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ABSTRACT 
In this paper we present a study to assess the performance of dynamic naive Bayesian classifiers (DNBCs) versus 
standard hidden Markov models (HMMs) for gesture recognition. DNBCs incorporate explicit conditional 
independence among gesture features given states into HMMs. We show that this factorization offers competitive 
classification rates and error dispersion, it requires fewer parameters and it improves training time considerably in the 
presence of several attributes. We propose a set of qualitative and natural set of posture and motion attributes to 
describe gestures. We show that these  posture-motion features increase recognition rates significantly in comparison 
to motion features. Additionally, an adaptive skin detection approach to cope with multiple users and different lighting 
conditions is proposed. We performed one of the most extensive experimentation presented in the literature to date 
that considers gestures of a single user, multiple people and with variations on distance and rotation using a gesture 
database with 9441 examples of 9 different classes performed by 15 people. Results show the effectiveness of the 
overall approach and the reliability of DNBCs in gesture recognition. 
 
Keywords: Gesture recognition, hidden Markov models, motion analysis, visual tracking. 

 
RESUMEN 
En este documento se compara el desempeño de los clasificadores Bayesianos  dinámicos simples (CBDSs) y los 
modelos ocultos de Markov (MOM) en el reconocimiento visual de ademanes. Los CBDSs extienden a los MOM 
incorporando suposiciones de independencia condicional entre los atributos dado el estado del modelo. Esta 
factorización ofrece porcentajes de clasificación y dispersión de error competitivos, un menor número de parámetros 
para el modelo y una mejora considerable del tiempo de entrenamiento. Para describir los gestos se propone un 
conjunto de atributos simples de postura y movimiento que incrementan el porcentaje de reconocimiento en 
comparación a modelos que sólo utilizan información de movimiento. Adicionalmente, se propone un esquema de 
detección de color de piel adaptativo para considerar diferentes usuarios y condiciones de iluminación. Se describe 
uno de los conjuntos de experimentos más exhaustivos presentados en la literatura de reconocimiento de gestos 
hasta el momento que incluyen gestos de un usuario, de diferentes personas, con variaciones de distancia y de 
rotación. Se presenta también una base de datos con 9441 ejemplos de 9 gestos de 15 personas. Los resultados 
muestran la efectividad de esta aproximación y la confiabilidad de los CBDSs en el reconocimiento de gestos. 
 

 
1. Introduction 
 
Hidden Markov models are successful and widely 
used classifiers in gesture recognition [1,2,3,4]. In 
the presence of several attributes, however, 
observation probability functions of HMMs imply 
conditional dependence among attributes given the  

 
 
state. This makes difficult to visualize 
independence relationships of attributes and their 
statistical behavior. Clarity in knowledge description 
is essential to a better understanding of gesture 
execution and recognition processes. Naive 
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Bayesian classifiers (NBCs) strongly relax the 
assumption of conditional dependence. This 
factorization improves clarity in the description of 
the attributes and decreases the number of 
parameters to be estimated. Moreover, NBCs are 
competitive to other more complex probabilistic and 
non-probabilistic classifiers, even when conditional 
independence does not hold [5,6]. However, in 
contrast with HMMs, NBCs do not naturally cope 
with sequential data. For these reasons, a model 
that combines the advantages of HMMs and NBCs 
in gesture recognition is desirable. 
 
In this paper, we present an extensive empirical 
comparison between dynamic naive Bayesian 
classifiers [7] and HMMs for gesture recognition. 
DNBCs incorporate the concept of conditional 
independence among attributes given the state into 
standard HMMs to combine the descriptiveness 
capabilities of NBCs with the capacity of HMMs to 
model data streams. These models have received 
diverse names and used in different problem 
domains in the past. For example, multidimensional 
HMMs (MDHMMs) [8] to mix various sources of 
information in modeling teleoperation tasks for a 
robot manipulator; hybrid Naive Bayes HMMs 
(HNBHMMs) [9] to merge individual word 
information to classify multi-page documents; 
Output HMMs (OHMMs) [10] to combine expert's 
opinions in gene classification; and multi-
observation HMMs (MOHMMs) [11] for fusioning 
behavioral patterns in the detection of abnormal 
actions in scenes. More recently, similar ideas have 
been applied successfully in activity recognition 
[12,13]. In all these works, factorization is proposed 
for mixing various sources of information. However, 
this is implicitly done in common HMMs 
applications in which, as stated above, each 
observation is defined by the conjunction of each 
feature value. By contrast, in our work we 
emphasize the importance of DNBCs to decrease 
the number of parameters of the model and 
improve training time, clarity in the representation 
of the attributes and to allow structural learning and 
feature selection [14,15]. Additionally, no 
methodical and systematic experimental evidence 
on the performance of this extension in comparison 
to standard HMMs in gesture recognition has been 
presented in the literature. 
 
We propose to describe gestures in terms of a set 
of qualitative and fairly simple discrete motion and 

posture features. We show that posture and motion 
attributes increase recognition rates in comparison 
to models with motion features only, with gestures: 
a) taken from a single person, b) from multiple 
people, and c) with variations on distance and 
rotations. In addition, we describe a monocular 
visual system with a simple adaptive skin color 
strategy to cope with different users and lighting 
conditions. This visual system was used to 
construct a gesture database that comprises 9441 
gestures samples of 9 gestures classes executed 
by 15 people used in our experimentation. This is 
one of the more extensive set of experiments to 
compare probabilistic graphical models in gesture 
recognition, with one of the highest number of 
gesture samples documented in the literature to 
date. Our results demonstrate the competitiveness 
of DNBCs in comparison to standard HMMs to 
learn, represent and classify gestures, and the 
effectiveness of the overall approach in the gesture 
recognition problems described above. Early 
results were presented in [16]. Here, we elaborate 
new experiments and results along with several 
improvements and corrections to our methodology. 
The main contributions of this paper are 1) DNBCs 
that provide competitive recognition results and 
efficient learning, 2) a set of simple and natural 
posture and motion features to effectively describe 
gestures, 3) improvement of posture-motion 
features to describe gestures, and 4) a more 
complete set of experiments than previous work 
presented in literature to date. 
 
