-points of these n 
skeletons, then: 
 

2
TEpsTps

E


                                      (2) 

 
In the case of the images shown in Fig. 1 (b): Tps 
(left image) = 5 and TEps (left image) = 3, thus E 
(left image) = 1. Similarly: Tps (right image) = 3 
and TEps (right image) = 3, thus E (right image) = 
0. 
 
With the exception of the method reported in [27], 
all the other approaches reported in [18-26] have 
been designed to work with images composed of 
squared cells. In [27], morphological operations 
are used to compute the Euler number of a binary 
image composed of hexagonal cells.  

 
Taking the above discussion into account, in this 
paper, a completely different approach to compute 
the Euler number of a binary image composed of 
hexagonal cells is described. Images composed of 
hexagonal configurations, as we shall see later, 
offer advantages over images composed of square 
or triangular cells. 

 
The rest of this paper is organized as follows. In 
section 2, the proposal is fully described. In section 
3, several examples to illustrate the functioning 
and efficiency of the method are provided. In 
section 4 a sketch of an algorithmic procedure is 
given. Finally, section 5 is focussed on the 
conclusions and directions for further work. 
 
2. The proposal 

 
In this section the proposal to compute the Euler 
number of a binary image (or binary region) 
composed of hexagonal cells is described. For 
this, the concepts of perimeter: P and contact 

perimeter: cP  are given first. Hereafter, these 

definitions are valid for triangular, rectangular and 
hexagonal cells. 
 
 
 
 
 

 
 
 
 
 
 
According to [28], the perimeter P of the shapes 
(regions) in an image composed by cells (pixels) 
corresponds to the sum of lengths of the exterior 
sides of each shape. The exterior sides of a shape 
are also sides of background pixels. The exterior 
sides of the shapes in Figures 2(a), 2(c) and 2(e), 
are shown in bold. Thus, the values of the 
perimeter of the shapes shown in Figures 2(a), 
2(c) and 2(e) are 16, 9, and 16, respectively. From 
the same reference [28], the contact perimeter   of 
a region from an image composed of cells 
corresponds to the sum of the lengths of segments 
that are common to two cells. For example, the 
contact perimeter of the shapes shown in Figures 
2(b), 2(d) and 2(f) equals 6, 9 and 7, respectively. 
Based on these two parameters, in [28], the 
authors show that the following relationship holds: 
For any shape Sn, composed of n cells, it holds 
that: 
 
 
 
 

Figure 2. Perimeter and contact perimeter of three 
simples binary shapes. 
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nTPPc 2                                        (3) 
 

where again cP  is the contact perimeter, P is the 

perimeter of the shape and T is the number of 
sides of the cell. For a triangular cell, T = 3, for a 
square cell, T = 4 and for a hexagonal cell, T = 6. 
 
Although the theory that we are going to present in 
the following paragraphs is valid for regions 
composed of squared, triangular and hexagonal 
cells (even in the case of three-dimensional cells, 
with some modifications), in this paper we are 
going to deal only with images composed of 
hexagonal cells (cells for which, T = 6). The main 
reason for this is that regions composed of 
hexagonal cells (Figure 3(a)) do not suffer from the 
problems of connectivity frequently found in the 
case of regions composed of squared or triangular 
cells. In the case of hexagonal cells, they will never 
appear connected by their corners, as can happen 
with squared or triangular cells. In the particular 
case of squared cells, for example, if 8-connectivity 
is chosen, the five square pixels shown in Figure 
3(b) will form a whole region, however if 4-
connectivity is chosen, then we will have two 
regions. Something similar can be said in the case 
of the six triangular cells shown in Fig. 3(c). 
 
 

 
 
 
 
 
 
 
 
 
Before providing a formula to compute the Euler 
number of a binary image composed of a set of 
connected regions (T=6), the concepts of a 
redundant cell and the number of times a cell is 
redundant have to be first defined. For this, let us 
consider.the.6-neighbourhood.of.a.pixel.p.(Figure.4)      

 

 
 
 
 
 
Definition 1. In the case of hexagonal region-cells, 

if  N p and  NT p are, respectively, the number 

of 1-pixels around p and the number of 0 to 1 
transitions in the sequence P1, P2, P3, P4, P5, P6, 
then cell p is called redundant if inside its 
neighbourhood satisfies the following two 
conditions: 
 

1.   2N p   . 

