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ABSTRACT

In this paper, we consider the synchronization problem via a nonlinear observer design. A new exponential polynomial
observer for a class of nonlinear oscillators is proposed, which is robust against output noises. A sufficient condition
for synchronization is derived analytically with the help of the Lyapunov stability theory. The proposed technique has
been applied to synchronize chaotic systems (Rikitake and Rdssler systems) by numerical simulation.
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RESUMEN

En este trabajo se considera el problema de sincronizacién por medio del disefio de un observador no lineal. Se
propone un nuevo observador polinomial exponencial para una clase de osciladores no lineales. La condicion
suficiente para lograr la sincronizacién es desarrollada analiticamente con la ayuda de la teoria de estabilidad de
Lyapunov. La técnica propuesta ha sido aplicada para sincronizar sistemas caéticos (los sistemas de Rikitake y

Réssler) empleando simulaciones numéricas.
1. Introduction

In the last years, the problem of synchronization of
chaotic systems has received a great deal of
attention among scientist in many fields [1], [2], [3],
[4], [5]- In general, the synchronization research
has been focused on two areas. The first one
relates with the employ of state observers, where
the main application is the synchronization of
nonlinear oscillators [6], [7], [8], [9], [10]. The
second one is the use of control laws, which allows
achieving the synchronization with different
structure and order between nonlinear oscillators
[11], [12]. A particular interest is the connection
between the observers for nonlinear systems and
chaos synchronization, which is also known as
master- slave configuration [15]; thus, the chaos
synchronization problem can be regarded as an
observer design procedure, where the coupling
signal is viewed as output and the slave system is
the observer [4], [9], [13]. In this configuration, the
two coupled systems are identical and, therefore,
identical synchronization occurs, which means that
the difference of master and slave state vectors
converges to zero for ¢ — oo .

In this paper the synchronization scheme is
proposed for a class of Lipschitz nonlinear systems.
Many problems in engineering and other
applications are globally Lipschitz, for instance the
sinusoidal terms in robotics. Nonlinearities which
are square or cubic in nature are not globally
Lipschitz, however, they are locally so; moreover,
when such functions occur in physical systems,
they frequently have a saturation in their growth
rate, making them globally Lipschitz functions [14].
Thus, this class of systems covered by this note is
fairly general.

The main contribution of this paper consists in the
solution of the synchronization problem via an
exponential polynomial observer. In [14], [15], [16],
existence conditions of the full-order observers for
Lipschitz nonlinear systems were established. The
main purpose in this work is to extend those results
by showing that the conditions given in [16] also
guarantee the existence of a full-order observer
with a high-order correction term. The reason is
very simple, as it is well known an extended
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Luenberger observer can be seen as a first order
Taylor series around the observed state, therefore,
to improve the estimation performance, a high-
order term is now included in the observer
structure.

The intention of choosing two examples as the
Rossler and Rikitake systems is to clarify the
proposed methodology; however, it is worth to

mention that this technique can be applied to
almost any chaotic synchronization problem.

2. Exponential polynomial observer
A. Problem statement

Consider the following nonlinear system:

x= f(x,u) (1a)
y=Cx
Where xeR” the vector of the state variables;

ueR', (<m), is the
f(o):ﬂ%” xR > %K', is a nonlinear smooth vector
function and Lipschitz in x and uniformly bounded
is the vector of measured states, with

control input;

inu, yeR
CeR™.
Any nonlinear system of the form of Eq. (1a) can

be expressed in the form of Eq. (1b) as long as
f(x,u) is differentiable with respect to x .

x=Ax+¥(x,u)
(1b)
y=Cx , xg=1x(t)

In system (1b), ¥(x,u) is a nonlinear vector

function which satisfies the Lipschitz condition with
a Lipschitz constant L, i.e,

||‘P(x,u)—‘1’(fc,u1| < L"x—fc" (2)

B. A note on the Algebraic Observability Condition (AOC)

Before proposing the exponential polynomial
observer, a definition concerning an algebraic

observability condition is given (for more details
see [17]).

