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ABSTRACT 
In this paper, we consider the synchronization problem via a nonlinear observer design. A new exponential polynomial 
observer for a class of nonlinear oscillators is proposed, which is robust against output noises. A sufficient condition 
for synchronization is derived analytically with the help of the Lyapunov stability theory. The proposed technique has 
been applied to synchronize chaotic systems (Rikitake and Rössler systems) by numerical simulation. 
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RESUMEN 
En este trabajo se considera el problema de sincronización por medio del diseño de un observador no lineal. Se 
propone un nuevo observador polinomial exponencial para una clase de osciladores no lineales. La condición 
suficiente para lograr la sincronización es desarrollada analíticamente con la ayuda de la teoría de estabilidad de 
Lyapunov. La técnica propuesta ha sido aplicada para sincronizar sistemas caóticos (los sistemas de Rikitake y 
Rössler) empleando simulaciones numéricas. 
 
1. Introduction 
 
In the last years, the problem of  synchronization of 
chaotic systems has received a great deal of 
attention among scientist in many fields [1], [2], [3], 
[4], [5]. In general, the synchronization research 
has been focused on two areas. The first one 
relates with the employ of state observers, where 
the main application is the synchronization of 
nonlinear oscillators [6], [7], [8], [9], [10]. The 
second one is the use of control laws, which allows 
achieving the synchronization with different 
structure and order between nonlinear oscillators 
[11], [12]. A particular interest is the connection 
between the observers for nonlinear systems and 
chaos synchronization, which is also known as 
master- slave configuration [15]; thus, the chaos 
synchronization problem can be regarded as an 
observer design procedure, where the coupling 
signal is viewed as output and the slave system is 
the observer [4], [9], [13]. In this configuration, the 
two coupled systems are identical and, therefore, 
identical synchronization occurs, which means that 
the difference of master and slave state vectors 
converges to zero for  t . 

 
 
In this paper the synchronization scheme is 
proposed for a class of Lipschitz nonlinear systems. 
Many problems in engineering and other 
applications are globally Lipschitz, for instance the 
sinusoidal terms in robotics. Nonlinearities which 
are square or cubic in nature are not globally 
Lipschitz, however, they are locally so; moreover, 
when such functions occur in physical systems, 
they frequently have a saturation in their growth 
rate, making them globally Lipschitz functions [14]. 
Thus, this class of systems covered by this note is 
fairly general.  
 
The main contribution of this paper consists in the 
solution of the synchronization problem via an 
exponential polynomial observer. In [14], [15], [16], 
existence conditions of the full-order observers for 
Lipschitz nonlinear systems were established. The 
main purpose in this work is to extend those results 
by showing that the conditions given in [16] also 
guarantee the existence of a full-order observer 
with a high-order correction term. The reason is 
very simple, as it is well known an extended  
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Luenberger observer can be seen as a first order 
Taylor series around the observed state, therefore, 
to improve the estimation performance, a high-
order term is now included in the observer 
structure. 
 
The intention of choosing two examples as the 
Rössler and Rikitake systems is to clarify the 
proposed methodology; however, it is worth to 
mention that this technique can be applied to 
almost any chaotic synchronization problem. 
 
2. Exponential polynomial observer 
 
A. Problem statement 
 
Consider the following nonlinear system:  
 

 
Cxy

uxfx





,                            (1a) 

 

Where nx   the vector of the state variables; 

,lu   )( nl  , is the control input; 

  ,: llnf  is a nonlinear smooth vector 

function and Lipschitz  in x and uniformly bounded 

in u; y  is the vector of measured states, with 

.1 nC   
 
Any nonlinear system of the form of Eq. (1a) can 
be expressed in the form of Eq. (1b) as long as 
 uxf ,  is differentiable with respect to x . 

 

                    uxxAx ,                                                            

                                                     (1b) 
             xCy     ,    00 txx   
 

In system (1b),   ux,  is a nonlinear vector 

function which satisfies the Lipschitz condition with 
a Lipschitz constant L , i.e, 
 

    xxLuxux ˆ,ˆ,            (2) 

 
B. A note on the Algebraic Observability Condition (AOC) 
 
Before proposing the exponential polynomial 
observer, a definition concerning an algebraic  

 
observability condition is given (for more details 
see [17]). 
 