2.     1N p NT p   . 

 
According to Definition 1, in Figures 5(a) and 5(b) 
p is redundant, while in Figures 5(c) and 5(d), it is 
not. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Images composed of hexagonal cells do not 
present the connectivity problems, sometimes 

associated with images composed of squares or 
triangles. As can be seen from this figure 
 (cases (b) and (c)), cells might appear  

connected by their corners. 

Figure 4. Neighborhood of pixel p.

 
Figure 5. Fig. 5. Examples of arrangements 

where p is redundant or not. (a) p is redundant 

because   3N p  and 

    3 1 2 1N p NT p     . (b) p is 

redundant considering that   3N p   and 

    3 2 1 1N p NT p     . (c) p is not 

redundant because   1N p   and 

    1 1 0 1N p NT p      and (d) p is not 

redundant taking into account that   3N p   

but     3 3 0 1N p NT p     . 
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Definition 2. In the case of hexagonal region-cells, 

if  N p and  NT p are, respectively, the number 

of 1-pixels around p and the number of 0 to 1 
transitions in the sequence P1, P2, P3, P4, P5, P6, 
the number of times a cell p is redundant inside its 
neighbourhood it given as: 
 

   N p NT p                                         (4) 

 
Again, from Figure 5(a) p is redundant twice for 

    3 1 2N p NT p     , while in Figure 5(b) 

p is redundant once for  

    3 2 1N p NT p    . 

 
Let NR be the number of times all the cells in an 
image are redundant.  
 
We are now in the position to establish the relation 
that governs the connectivity of the hexagonal 
pixels of shapes of a binary image that allows 
computing the Euler number of this image. 
 

Proposition 1. For any binary image composed of 
hexagonal cells (T = 6), its Euler number is given 
as follows: 
 

 2 2cP T P NR
E

T

   
                       (5) 

Where, as mentioned before P and cP are, 

respectively, the perimeter and contact perimeter 
of the shape, NR is the number of times all the 
cells in an image are redundant, and T is the 
number of sides of the cell. 
 
Proof. See the annex. 
 
3. Example 
 
To numerically verify the correct functioning of 
equation (5), in this section we present several 
numerical examples. For this, the two images 
shown in Fig. 6(a) and 6(b), respectively, are used. 
As can be seen from this figure, the first image is 
composed of three connected regions, while the 
second image is composed of two connected 
regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. (a) A binary image containing three different connected components. (b) A 
binary image containing two different connected components, one of them containing 

a hole. (c) and (d) Same images as in (a) and (b) but with labelled pixels. 
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For each shape in the images shown in Fig. 6(a) 
and 6(b), Tables 1 and 2 summarize the 
computation results for the Euler number E of 
these images. 
 
The reader can easily verify the validity of these 
results by using the standard equation given by 
(1). 
 
In the next section we present a computational 
procedure to compute the Euler number of a binary 
shape in terms of equation 5. 
 
4. Example 
 
In this section, we describe a procedure to 
compute the Euler number of the image. It is not 
difficult to see that the Euler number of a binary 
image can be computed either in series or in 
parallel. From now on, let us focus on the parallel 
way.  
 
The partial calculation of E can be thus computed 
by evaluating the contributions to the values of P,

cP , and NR for each p=1 of the image. To show  

how this is possible, in the case of P,  cP  and NR, 

let us take into account again, the neighbourhood 
shown in Fig. 4. Thus for each pixel p in the image 
with value 1: 
 
Compute the value of P by counting the number of 
6-neighbors with value 0 around p. For example, 
for pixel p of Fig. 7(b), P=3, while for pixel p of Fig. 
7(c), P=2. 
 

Compute the value of cP  by counting the number 

of 6-neighbors with value 1 around p. Thus, for 

example, for pixel p (Fig. 7(b), 3cP  , while for 

pixel p of Fig. 7(c), 4cP  . From these two 

examples we notice that for a pixel p  1p  ,

6cP P T   . So, instead of counting the 

number of 6-neighbors with value 1 around pixel p, 

cP  can be directly computed as 6cP P  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shape 1: Shape 2: Shape 3: 

P1=10, Pc1=1, NR=0. P2=20, Pc2=5, NR=3. P2=20, Pc2=5, NR=3. 