1.1 Outline 
 

This document is organized as follows: Section 2 
reviews various extensions to HMMs and different 
alternatives for the selection of gesture features. In 
section 3, we describe DNBCs. The adaptive 
strategy of our visual system is presented in section 
4. Section 5 and 6 describe our gesture database 
and posture and motion features, respectively. 
Experiments and results for the validation of 
DNBCs and their comparison to HMMs, and a brief 
discussion, are described in Section 7. Finally, 
Section 8 summarizes our conclusions. 
 

2. Related work 
 

2.1 HMMs Classifiers for gesture recognition 
 
HMMs describe statistical properties of dynamic 
gestures, with well-known probability estimation 
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algorithms for learning and recognition [17] -See 
Fig. 1a for a Bayesian network description of these 
models; shaded nodes mean hidden variables. 
Several extensions to standard HMMs have been 
proposed to deal with particular issues in gesture 
recognition. Parametric HMMs (PHMMs) [18] 
represent gestures that involve spatial variations in 
their execution -e.g., ''This length'' or ''Go there''. In 
PHMMs, observation variables are conditioned to 
the state variable and one or more parameters that 
account for such variations -Fig. 1b. Parameter 
values are known and constant on training. On 
testing, values that maximize the likelihood of the 
PHMM are recovered via a tailored EM algorithm. 
Coupled HMMs (CHMMs) [19] join HMMs by 
introducing conditional dependencies between 
state variables -see Fig. 1c. These models are 
suitable to represent influences between sub-
processes that occur in parallel -e.g., two-hand 
gestures. Input-Output HMMs (IOHMMs) [20] 
consider an extra ''input'' parameter that affects the 
states of the Markov chain, and optionally, 
observation variables, -Fig. 1d. The input variable 
corresponds to the gesture observations.  The 
output signal of IOHMMs is the class of the gesture 
that is being executed. A single IOHMM can 
describe a complete set of gesture classes. Parallel 
HMMs (PaHMMs) [21] require fewer HMMs than 
CHMMs for composite processes, by assuming 
mutual independence between HMMs -Fig. 1e. The 
idea is to construct independent HMMs for the 
possible motions of each hand and combine them 
by multiplying their individual likelihoods. PaHMMs 
with the most probable joint likelihood define the 
desired class. Hierarchical hidden Markov models 
(HHMMs) [22] arrange HMMs into layers at 
different levels of abstraction -Fig. 1f. In a two-layer 
HHMMs, the lower layer is a set of HMMs that 
represents sub-gesture sequences. The upper 
layer is a Markov chain that governs the dynamics 
of these sub-gestures. Layering allows re-using the 
basic HMMs simply by changing upper layers. 
Mixed-state dynamic Bayesian networks (MSDBNs) 
[23] combine discrete and continuous state spaces 
into a two-layer structure. MSDBNs are composed 
by a HMM in the upper layer and a linear dynamic 
system (LDS) in the lower layer. LDS is used to 
model transitions between real-valued states. 
Output values of the HMM drive the linear system -
Fig. 1g. In MSDBNs, HMMs can describe discrete 
high-level concepts, such as a gesture grammar, 
while the LDS describes the motion of the hand in a 

continuous-state space. Hidden semi-Markov 
models (HSMMs) [24] exploit temporal knowledge 
of the process by defining explicit durations on 
each state -Fig. 1h. HSMMs are suitable to avoid 
an exponential decay of the state probabilities 
when modeling large observation sequences. More 
recently, derivations of HMMs that incorporate 
some of the characteristics presented above have 
been proposed as well [25,26]. Partially observable 
Markov decision processes (POMDPs) [27] 
generalize HMMs by including action and reward 
functions –Fig. 1i. The POMDP framework is 
usually used to quantify the ''convenience'' of the 
states of a system although its real situation is not 
completely known, and hence, to plan actions to 
reach a goal state. In [28] POMDPs are focused on 
actions to infer: i) the reaction to be taken in 
response to a gestural stimulus, ii) the cause that 
generates a gesture, or iii) decisions to maximize 
the return in a cooperative game between two 
players using gesture communication. 
 
HMMs-based architectures have been successfully 
applied to challenging problems faced by novel 
applications of gesture recognition. In general, 
these approaches incorporate new variables to 
represent specific concepts into the standard 
HMMs framework, or factor the state space into 
various Markov chains to simplify its representation. 
Despite the usefulness of this framework, little 
attention has been paid to other important aspects 
of the problem, such as factorization to reduce the 
number of parameters of gesture features and to 
improve its description, and the evaluation of this 
extension in gesture recognition. 
 
2.2 Gesture features 
 
The selection of accurate and general gesture 
features is one of the most pursued goals in 
gesture recognition [29,30,31,32,33,34]. In practice, 
features are selected according to the 
characteristics of the gestures, and the application 
domain. Roughly speaking, alternatives to describe 
gestures can be divided in a) motion features, b) 
posture attributes, and c) posture-motion features. 
In the early 70s, Johannson  [35] showed that 
isolated visible points over the joints of human 
actors in motion are enough to infer postures and 
activities. He named this visual phenomenon 
biological motion. After his findings, many authors 
have focused on features that emphasize motion  
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signals as the core information to describe gestures 
[36,37,38]. One representative example is temporal 
templates [39]. This technique -inspired in 
stroboscopic photography- collapses ''motion 
appearance'' into a single image, without regarding 
posture information to classify activities. 
 