Definition 1: Consider the system described by 

systems (1b), where nx  . A state ix , is said to 

be algebraically observable with respect to  yu,  if 

it satisfies a differential polynomial in terms of u , 
y  and some of their time derivatives, i. e., 

  0,,,,,,  yyuuxP i ,  ni 1 .                         

 
C. Observer design 
 
We consider system (1b), the observer has the 
next form 
 

      mxxCKxxCKuxxAx ˆˆ,ˆˆˆ 21 


     (3)    
 00 ˆˆ txx   

 
Throughout this paper, the following assumptions 
are considered: 
 

Assumption 1: 1,,   moddmZm                 (3a)  

 
Assumption 2: 1K   can be chosen such as the 

following Algebraic Riccati Equation (ARE) which 
has a symmetric positive-definite solution P  for 
some 0  
 

    02
11  IIPPLCKAPPCKA T     (3b) 

 
Assumption 3: 2K  can be chosen such as the 

following relation which holds 
 

  0min  TNN , with  CPKN 2: .                      (3c) 

 
In (3),  ,ˆ nx     nT

nkkkK  1,1,21,11  and 

  nT
nkkkK  2,2,22,12  . 

 
We analyze the observer error which is defined as 

xxe ˆ . From (1b) and (3), the dynamics of the 
observer error xxe ˆ  are given by 
 

        uxuxCeKeCKAe m ,ˆ,21        (4) 
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The following theorem proves observer 
convergence. 
 
Theorem 1: For the nonlinear system (1b), 
suppose  tx  exists for all 0t  and the nonlinear 

vector function  ux, satisfies the Lipschitz 

condition (2). If a matrix TPP 0 and observer 
gains 1K  and 2K  can be found such that (3) is an 

observer for (1b), then the observer error 
converges to zero exponentially; that is, there exist 
constants 0  and 0  such that 
 

     tete   exp0  

 

where 

  , 




2
 , )(min P  , and 

)(max P  . 

 
Proof:  Consider the Lyapunov function candidate, 

PeeV T ,  where TPP 0 and satisfies Eq. 
(3b). 
 
Its derivative is 
 

ePePeeV TT    

        eCKAPPCKAe TT
11      

             uxuxPeCePKeCe TTm ,ˆ,22 2
1    

 
In [14] the next inequality is presented based on 
(2) as a lemma which is useful for this proof,  
 

     eeePPeLuxuxPe TTT  2,ˆ,2  
 

From Rayleigh inequality [18], and taking into 
account inequality (3c), we have 
 

  2
min2 )(2 eNNeNNeCePKe TTTT    

 
where CPKN 2: . 

                                                                         
Eq. (5) leads to 
 

    eCKAPPCKAeV TT
11      

   

 

         eeePPeLeNNCe TTTm   22
min

1  

    eIPPLCKAPPCKAe TT  2
11  

    2
min

12 eNNCe Tm                                          (5) 

 
From assumption 1, the second term in the right 
hand side of the inequality (5) always will be 
positive or zero,  
 

    
2

2
11

e

eIPPLCKAPPCKAeV TT




     (6) 

 

We write the Lyapunov function as 
2
P

eV  , 

where   22
eeVe   , with )(min P 

 , and )(max P   . Taking its derivative 

and replacing in inequality (6), we obtain 
 

PP
ee

dt

d




2
  

 
Finally, we have the next result 

   tee   exp0 , where 

  , and




2
 . 

 
This implies that system (3) is an observer for 
system (1b) and the corresponding dynamics of the 
observer error (4) is exponentially stable. 
 
3. Application to sincronization of chaotic 
systems 
 
To illustrate the effectiveness of the obtained 
results, we give two applications to chaotic 
systems. The former is an application to the 
denominated Rössler system which presents a 
chaotic behavior and exhibits the simplest possible 
strange attractor. Originally, the Rössler system is 
credited to Otto Rössler, and it is said to be 
originated from work on chemical kinetics [21] and 
the second one is the so-called Rikitake system, a 
model which attempts to explain the reversal of the 
earth’s magnetic field [22]. 
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A. Example 1: Rössler system 
 
We consider the popular nonlinear Rössler’s 
System [19], which is described by 
 

       )(

)(

133

212

321

cxxbx

axxx

xxx









   

(7) 

     1xy   

 
It is well known that in a large neighborhood of { a=
b =0.2, c =5}  this system has a chaotic behavior. 
 