Definition 1: Consider the system described by
systems (1b), where x e R" . A state x,, is said to
be algebraically observable with respect to {u, y} if

it satisfies a differential polynomial in terms of u,
y and some of their time derivatives, i. e.,

P(xi9u9 l’.la""y’ ya):O; 1<i<n.
C. Observer design

We consider system (1b), the observer has the
next form

f= AR+ W(5u)+ K, Clx— %)+ K, [Clx— %)) 3)
o =%(to)

Throughout this paper, the following assumptions
are considered:

Assumption 1: me Z*, m odd, m>1 (3a)

Assumption 2:K, can be chosen such as the

following Algebraic Riccati Equation (ARE) which
has a symmetric positive-definite solution P for
some ¢ >0

(A-K,C) P+ P(4-K,C)+ ?PP+1+&1=0 (3b)

Assumption 3:K, can be chosen such as the
following relation which holds

AN+ NT )20 with N = PK,C (30)

In(3), $eR", K =[k, ks, k[ e %" and

K, = [kl,z ks 2 kya ]T eR".

We analyze the observer error which is defined as
e=x-x.From (1b) and (3), the dynamics of the
observer error ¢ = x — £ are given by

é=(4-K,Cle—K,[Ce]" +[¥(x,u)-¥(%,u)] (4)
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The following theorem proves observer
convergence.
Theorem 1: For the nonlinear system (1b),

suppose x(¢) exists for all >0 and the nonlinear
vector function ‘P(x,u)satisfies the Lipschitz
condition (2). If a matrix 0 <P =P” and observer
gains K, and K, can be found such that (3) is an

observer for (1b), then the observer error
converges to zero exponentially; that is, there exist
constants « >0 and 1 > 0 such that

H e(t)‘ < K‘H e(O)H exp(— A t)

where Kz\F, ﬂ:i,
a 24

ﬂ:ﬂ'max(P)-

o=, (P), and

Proof. Consider the Lyapunov function candidate,

V=ePe, where 0<P=Pland satisfies Eq.
(3b).

Its derivative is
V =¢l Pe+el Pé
=e’ [(A—KIC)TP+P(A—K1C)]e

—2(Ce)" e PK,Ce+2¢" P[¥(x,u

)-¥(d.u)

In [14] the next inequality is presented based on
(2) as a lemma which is useful for this proof,

2e” P[W(x,u) - W(%,u)]< 12" PPe+ele

From Rayleigh inequality [18],
account inequality (3c), we have

and taking into

—2¢" PK,Ce=—e" (N+N")e <Ay, (N+ NT )He I
where N = PK,C.
Eq. (5) leads to

v<el [(A—KIC)TP+P(A—K1C)]e

—(Ce)" Apin (N +NT )He H2 +L%e" PPe+e’e
=e [(A—KIC)TP+P(A—K1C)+ L2PP+1]e
—~2(Ce)™ A (V + N7 Je (5)

From assumption 1, the second term in the right
hand side of the inequality (5) always will be
positive or zero,

v<e' [(A ~K,C) P+ P(4-K,C)+ L2PP+1Je )

2
=—¢[e|

We write the Lyapunov function as V:||e||i,
where afe|’ <V(e)< ple|’, with a=2,,(P)

eR*,and =2, (P)eR". Taking its derivative
and replacing in inequality (6), we obtain

d g
alels S—ﬁHeHP

Finally, we have the next result

< ex /It where «= ﬁ, and
el )] expl- iz

1=2

28

This implies that system (3) is an observer for
system (1b) and the corresponding dynamics of the
observer error (4) is exponentially stable.