Another alternative is to see gestures as 
sequences of body postures [40] or global image 
coordinates -e.g., ''raw'' (x,y) data. In accordance to 
this scheme, some neurobiological experiments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [41] have shown that motion information may be 
inferred from form stimuli, more than from form 
motion, as it was suggested by Johannson's work. 
These results have generated a live research field 
in feature selection from the neurobiological point of 
view [42,43,44]. 
 
Stokoe [45] suggests that gestures are 
characterized by motion, posture, orientation and 
position. In this form, some approaches have 
described gestures with a hybrid set of posture-

Figure 1. Bayesian networks representation of (a) standard HMMs with state and observation variables
St

and 
Ot , respectively, (b) PHMMs with a single parameter θ, (c) 2-Coupled HMMs, (d) IOHMMs with the 

input parameter  
I t , (e) PaHMMs with two independent HMMs, (f) HHMMs with the Markov chain 

transitions in the upper layer denoted by 
U t and 

U t+1 , (g) MSDBNs with a HMM in the upper layer, and 

a LDS in the lower layer indicated by  
Lt and Lt+1; in this case, 

Y t and 
Y t+1 correspond to 

observations obtained from the process, (h) HSMMs with duration variables  
Dt and

Dt+1 ,  (i) POMDPs 
with an action function A and a reward function R. Shaded nodes indicate hidden states. Dashed arrows 

indicate optional dependencies. Models are unrolled two times only when required. 
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motion features [46,47,48]. However, most of these 
proposals focus on the architectural design of the 
classifiers, without regarding on the discriminatory 
power of the features. This is usual in gesture 
recognition, where features are evaluated in 
conjuction with classifiers as a whole. Only a few 
tests for comparison of posture and motion features 
have been reported in literature. Campbell et al. 
[49] conducted experiments to test ten different 
feature sets based on posture -e.g., raw data, or 
polar coordinates- and motion information -i.e., 
Cartesian, polar velocities, instantaneous speed 
and local curvature using HMMs. Their results 
showed that velocity-based features obtained better 
recognition rates than posture data. Vogler and 
Metaxas [50] presented a comparison of ten feature 
sets of 2D and 3D posture and motion attributes for 
the classification of ASL.  The attributes are similar 
to those used by [49] and include (x,y,z) data, polar 
and spherical coordinates of the hands, and its 
derivatives. However, in contrast to Campbell's 
work, their results showed that posture attributes 
slightly outperformed velocity attributes. Recently, 
coincidently in time to our evaluation on the 
combination of posture and motion features [16], 
Ahmad et al. [51] mixed 2D optical flow with a 
description of the human body shape based on 
principal component analysis for activity 
recognition. Their results were similar to our 
findings. These authors showed that the 
combination of posture and motion information 
improves recognition rates in activity recognition in 
comparison to models that consider posture or 
motion features only. However, it is difficult to draw 
strong conclusions from their results due to the 
small number of gesture classes and examples. 
Because of this, more extensive and conclusive 
experiments showing the importance of the 
combination of posture and motion data on different 
gesture recognition problems, and how these 
attributes can be represented, is still required. The 
approach presented in this document is a 
contribution to solve these problems. 
 
3. Dynamic naive bayesian classifiers 
 
In order to describe dynamic naive Bayesian 
classifiers, consider first a sequence 

 T,=t|S=S t 1,  that is a realization of the 

states of the process, wher 1≤ S t≤ N being N  
the number of possible states; and, a sequence 

 T,=t|A=A t 1,  wh ere each 
  Mm|A=A m
tt 1  is a set of M attribute 

values generated by the process at state St . 

Superscripts m identify a specific attribute, in our 
case, an individual gesture feature. 
 

Each attribute  m
tA can be either discrete or 

continuous, although in this paper we consider the 
finite discrete case only; let   

        mmmm
t Kk|kA  1 where   mK be 

the possible values of each attribute m . A 
dynamic naive Bayesian classifier has the joint 
probability function: 
 

  )S|(AP)S|(SP)P(S=S)P(A, t
m
t

T

=t

M

=m
t+t

T

=t




1 1
1

1

1
1  

 
(1) 

 

where )P(S1  is the prior probability value of being 

at state S1 at time t=1, )S|P(S t+t 1  is the 

transition probability between classes St and  
St+1 , and,   )S|P(A t

m
t is the probability function 

of the observed feature m at time t given the 

class St .  DNBCs follow two main assumptions: i) 
the first-order Markov property, and ii) the process 
is stationary. 
 
A DNBC is denoted as 

 .11 )S|P(A),S|P(S),P(S=λ t
(m)
tt+t The main 

difference between the DNBCs and HMMs 
probability functions [17] is the product 

  )S|(AP t
m
t

M

=m


1
 that stands for the assumption of 

conditional independence among attributes given 
the class -HMMs implicitly assume a joint 

.)S|P(A tt  If only a single attribute is considered 

or this attribute is product of the concatenation of 

several features, M=1 and (1) reduces to the 
joint probability function of a standard HMM. Figure 
2 shows a DNBC unrolled two times with three 
attributes. 
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Figure 2. Graphical representation of a DNBC 
 unrolled 2 times with 3 attributes. 