Remark 1: It is not difficult to prove that system (7) 
is Lipschitz. 
 
Before proposing the state observer, we prove the 
algebraic observability condition (see definition 1) 

for system (7). Replacing 1xy   into system (7), 

we obtain 
 

      32 xxy      (8) 

 

      22 xayx     (9) 

 

       cyxbx  33    (10) 

 
Taking the time derivative from Eq. (8) 

 

      32 xxy      (11) 

 
From Eq. (8), we get 

 
 

      23 xyx      (12) 

 
Replacing Eqs. (9), (10) and (12) into Eq. (11) 
 

  022  bxcayxyycyyy   (13) 

 

In the same manner for 3x , we have from Eq. (8)     

 

       32 xyx       (14) 

 
substituting Eqs. (9), (10) and (14) into Eq. (11) 
 

  033  bxcayxyyay 
  (15) 

Remark 2: From Eqs. (13) and (15), is clear that 

2x  and 3x  are algebraically observable. 

 
According to Theorem 1, we get the following 
system (slave system) for the observer  
 

     
   

     m
m

m

xxkxxkcxxbx

xxkxxkxaxx

xxkxxkxxx

112,3111,3133

112,2111,2212

112,1111,1321

ˆˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆˆˆ













  (16) 

 
We show some simulations for the Rössler system 
(7) and its observer given by system (16), we have 
taken for the parameter values 2.0 ba , 5c ,  

 TkkkK 1,31,21,11   T555  ,  TkkkK 2,32,22,12 

 T101010 , 3m . All simulation results in this 

paper were carried out with the help of Matlab 7.1 
Software with Simulink 6.3 as the toolbox. The 
design of the exponential observer presented in 
this paper is based on the solution of the Riccati 
Equation which can be obtained by using the 
Matlab function ARE. 
 
The performance index of the corresponding 
synchronization process is calculated as [20] 

    dte
t

tJ
t

Q


0

2

0001.0
1

  ,    IQ 0  

where  te  denotes the estimation error.  

 
Figures 1(a)-(c) show the convergence of the 
estimated states (slave system) to the real states 
(master system), without any noise in the system 
output. The initial conditions are 5.01 x , 

5.02 x , 43 x , 4ˆ1 x , 3ˆ2 x , 4ˆ3 x . 

 
Figures 2(a)-(b) show the chaotic behavior of 
system (7) and the observer given by system (16), 
and also show the convergence of the state 
estimates to the real states, without any noise in 
the system output.  
 
Furthermore, Figures 3(a)-(c) show the effect of 
noise in the estimation process. A white noise is 
added to the measurement ( 1.0 , %10  around 
the current value of the measured output). We can 
see that the exponential polynomial observer is 
robust against noisy measurement.  
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Finally, Figure 4 illustrates the performance index 
for the corresponding estimation processes. It 

should be noted that the quadratic estimation error 
(performance index) is bounded and has a 
tendency to decrease. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Synchronization between drive system (7) and response system (16), without any noise in the 

system output, (a) – signals 1x   and 1x̂ ; (b) – signals   and 2x ; (c) – signals 3x  and 3x̂ . 

 
Figure 2. Chaotic behavior of drive system (7) and response system (16), without any noise in the 

system output, (a) – signals 31, xx  and 31 ˆ,ˆ xx ; (b) – signals 321 ,, xxx  and 321 ˆ,ˆ,ˆ xxx . 
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Figure 3. Synchronization between drive system (7) and response system (16), with white noise in 

the system output  1.0 , (a) – signals 1x  and 1x̂ ; (b) – signals 2x  and 2x̂ ; 

 (c) – signals 3x  and 3x̂ . 

 
 

Figure 3. Quadratic estimation error, (a) – without any noise in the system output (solid 
line); (b) – with white noise  1.0  in the system output (dotted line). 
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B. Example 2: Rikitake oscillator 
 
This system describes the currents of two coupled 
dynamo disks [21]. The governing equations are 
 

      

 
123

1322

3211

1 xxx

xaxxx

xxxx













                             (17) 

      1xy   

 
here a  and  are parameters which we will 

assume to be nonnegative. 
 

Remark 3: It is not hard to see that the above 
system is Lipschitz. 