3. Application to sincronization of chaotic
systems

To illustrate the effectiveness of the obtained
results, we give two applications to chaotic
systems. The former is an application to the
denominated Rossler system which presents a
chaotic behavior and exhibits the simplest possible
strange attractor. Originally, the Rdssler system is
credited to Otto Rdssler, and it is said to be
originated from work on chemical kinetics [21] and
the second one is the so-called Rikitake system, a
model which attempts to explain the reversal of the
earth’s magnetic field [22].
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A. Example 1: Réssler system

We consider the popular nonlinear Rd&ssler’s
System [19], which is described by

X =—(x; +x3)

X, =X +ax, (7)

y=x

It is well known that in a large neighborhood of {a=
b=0.2, c=5} this system has a chaotic behavior.

Remark 1: It is not difficult to prove that system (7)
is Lipschitz.

Before proposing the state observer, we prove the
algebraic observability condition (see definition 1)

for system (7). Replacing y =X, into system (7),
we obtain

==X, = X3 (8)
t=y+ax €)
iy =b+x3(y—c) (10)

Taking the time derivative from Eq. (8)

V=-x; —X3 (11)
From Eq. (8), we get

Replacing Egs. (9), (10) and (12) into Eq. (11)

y—yy+cy+y—x2y+(a+c)x2+b:0 (13)
In the same manner for X,, we have from Eq. (8)

Xy ==y —X3 (14)
substituting Egs. (9), (10) and (14) into Eq. (11)

j}—aj/+y+x3y—(a+c)x3+b=0 (15)

Remark 2: From Egs. (13) and (15), is clear that
x, and x, are algebraically observable.

According to Theorem 1, we get the following
system (slave system) for the observer

3;51 = _(322 +323)*']‘1,1 (xl _5&1)+k1,2(x1 - X )m
Xy = taky vk, (v —% ) F ko, —5)" (16)

)és =b+X; (’21 _C)+k3,1 (xl —?21)+k3,2 (xl - X )m

We show some simulations for the Rdssler system
(7) and its observer given by system (16), we have
taken for the parameter values a=6=0.2, c=5,

Klz[kl,l ky, k3,1]T:[5 -5 S]T’ K2:[k1,2 ky, ka,z]T

=[10 10 10]", m=3. All simulation results in this

paper were carried out with the help of Matlab 7.1
Software with Simulink 6.3 as the toolbox. The
design of the exponential observer presented in
this paper is based on the solution of the Riccati
Equation which can be obtained by using the
Matlab function ARE.

The performance index of the corresponding
synchronization process is calculated as [20]

t
1 2
Jit)= —J. dr =1
= o0 J letlg, a7+ 2y
where e(¢) denotes the estimation error.

Figures 1(a)-(c) show the convergence of the
estimated states (slave system) to the real states
(master system), without any noise in the system
output. The initial conditions are x, =-0.5,

X2:0.5, X3:4, )%1:_4, .)%2:3, )%3:_4.

Figures 2(a)-(b) show the chaotic behavior of
system (7) and the observer given by system (16),
and also show the convergence of the state
estimates to the real states, without any noise in
the system output.

Furthermore, Figures 3(a)-(c) show the effect of
noise in the estimation process. A white noise is
added to the measurement (o =0.1, +10% around
the current value of the measured output). We can
see that the exponential polynomial observer is
robust against noisy measurement.
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Finally, Figure 4 illustrates the performance index  should be noted that the quadratic estimation error
for the corresponding estimation processes. It  (performance index) is bounded and has a
tendency to decrease.
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Figure 1. Synchronization between drive system (7) and response system (16), without any noise in the

system output, (a) — signals x; and X, ; (b) —signals and x,; (c) —signals x; and x;.
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Figure 2. Chaotic behavior of drive system (7) and response system (16), without any noise in the

system output, (a) — signals x;, x; and X;, X5; (b) — signals x;,x,, x; and X;,%,, X.
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Figure 3. Synchronization between drive system (7) and response system (16), with white noise in

the system output (a = 0.1), (a) —signals x; and X, ; (b) — signals x, and %, ;
(c) —signals x5 and X;.
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Figure 3. Quadratic estimation error, (a) — without any noise in the system output (solid
line); (b) — with white noise (o = 0.1) in the system output (dotted line).
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B. Example 2: Rikitake oscillator

This system describes the currents of two coupled
dynamo disks [21]. The governing equations are

Xp =—H X +XX;3

Xy =—f Xy +(x3 _a)xl (17)
X3 =1_XQ)C1

y=xX

here a and yare parameters which we will
assume to be nonnegative.