 
3.1 Parameter learning 
 
As usual in HMMs applications, the complete data 

pair S)(A,  is not available and only A is 

accessible. Maximum likelihood estimation (ML) [17] 
is a common criterion for the selection of the 

parameters λ that best explain the observed and 
unseen data. This parameter learning process can 
be performed for DNBCs by means of the Baum-

Welch algorithm [52] to iteratively improve P(A)   
until no relevant difference in consecutive 
likelihoods of the model is found. Equations to 

compute new expectations λ' can be derived using 
the Baum's auxiliary function as described in [53]. 
Following this procedure, re-estimation formulas are 
 

N,S,
λ)|P(A

λ)|SP(A,
=)λ'|P(S 1  11 1          (2) 

 
for prior states' probabilities. Transition probabilities 
are calculated as 
 

N,S,S,
λ)|SP(A,

λ)|S,S(A,P
=)λ',S|P(S 1+tt

t

t1+t

T

=t
t+t 




1

1

1
1

    (3) 

 

and finally, for each attribute (m)A :   
 

NS,Kk

,
λ)|S(A,P

k,λ)δ|S(A,P
=)λ',S|k=P(A

t
(m)(m)

t

T

t=

(m)(m)
tA

t

T

t=
t

(m)(m)
t







11
1

1
     

 
(4) 

 

where (m)(m)
t(m)(m)

tA
k=iffA=k,δ 1 , and 0 otherwise. 

Given that parameters )S|P(S t+t 1 and )S|P(k t
(m)

do not depend on time t ; hence 
i)=S|j=P(S=i)=S|j=P(S t+t 112  for 

]T[t 12,  and ji, , and i)=S|P(k t
(m) , for  

T][t 2, and i . The estimation of the previous 
distributions is based on the well-known variables 

forward αt,i , backward  β t,j , and ξ t,i,j , the joint 

probability of moving from state i  to state j at 
time . The computation of these variables must be 
modified to reflect the fact that  

λ),S|(AP=λ)|S,P(A t
(m)
t

M

=m
tt 

1

. The forward 

variable is reformulated as 
 

λ)i,=S|(APλ)]j,=S|i=P(Sα[
=

λ)i,=S|λ)]P(Aj,=S|i=P(Sα[
=

λ)|i=S,,P(A=α

t
(m)
t

M

=m
tt

N

=j
jt

tttt

N

=j
jt

ttit,











1
1

1
1,

1
1

1,

 
 

(5) 
 
The backward variable is computed as follows: 
 

],i)β=S|(APj)[=S|i=(SP
=

i)β=S|j)P(A=S|i=(SP
=

λ)j,=S|A,,A,A,P(A=β

i+t+t
(m)
+t

M

=m
t+t

N

=i

i+t+t+tt+t

N

=i

tT2+t1+ttjt,

1,11
1

1
1

1,111
1







 
 
 

(6) 
 

and finally, ξ t,i,j is  
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j+t+t
(m)
+t

M

=m
t+t

N

=i

N

=j
it,

j+t+t
(m)
+t

M

=m
t+tit,

j+t+t+tt+t

N

=i

N

=j
it,

j+t+t+tt+tit,

t+tji,t,

j)β=S|(APi)=S|j=P(Sα

j)β=S|(APi)=S|j=P(Sα
=

j)β=S|i)P(A=S|j=P(Sα

j)β=S|i)P(A=S|j=P(Sα=

λ)A,|Sj,=P(S=ξ

1,11
1

1
1 1

1,11
1

1

1,111
1 1

1,111

1







 
 

(7) 
 
Parameter adjustment must be done for each 
attribute independently; however, factorization does 
not affect considerably the number of operations to 
compute the intermediate parameters of the Baum-
Welch algorithm. For example, the number of 
multiplications performed to compute forward 

variables is ))(T+N(N 11   for standard HMMs; 

for DNBCs, this number increases only to

.1)M)(T+N(N   Notwithstanding, as we will 

show below, attribute factorization reduces 
importantly the training time required by DNBCs in 
comparison to HMMs. Scaling and multiple 
observations sequences can be considered by the 
method proposed in [54]. 
 
3.2 Classification 
 
Classification of a sequence of attribute 

observations A is as usual. Given a set of L

DNBCs   ,L,=i|λi 1, , each of them trained 

with samples of a particular gesture class, compute 


N

=j
jT,ij

N

=j
i α=)λ|S(A,P=)λ|P(A

11

for each λ i , by 

using the Forward algorithm. It is assumed that the 
λ i with higher probability, i.e., corresponds 

),λ|P(Aargmax iiλ
to the gesture class that has 

been executed. 
 
 
 

4. Visual system 
 
A monocular visual system based on an adaptive 
skin detection scheme to deal with different users 
was developed. The system is initiated with a 
person standing in a rest position, at a distance 
between 1.5m and 4m in front of the video camera. 
Face detection is performed using the face detector 
algorithm presented in [55]. The image subregions 
where it is expected to find the right-hand and torso 
of the person are estimated with body proportions 
based on face dimensions [56]. Figure 3 shows a 
result of this procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Estimation of the torso and hand  

positions of the person. 