Ptotal=P1+P2+ P3=50.  

Pctotal=Pc1+Pc2+ Pc3=11. 

NRtotal= NR1+ NR2+ NR3=6. 

 50 4 11 2 6 50 44 12 18
3.

6 6 6
E

    
     

 
 
 

Shape 1: Shape 2: 

P1=32, Pc1=8, NR=0. P2=26, Pc2=5, NR=0. 

Ptotal=P1+P2=58. 

Pctotal=Pc1+Pc2=13. 

NRtotal= NR1+ NR2=0. 

 
.1

6

6

6

5258

6

13458






E  

 

Table 1. Computation results for the three shapes of Fig. 6(a). 

Table 2. Computation results for the two shapes of Fig. 6(b). 
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Determine if p is redundant, and if it is, compute 
the number of times p is redundant inside its 
neighbourhood. This can be done by applying 
equation (4) to pixel p. For pixel p of Figure 7(b) 

    3 2 1N p NT p    , thus, in this case, p 

is redundant once, while for pixel p of Figure 7(c) 

    4 2 2N p NT p    , thus p is redundant 

twice. 
 

Is short, for pixel p from Figure 7(b), P=3, 3cP   

and NR=1, while for pixel p of Figure 7(c), P=2, 

4cP   and NR=2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the above discussion we are ready to 
provide a procedure to compute the Euler number 
of a binary image composed of hexagonal cells. 
 
Procedure: Computation of Euler number E of a 
binary image with hexagonal pixels: 
 
Input: A binary image possibly containing one or 
more connected regions with and without holes. 
 

1: Initialize 0cP P NR    . 

2: For each pixel p =1 in the image: 
3:  Compute the increment of P (P) by counting 
the number of 0s in its neighbourhood (see Fig. 4). 
Compute the new value of P  newP as 

new oldP P P    . 

4: Compute the increment of cP  cP as

6cP P   . Compute the new value of cP  
newc
P

as 
new oldc c cP P P    . 

5: Compute the increment of NR (NR) as

   N p NT p . Compute the new value of NR

 newNR as new oldNR NR NR  . 

6: end for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. (a) Pixel p has values for P=4, 2cP   and 

NR=1. (b) Pixel p has values for P=3,  

3cP   and NR=1. (c) Pixel p has values 

 for P=2, 4cP   and NR=2. 

Table 3. Computation results for each of the three shapes of binary image shown in Fig. 6(c) by means 
 of the described procedure. The last row of this table contains the total values 

 of P, cP  and NR for each of the three shapes 1, 2 and 3. 

Shape 1: Shape 2: Shape 3: 

Píxel 
No. 

P 
cP  NR Píxel

No.
P

cP  NR Píxel
No.

P 
cP  NR

1 5 1 0 3 4 2 1 8 4 2 1
2 5 1 0 4 3 3 1 9 3 3 1
    5 3 3 1 10 5 1 0
    6 5 1 0 11 4 2 0
    7 5 1 0 12 4 2 1
- 10 2 0 - 20 10 3 - 20 10 3
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The reader can easily verify that at the end of this 

procedure, we will have the value of cP doubled. 

To get the correct value of this parameter, it would 
e thus necessary to divide the obtained value by 
two. 

 
For the example given in section 3, Tables 3 to 6 
summarize the computation results pixel by pixel of 
each shape of Figures 6(a) and 6(b). For this the 
labelled pixels shown in Figures 6(c) and 6(d) were 
used. 
 

From Table 4, as mentioned before, we note that 

the value for cP is double the expected value. 

Before applying equation 5, the value for cP   

should be divided twice. Thus 22 / 2 11cP   . 

Because from this table, P = 50 and NR = 6, then: 
 

 50 6 2 11 2 6 62 44 18
3.

6 6 6
E

    
     

 

Again, the reader can easily verify that this is the 
correct value for E from this example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Total values for the image 
 

P 
cP  

 
NR 

 
50=10+20+10 22=2+10+10 

 
6=0+3+3 

Table 4. Total computation results for the three shapes of binary image shown in 
 Fig. 6 (c) by means of the described procedure. 

Shape 1: Shape 2: 

Píxel 
No. 