Remark 3: It is not hard to see that the above
system is Lipschitz.

Before proposing the exponential polynomial
observer, we prove the algebraic observability
condition (see definition 1) for system (17).

Replacing y =x; in system (17), we obtain:

Y=Y+ X0 (18)
Xy =—pxy +(x;—a)y (19)
X3 =1-x,y (20)

Taking the derivative with respect to time from Eq.
(18), we have

V= —p Y+ Xyxs + Xy X3 (21)
from Eq. (18), we get
1.
xy=—[iruy] (22)

2

substituting Egs. (19), (20) and (22) into Eq. (21),
we obtain

| . .
Ozxg ——x% +|:1+2,ul+,uz:|x§
y y

y (23)

+a [p+uyla, -[p+uy]

In the same manner, for x; we have from Eq. (18)

=L i+uy] (24)

X3

substituting Egs. (19), (20) and (24) into Eq. (21)

0:x§ —a x33 —(Z+2,ul+,u2jx32
y y (25)

+(f+#} xy—(p+uy)

Remark 4: From Egs. (23) and (25), x, and x; are
algebraically observable.

Going back to the original coordinate system, we
get the following system (slave system) for the
observer:

;Cl = —U Xy + XXy +kyy (xl _’21)+k1,2 (x1 —-X )m

Sy = —pdy + (& —a)fy + by (o = %)+ ey (v = )"

;C3 =1-x%, +hky, (xl _)%1)+k3,2 (xl - X )m
(26)

Now, some numerical results for the Rikitake
system (17) and its observer given by system (26)
are presented. System (17) is chaotic with the set
of parameter values x4 =1, a =0.375.

We have chosen the parameter values for systems
(17)and (26)as =1, a=0.375, m=3,

Klz[kl,l kz,l k3,1]T :[2 2 2]T’
Kzz[kl,z kz,z k3,2]T:[3 3 3]T-

Figures 5(a)-(c) show the convergence of the
estimated states (slave system) to the real states
(master system), without any noise in the system
output. The initial conditions are x;, =-1, x, =0.5,

Xy=4, F=—4, % =-1,%=2.

Figures 6(a)-(c) show the chaotic behavior of the
master system (17) and the slave system (26) and
also show the convergence of the estimated states
(slave system) to the real states (master system)
without any noise in the system output.
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Figures 7(a)-(c) show the estimated states with the
presence of noise in the system output (white noise
with o =0.1, £10% around the current value of the
system output). It should be noted that the proposed
observer is robust against noisy measurements.

Figure 8 illustrates the performance index for the
corresponding synchronization process without any
noise in the system output and with noise in the
system output (white noise with o=0.1, +£10%
around the current value of the system output). In
both cases, the corresponding performance index
has a tendency to decrease.

4. Conclusion

In this paper, we have designed a new exponential
polynomial observer (high order polynomial type)
for a class of nonlinear oscillators to attack the
synchronization problem. Also, we have proven the
exponential stability of the resulting state estimation
error and by means of simple algebraic
manipulations we construct the observer (slave
system). Finally, we have presented some
simulations to illustrate the effectiveness of the
suggested approach, which shows some
robustness properties against noisy measurements.
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Figure 5. Synchronization between drive system (17) and response system (26),
without any noise in the system output, (a) — signals x; and %, ;

(b) - signals x, and X, ; (c)—signals x; and x;.
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Figure 6. Chaotic behavior of drive system (17) and response system (26),
without any noise in the system output, (a) — signals x,, x; and x;, X;

(b) — signals x,, x3 and x,, X5; (c) — signals x;, x, and X, X,.
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Figure 8. Performance index, (a) — without any noise in the system
output (solid line); (b) — with white noise (o = 0.1)
in the system output (dotted line).
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