 
Hand segmentation and tracking proceeds as 
follows: We constructed a Bayes classifier 
accordingly to [57] to label pixel colors in the rgb 
space as skin or non-skin. We sampled 1,975,242 
skin pixels taken from 30 people and 19,552,655 
non-skin pixels under various lighting conditions to 
build general skin and non-skin probability 

functions, skin)|(rgbPg  and ¬skin),|(rgbPg  

respectively. Thirty-two class intervals were defined 
for each $rgb$ color channel. Once the hand is 
detected, a small skin-color search window is 
applied for its tracking. A direct likelihood 

comparison rule  ¬skin)|(rgbP>skin)|(rgbP gg

was used to speed up the system. This approach 
worked well over four years in several 
demonstrations in our Lab [58]. A video that shows 
the application of this system for telecontrolling a  
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mobile robot can be found at 
http://www.youtube.com/watch?v=opAUo0zJHGY. 
However, a new camera and testing environment 
with intense white lighting and white walls caused 
the camera to perceive low-saturated colors that 
did not correspond to the probability distributions 
initially created. Because of this, the visual system 
was unable to locate the hand accurately, even with 
other color models such as Hue-Saturation-Value. 
To deal with this problem and different users, an 
adaptive scheme was developed by combining the 

general )|(rgbPg  skin and non-skin probability 

functions, with ''personal'' ones, ),|(rgbPp 
created on-line by sampling randomly the face and 
torso of the user. These color functions are 
combined by the independent likelihood pool [59] 
rule defined as [16] 
 

)|(rgbP)|(rgbP=)|ILP(rgb pg       (8) 
 

This way, one pixel is classified as skin iff: 
 

¬skin)|ILP(rgb>skin)|ILP(rgb            (9) 
 
The CAMSHIFT algorithm [60] is used to track the 
hand motion over the rest of the image sequence. 
This strategy allows the visual system to track the 
hand effectively in our experimental conditions. An 
example of the tracking system is shown in Figure 
4. A video showing this visual system is available at 
http://www.youtube.com/watch?v=dFff01Tjvww. 
 
An intuitive explanation of the positive results with 
the ILP approach is that it weights general color 

distributions with precise information obtained from 
the images on-line. Other rules such as linear 
combination of probabilities: 

)|(rgbPw+)|(rgbPw=ILP(rgb) p2g1   did not 

generated the same results, probably because of 

the need to select  accurate weights w1 and  
w2 . However, a deeper analysis of the potential of 
this rule is beyond the scope of this document, and 
more experimentation is required to provide 
conclusive arguments on the application of this 
scheme for skin detection. 
 
5. Gesture database 
 
We propose 9 dynamic gestures oriented to interact 
with a mobile robot -see Fig. 5. Gestures were 
performed by 10 men and 5 women with the right 
arm at 3m in front of the video camera. To minimize 
the adverse effects of the visual processing errors 
over the feature extraction step, a blue-screen 
background was set and each participant was 
asked to use long-sleeved clothes of colors 
different from skin color. A short video was used to 
instruct people to perform each gesture class 
before starting its corresponding sampling round 
and no special recommendations were given 
afterwards. Except for one person named here 
man10, none of the other people had experience 
with the visual system or previous training 
executing gestures. The complete set of examples 
is composed of 7308 gestures. Every person 
contributed with a different number of samples; 
however, there are recorded at least 50 samples of 
each gesture per person. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Example of the results of hand tracking through a sequence of 3 images. 
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Each sample is composed by the length T of the 
observation sequence -that ranges from 6 to 42 
observations- and the gesture data itself.  Every 
observation is composed by i) (x, y)-coordinates of 
the upper and lower corners of the rectangle that 
segments the right hand, ii) (x, y)-coordinates of the 
upper and lower corners of the rectangle that 
segments the user's torso, and iii) (x, y)-coordinates 
of the center of the user's face. This coarse posture 
data enable us to easily transform the information 
to different feature sets. All coordinates are relative 
to the usual upper-left corner of the image. Data 
was recorded on plain text files. Spatial criterion 
about the position of the hand was used to start 
and end the capture of each gesture example. 
Observations were sampled every 4 images at a 
frame rate of 30 images per second approximately. 
This database can be downloaded from 
http://sourceforge.net/projects/visualgestures/. 
Additionally, two more sets of gestures were 
constructed. One person -labeled as man10- 
executed the 9 gestures at distances of 2m and 4m 
from the video camera. The same person 
performed again the 9 gestures with rotations of 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

± 45 ° around the vertical axis at a distance of 3m. 
In the rotated sampling round we noted that the 
visual system worked well, although it was not 
originally designed for that purpose. The total 
number of gesture samples is 1081 for the 
database with distance variations, and 1052 for the 
database with rotation changes. Again, there are at 
least 50 samples per gesture at each distance and 
orientation. 
 
6. Gesture attributes 
 

From the coarse posture information described in 
Section 5, we extracted the following 7 gesture 
attributes: a) 3 features to describe motion, and b) 

4 to describe posture. Motion features are Δarea -

or changes in hand area-, Δx and Δy -or changes 
in hand position of the XY-plane of the image. The 
conjunction of these three attributes let us estimate 
hand motion in the Cartesian space XYZ. Each one 
of these features takes only one of three possible 
values: {+, -, 0} that indicate increment, decrement 
or no change, depending on the area and position 
of the hand in a previous image of the sequence.  

 
 

Figure 5. Gesture set: (a) come, (b) attention, (c) stop, (d) right, (e) left, (f) turn left, (g) turn right, (h) 
waving-hand and (i) pointing; (j) initial and final position for each gesture. 
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For example, if the hand moves to the right, then 
Δx = +, if its motion is to the left, Δx = - and if 

there is no motion in the -axis, Δx = 0. An 
example on how these variables are instantiated 
accordingly to the user's hand motion is presented 
in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Figure 6: Example of motion features. In this 
image, the hand motion is performed to the right of the 

observer and downwards, so Δx = + and Δy = -; red 
points indicate the center of the hand. Given that the 

hand area does not change significantly, Δarea = 0. 