 
Before proposing the exponential polynomial 
observer, we prove the algebraic observability 
condition (see definition 1) for system (17). 

 
Replacing 1xy   in system (17), we obtain: 

 

32 xxyy                                              (18) 

                                                        
 yaxxx  322                                   (19) 

 
yxx 23 1                                                  (20) 

 
Taking the derivative with respect to time from Eq. 
(18), we have  
 

3232 xxxxyy                                      (21) 

 
from Eq. (18), we get 
 

 yy
x

x  
2

3
1

       

                                  (22) 

 
substituting Eqs. (19), (20) and (22) into Eq. (21), 
we obtain 
 

   22

2
2

23
2

4
2 210

yyxyya

x
y

y

y

y
x

y
x





















   

            (23) 

 
In the same manner, for 3x  we have from Eq. (18)     

 

 yy
x

x  
3

2
1

       

                           (24) 

 
substituting Eqs. (19), (20) and (24) into Eq. (21) 
 

 23

2
3

23
3

4
3 20

yyx
y

y

x
y

y

y

y
xax





























 

          (25) 

 
Remark 4: From Eqs. (23) and (25), 2x  and 3x  are 

algebraically observable. 
 
Going back to the original coordinate system, we 
get the following system (slave system) for the 
observer:  
 

   

     
   m

m

m

xxkxxkxxx

xxkxxkxaxxx

xxkxxkxxxx

112,3111,3213

112,2111,21322

112,1111,13211

ˆˆˆˆ1ˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

















 

 
(26) 

 
Now, some numerical results for the Rikitake 
system (17) and its observer given by system (26) 
are presented. System (17) is chaotic with the set 
of parameter values 1 , 375.0a . 

 
We have chosen the parameter values for systems 

(17) and (26) as 1 , 375.0a , 3m , 

 TkkkK 1,31,21,11    T222 , 

   TTkkkK 3332,32,22,12  . 

 
Figures 5(a)-(c) show the convergence of the 
estimated states (slave system) to the real states 
(master system), without any noise in the system 
output. The initial conditions are 11 x , 5.02 x , 

43 x , 4ˆ1 x , 1ˆ2 x , 2ˆ3 x . 

 
Figures 6(a)-(c) show the chaotic behavior of the 
master system (17) and the slave system (26) and 
also show the convergence of the estimated states 
(slave system) to the real states (master system) 
without any noise in the system output.  
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Figures 7(a)-(c) show the estimated states with the 
presence of noise in the system output (white noise 
with 1.0 , %10  around the current value of the 
system output). It should be noted that the proposed 
observer is robust against noisy measurements. 
 
Figure 8 illustrates the performance index for the 
corresponding synchronization process without any 
noise in the system output and with noise in the 
system output (white noise with 1.0 , %10  
around the current value of the system output). In 
both cases, the corresponding performance index 
has a tendency to decrease. 
 

4. Conclusion 
 
In this paper, we have designed a new exponential 
polynomial observer (high order polynomial type) 
for a class of nonlinear oscillators to attack the 
synchronization problem. Also, we have proven the 
exponential stability of the resulting state estimation 
error and by means of simple algebraic 
manipulations we construct the observer (slave 
system). Finally, we have presented some 
simulations to illustrate the effectiveness of the 
suggested approach, which shows some 
robustness properties against noisy measurements.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5. Synchronization between drive system (17) and response system (26), 
without any noise in the system output, (a) – signals 1x  and 1x̂ ; 

(b) – signals 2x  and 2x̂ ; (c) – signals 3x  and 3x̂ . 
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Figure 6. Chaotic behavior of drive system (17) and response system (26), 
without any noise in the system output, (a) – signals 31, xx  and 31 ˆ,ˆ xx ; 

(b) – signals 32 , xx  and 32 ˆ,ˆ xx ; (c) – signals 21, xx  and 21 ˆ,ˆ xx . 

 

 
Figure  7. Synchronization between drive system (17) and response system (26), with white 

noise in the system output  1.0 , (a) – signals 1x  and 1x̂ ;  

(b) – signals 2x  and 2x̂ ; (c) – signals 3x  and 3x̂ . 
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Figure  8. Performance index, (a) – without any noise in the system 
output (solid line); (b) – with white noise  1.0  

in the system output (dotted line). 
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