P 
cP  NR Píxel 

No. 
P 

cP  NR 

1 4 2 0 9 5 1 0 
2 4 2 0 10 4 2 0 
3 4 2 0 11 4 2 0 
4 4 2 0 12 4 2 0 
5 4 2 0 13 4 2 0 
6 4 2 0 14 5 1 0 
7 4 2 0     
8 4 2 0     
- 32 16 0 - 26 10 0 

Table 5. Computation results for each of the three shapes of binary image shown in Fig. 6(d) by means of the described 

procedure. The last row of this table contains the total values of P, cP  and NR for each of the two shapes 1 and 2. 
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Discussion 
 
From these two examples, it can be seen that the 
proposed new equation and the algorithmic 
procedure described in this section, shows that the 
Euler feature of a binary image composed of 
shapes formed of hexagonal cells can be 
computed. Also as the partial results are 
independent from pixel to pixel, the proposal can 
be applied in parallel, allowing us to speed up the 
computing procedure. 
 
When applying the described algorithmic 
procedure, the user has to take into account the 

fact that the value of cP will be double the expected 

value. So, before applying equation 5, the value of 

cP should be divided twice. 

 
5. Conclusions 
 
In this paper a new proposal to compute the Euler 
number or genus of a binary image composed of 
hexagonal cells is described. The computation of 
this important feature is based on information 
directly obtained from the cells of the shapes in the 
image: the perimeter, the contact perimeter and 
the number of times a cell is redundant.  
 
The main features of this proposal are its simplicity 
and originality. As shown, the computation of the 
Euler number in this case can be applied in 
parallel. The implementation of the procedure in a 
FPGA will certainly allow computing the Euler 
number of a binary image in real time applications. 
 
With investigations in the development of new 
hexagonal-cell-based CCD technologies, certainly 
algorithms such as reported in this paper, will in 
 

 
 
 
 
 
 
 
 
 
 
 
 
 the near future find many applications that can be 
more efficiently handled than with standard 
rectangular-cell-based CCD sensors. 
 
At the moment we are adapting this proposal to 
work in the case of squared and triangular cells. 
Also we are extending it to be applied in the case 
of cubical cells. 
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Annex 
 
Proof of Proposition 1. 
 
Proof. Instead of an exhaustive proof of proposition 1, 
we provide an intuitive proof. For the base case, and 
without lost of generality we suppose that the image 
contains one shape composed of just one cell as shown 

in Figure 8(a). In this case we have that P = T, 0cP 
and NR = 0, thus by direct calculation E = T / T = 1. 
 

 
 
Fig. 8. (a) Initial shape composed of one base cell. (b) 
First case: The additional cell is connected to the initial 
cell by one of its sides. (c) Second case: The additional 
cell is not connected to the initial cell. 
 

Now, let 1nS   be the shape composed of the initial 

shape nS  plus any cell. Let L be the number of contact 

sides of this new cell and 'cP  and 'P  be the 

corresponding perimeters of 1nS  , thus: 

 

LPP cc '  

  LTPLTLPP 2'   

 

This means that for the new shape 1nS   the contact 

perimeter is increased by L while the perimeter is 
decreased by L and increased by (T - L). This 
corresponds to the contribution of the new cell to the 
perimeter. Let also NR’ be the number of redundant cells 
added to the original shape.  
 

Now if 'E is the new value for the new shape 1nS  , and 

because no increment to NR’ occurs  'NR NR , 

then: 
 

     

   

' 2 ' 2 ' 2 2 2
'

2 2 1
    1 .

c c

c

P T P NR P T L T P L NR
E

T T
P T P NR T L

E L
T

        
 

    
   

 

 

As can be seen from the new shape 1nS  , the value of 

E is increased by 1 and decreased by L. 
 

Now let us study the two possible cases: 
 
Case 1: The added cell is connected to the initial cell by 
one of its sides (for a possible arrangement, refer to Fig. 
8 (b)).  
 
In this case we should have: E’= E. 
 

In this case L=1, thus  ' 1 1E E E    . 
 
Case 2: The added cell is not connected to the initial cell 
(for an example, refer to Fig. 6 (c): 
 
In this case we should have: E’ = E + 1. 
 
In this particular case 0L  , thus 

' 1 0 1E E E     . 
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