 
Posture features named form, right, above, and 
torso describe hand orientation and spatial relations 
between the hand and other body parts, such as 
the face and torso. Hand orientation is represented 
by form. This feature is discretized into one of three 
values: + if the hand is vertical, - if the hand is 
horizontal, or 0 if the hand is leant to the left or right 
over the XY plane. right indicates if the hand is to 
the right of the head, above if the hand is above the 
head, and torso if the hand is in front of the torso. 
These three latter attributes take binary values, 
true or false, that represent if their corresponding 
condition is satisfied or not. An example of posture 
extraction in terms of these variables is depicted in 
Figure 7. This feature set does not make explicit 
use of magnitude components as usual on other 
approaches. The intention is rather to represent 
gestures through qualitative descriptions such as 
''The hand is moving to the user's right and upwards'' 
or ''The gesture is performed above the head''.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Example of the posture features. The image 
shows that the hand has a vertical position, below  
the head, to the right of the user and not over the 

user's torso, so the attribute values are above 
 = false, right = true, torso = false, and form = +. 

 
7. Experiments and results 
 
We conducted three main experiments to compare 
classification and learning performances of DNBCs 
and HMMs. In the first experiment, gestures taken 
from the same person are used for recognition. In 
the second experiment, we evaluate the 
generalization capabilities of the classifiers by 
training and testing with gestures from different 
people. Experiment three considers gestures with 
variations on distance and rotation. First, we 
describe our experimental setup. 
 
7.1 Experimental setup 
 
Our visual system processes up to 30 f.p.s. The 
hardware is an IBM PC Intel Pentium 1.6 GHz, 
512Mb RAM, a Sony EVI-D30 camera and a WinTV 

frame grabber. The image resolution is 480640  
pixels. Sample code of the visual system is available 
at http://sourceforge.net/projects/visualgestures/. 
 
All the experiments were carried out with DNBCs 
and HMMs with posture-motion on the one hand, 
and motion features only on the other. Figure 8 
shows a graphical description of the 4 models. For 
DNBCs -Figs. 8a and 8b-  instead of assuming 

statistical independence between Δx and Δy

given the class variable, they were joined as a 
single attribute. Doing this, we obtained better 
classification results for these classifiers. All models  
 

 



 

A Comparison of Dynamic Naive Bayesian Classifiers and Hidden Markov Models for Gesture Recognition, H.H. Avilés‐Arriaga et al., 81‐102

Journal of Applied Research and Technology 91

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
were set to follow standard ''linear'' transition 
topologies without skip transitions, initialized to an 
uniform discrete probability distribution. 
 
The number of parameters to specify state 
observation distributions of HMMs with posture-
motion features is 648 and with motion data only is 
27. With DNBCs, parameters are 21 in the former 
case, and to 12 in the latter case. For training, 
stopping criterion is achieved if the absolute 

difference of  )|P(A log  of two consecutive  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models in an EM iteration is less than 1.0E-1. The 
whole gesture sequence was used without 
preprocessing. We use a modified version of the 
Tapas Kanungo's HMMs Toolkit [61] for training 
and testing HMMs and DNBCs. Recognition rate is 
calculated as follows: 
 
7.2 Individual recognition 
 
We use gesture samples performed at 3m in front 
of the video camera in the experiments presented  
 

100
samples  testingofNumber 

classifiedcorrectly  gestures ofNumber  = rate nrecognitio                         (10) 

 
 

                
 

(a)                                                                       (b) 
 
 
 

                  
 
 

(c)                                                                     (d) 

Figure 8. Graphical representation of DNBCs and HMMs considered in our experiments. (a) 
DNBCs with posture-motion features, (b) DNBCs with motion features, (c) HMMs with 

posture-motion information and (d) HMMs with motion attributes. Attributes within 
parenthesis conform a single joint probability distribution. 
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in this section. For a single participant, 50 gestures 
of each class were selected randomly. From this 
pool, 20 gesture examples were chosen at random 
to construct a training data set. The remaining 30 
samples compose the test data set. Training and 
testing examples are the same for all classifiers. 
The experiment was performed for each one of the 
15 participants and repeated 10 times to average 
results. Table 1 shows the average error rate, total 
training time and the number of EM iterations of the 
four models as a function of the number of states of 
the model. As it is shown, the error rate tends to 
decrease as the number of states increases for all 
models. This indicates that commonly suggested 
topologies that range from 3 to 6 states 
[49,62,63,64] could not be adequate enough in all 
situations in gesture recognition. However, 
performance is not improved importantly beyond 12 
states and slightly decreases with 18 states. Except 
for the experiment with a 3-state transition topology, 
DNBCs outperform recognition performances of 
HMMs. It also shows that DNBCs benefit training 
time significantly, without compromising recognition 
rates. In particular, training time of DNBCs with 
posture-motion data is consistently around one-

tenth of the time required for HMMs. This difference 
is due to the number of possible observations of the 
models that is higher for HMMs. The number of 
iterations required for HMMs and DNBCs with and 
without posture does not vary considerably on each 

trial. This is because )|P(A log of these models 

are similar, as it is shown below. For the rest of the 
experiments, we selected a 12-state transition 
topology as a compromise between training time 
and recognition results. 
 
It is useful to measure how erroneous responses 
are distributed among classes by the classifiers.  
We follow the method introduced by R. van Son to 

calculate error dispersion measures d s and d r
from confusion matrices [65]. This method relies on  
entropy-base measure perplexity [66]. is the mean 
number of wrong responses per correct class; is 
the mean number of samples incorrectly classified 
on each possible class. These indices account for 
dispersion through the horizontal and vertical 
dimensions of the confusion matrix, respectively. 
The higher the dispersion is, the higher the value of 
these measures should be. To obtain these  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Posture-motion models Motion models 

  
Average 
error rate 

(%) 

Total  
Average 
error rate 

(%) 

Total 

 Training time 
(Sec) 

Number of 
iterations 

Training time 
(Sec) 

Number of 
iterations 

 

Number 
of states 

 
DNBCs 

 
HMMs 

 
DNBCs 

 
HMMs 

 
DNBCs 

 
HMMs 

 
DNBCs 

 
HMMs 

 
DNBCs 

 
HMMs 

 
DNBCs 

 
HMMs 

3 3.81 3.02 36.77 322.82 13964 25007 28.43 28.71 28.26 44.28 13238 16548 

6 2.37 2.6 126.7 1047.3 23305 28449 14.28 18.66 99.63 134.03 24719 25126 

9 1.94 2.3 288.19 2344.5 29296 31676 13.28 16.73 217.35 303.96 32306 32707 

12 1.78 2.18 516.63 4360.37 33270 34540 13.03 15.75 380.59 556.04 37183 38472 

15 1.78 2.14 778.02 7805.28 34773 35940 13.42 15.84 599.79 868.54 41116 41258 

18 1.72 2.2 1135.12 11854.8 36885 38696 13.82 16.09 897.48 1272.06 44718 44166 

Table 1. Average training time, total training time and number of iterations for DNBCs and HMMs with and without 
posture data, as a function of the number of states in the transition topology. 
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measures, we calculated cumulative confusion 
matrices by pooling matrices of DNBCs and HMMs 
classifiers generated in the experiment with 12-
states, for all the participants. Table 2 shows the 
values of these measures. For comparison 

purposes, consider a 99 confusion matrix with a 
uniform distribution. For this matrix, error rate is 

88%, and d s = d r = 8, i.e., 8 is the mean number 
of entries in which misclassifications are distributed. 
DNBCs with motion data provide lower error 
dispersion in comparison to HMMs with the same 
data. By contrast, DNBCs with posture and motion 
attributes generate slightly higher values than the 
corresponding HMMs. Notwithstanding, this latter 
difference does not seem to be significant in 
comparison to the dispersion values obtained from 
the uniform error distribution. 
 
Figure 9a shows recognition rates for each person 
following this setup. Classifiers with posture and 
motion attributes improve recognition rates 
significantly in comparison to classifiers with motion 
attributes in all cases.  Figures 9b and 9c depict 
average number of iterations and average training 
time to construct the classifiers, respectively. Figure 

9d presents )|P(A log  for each model. 

 
In order to take a closer look on the performance of 
these models, an independent experiment was 
performed by varying the number of training 
samples for man10. In all trials, 30 examples 
selected at random are used for testing. Figure 10 
shows the average recognition rate on 10 runs of 
the experiment as a function of the number of 
training examples. The only trial where HMMs 

clearly outperform DNBCs is the one training 
sample case with motion models, with a difference 
of 8.74%. However, this difference could not be 
meaningful at all, since HMMs rate is hardly above 
50% and, it is somewhat unrealistic to expect 
reliable recognition rates with one or two training 
examples using motion only. Figure 11a shows the 

progression of  )|P(A log of each classifier as a 

function of the number of EM iterations for the 
same gesture example. It is shown that DNBCs 
converge faster than HMMs. To evaluate how 
DNBCs reflect the evolution of a gesture, we 
computed the most probable states path of each 
model via the Viterbi algorithm -Figure 11b. It can 
be seen that paths are quite similar among all 
models and also observations spread uniformly 
over the 12 states in all cases. 
 

7.3 Experiments with multiple people 
 
It is common to construct and validate gesture 
models with samples taken from a single person. 
We agree with previous discussions that it is 
difficult to correctly recognize gestures from people 
not considered on training. However, in various 
applications, recognition must be performed with 
gestures from people not previously presented to 
the classifiers. Few systematic work has been done 
to test the behavior of the classifiers under this 
situation. To evaluate this, we use the classifiers 
constructed in the previous experiment for each 
person, to classify gestures from the remaining 14 
people. For testing, we randomly extracted 2 
samples per gesture from each personal database, 
excluding gestures from the person for whom the 
classifiers were constructed. In this form, a test set 
of 48 samples per gesture was generated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  d s  d r  

 DNBCs motion-posture 1.69 1.69 

 HMMs motion-posture 1.53 1.54 

 DNBCs motion 3.06 3.09 

 HMMs motion 3.23 3.28 

Table 2. Error rate and error dispersion indices and for DNBCs 
 and HMMs with motion and posture-motion attributes. 
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(a) (b) 
 
 

             
                            

   (c)                                                                  (d)  
 
Figure 9.  Results of the individual recognition of gestures using DNBCs and HMMs with posture-motion and motion 

attributes: (a) average recognition rates for each participant, (b) the average number of iterations for training, 
 (c) average training time, and, (d) average log probabilities of observations given the model. 

 
 

 
 

Figure 10. Average recognition rates of man10 as a function of the number of training examples. 
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Figure 12a presents average recognition results of 
10 repetitions of this experiment as a function of the 
personal classifiers used for testing. Average 
recognition rates for DNBCs with posture and 
motion features is 73.85%; for HMMs is 74.80%. 
Average recognition rates for DNBCs and HMMs 
with motion data is 52.80% and  51.60%, 
respectively. 
 
Another experimental setting with models trained 
with 2 samples per gesture of 14 people and tested 
with 30 samples per gesture of the fifteenth person 
is depicted in Figure 12b. Percentages were 
obtained by averaging 10 instances of this 
experiment. Horizontal axis indicates the person to 
whom the testing set belongs to. Average 
recognition percentages for posture-motion models 
is 85.79% for DNBCs and 86.45% for HMMs. 
DNBCs with motion attributes obtained 67.73% and 
HMMs 64.18%. Recognition performance of the 
DNBCs and HMMs counterparts are closer in these 
two experiments,  evincing the competitiveness of 
DNBCs for this problem.   
 
7.4 Variations on distance and rotation 
 
In many applications, gestures are always executed 
at the same distance and orientation from the 
capture devices. In other application domains, -
such as in human-robot interaction in which both 
the person and the robot can move- this restriction 
may not hold all the time. For the experiment on 

distance variation, 15 samples were randomly 
extracted for each gesture performed at 2m and 
4m, giving a test set of 30 samples per gesture. 
The classifiers constructed in the first experiment 
for man10 were used. Figure 13a shows average 
recognition results of 10 runs of the experiment, as 
a function of the number of training samples. 
DNBCs provide competitive classification results in 
comparison to HMMs, with posture-motion and 
motion features. 
 

The recognition of rotated gestures is a difficult 
problem in gesture recognition. The selection of 
accurate invariant features is one of the most 
evasive goals in this area. Although it is usually 
suggested that 3D information [49,67,68] or 
multiple views are necessary [51], we decided to 
evaluate the recognition performance of our models 
on this problem. The setting of this experiment is 
similar to the previous one. Fifteen samples of each 

gesture class executed at a ± 45 ° were extracted 
at random to conform 30 testing samples per 
gesture. Again, we used the models constructed in 
the first experiment. Figure 13b shows these 
average recognition results of 10 runs of the 
experiment, as a function of the number of training 
samples. HMMs with posture-motion features 
outrange their DNBCs counterpart with an average 
difference of 4.61%. However, HMMs recognition 
rate is 72.55% in its best case, showing this is also 
a complex problem for HMMs. Motion models 
performed poorly in all cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            
 
 

(a) (b) 
 

Figure 11. Examples of a single training and testing trial: a) convergence graph,  
and  b) state transition through an observation sequence. 
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Figure 12. Recognition rates of the experiments with multiple people: a) results with ''personal'' classifiers 
that are used to recognize gestures from the other 14 people, and b) with testing examples of  

each person to evaluate classifiers constructed with gestures from the other participants. 

(a)                                                                                      (b)   

 

              
 
 
 
 

        Figure 13. Recognition results of gestures executed at (a) 2m and 4m, and (b) ± 45 ° . 
The classifiers constructed in the first experiment for man10 were used. 

                       (a)                                                                         (b) 
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7.5 Discussion 
 
Results presented in the previous sections show 
the competitiveness in terms of recognition rates of 
DNBCs in comparison to standard HMMs in various 
issues in gesture recognition, using two sets of 
attributes. Attribute factorization allows an 
important decrease on training time for discrete 
motion and posture-motion models that benefits on-
line learning of gestures. The recognition of rotated 
gestures with posture and motion information is the 
only experiment in which HMMs clearly outperform 
DNBCs. We believe this could be due to the large 
number of observation symbols required by HMMs 
that allows HMMs to handle such strong variations 
slightly better. We also show that the models with 
posture and motion data surpass the classifiers 
with motion features in all the experiments, in 
particular, when considering changes in distance 
and rotation. 
 
Notwithstanding these positive results, we apply a 
single DNBCs structure to all our gestures, as usual 
in gesture recognition. However, besides 
classification, a complete gesture analysis requires 
also the development of models that effectively 
describe attributes and their statistical dependence 
relationships for each gesture class. We have 
shown that conditional independence assumptions 
decrease recognition performance only in complex 
situations that are difficult even for HMMs, and yet 
allow us to explore structural learning [69] and 
feature selection techniques [70]. For example, in 
[15], an evolutionary learning approach to cope with 
feature selection is proposed, searching for 
dependencies between attributes and the number 
of hidden states for each gesture using DNBCs 
structures with our database and feature set. Their 
results suggest the possibility to improve 
recognition rates  with different attribute sets, 
associations and number of states for each 
gesture. We believe that these findings could lead 
to a fruitful research field in gesture recognition in 
the near future that may help us to improve our 
knowledge of gestures and to develop more 
accurate models for this purpose. 
 
 
 
 
 
 

8. Conclusions 
 
In this paper, an empirical comparison of DNBCs 
and standard HMMs was presented. DNBCs 
incorporate conditional independence among 
gesture features given the state into HMMs 
framework. DNBCs i) provide competitive error 
dispersion and recognition rates in various 
problems in gesture recognition, ii) require fewer 
parameters, iii) improve training time, and iv) 
permit structural learning and feature selection 
techniques to construct such dependences. In 
addition, we showed that a set of natural and 
simple posture and motion gestures allows us to 
correctly classify gestures. We also showed that 
classification performance of recognizers with 
these posture-motion data    surpass motion-
based ones. Also, an adaptive skin-color scheme 
to track the right hand of multiple people with 
different skin tones under different lighting 
conditions was described, and its implementation 
made available for other research groups. An 
extensive and comprehensive set of experiments 
was carried out with gestures taken from a single 
person, from multiple people, and with variations 
on distance and rotation. An additional product of 
this work is a freely accessible gesture database 
with more than 7000 samples of 9 gesture 
classes performed by 15 people. Our results 
show the effectiveness of the proposed approach 
and that DNBCs are a suitable alternative that 
opens the way to important issues such as 
feature selection and on-line learning. 
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