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ABSTRACT 
This paper presents a new method in order to reduce  noise effect in an AC voltage reference source. The AC voltage 
reference source is implemented on MEMS technology. It uses capacitive MEMS technology. The reference is based 
on the characteristic AC current-voltage curve MEMS component. The multilayer neural network is used. The neural 
network (NN) uses the Levenberg-Marquardt (LM) method for training. The noise effect on an electronic circuit is 
investigated. The simulation results are very promising. 
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RESUMEN 
El presente trabajo presenta un método nuevo para reducir el efecto de ruido en una referencia de fuente de voltaje 
de AC. La referencia de fuente de voltaje se implementa mediante tecnología MEMS; emplea tecnología capacitiva 
MEMS. La referencia se basa en la curva de corriente-voltaje de CA característica del componente MEMS. Se utiliza 
la red neuronal multicapas. La red neuronal (RN) usa el método Levenberg-Marquardt (LM) con fines de 
experimentación. Asimismo se investiga el efecto de ruido en un circuito electrónico. Los resultados de simulación 
son muy prometedores. 
 

 
1. Introduction 
 
There are only two voltage references, which are 
fundamentally based on AC voltage, namely the 
AC voltage Josephson reference and the MEMS-
based AC voltage reference. In this paper, we will 
discuss the MEMS-based AC voltage reference. 
Many researchers have worked in this area of 
research. M. Suhonen et al. presented an AC 
voltage reference based on a capacitive 
microelectromechanical system (MEMS) [1]. They 
described micromechanical AC and DC standards 
suitable for compact, low-cost precision 
electronics applications. The standards are based 
on controlling the charge of a parallel-moving-
plate capacitor. They showed the basic principle 
of the AC and DC standards and preliminary 
experiments with the AC voltage standard. Design 
and characterization of a high stability capacitive 
MEMS device intended for an AC voltage 
reference  at  100  kHz  or  higher  frequencies is  

 
 
presented by A. Karkkainen et al [2]. They 
presented an AC root-mean-square (RMS)  
voltage reference based on MEMS component in 
2005[3]. In their work, the device stability was 
investigated through various experiments.  
 
They also investigated the stability of 
microelectromechanical devices for electrical 
metrology [4]. Such devices are formed from 
micromachined electrodes of which at least one is 
supported by a compliant structure such that an 
electrostatic force between two electrodes 
displaces the moving electrode. The properties of 
these electromechanical devices can be very 
stable if they are fabricated from single-crystalline 
silicon and sealed hermetically in a low-pressure 
atmosphere. In comparison to several 
semiconducting reference devices, micromechanical 
components are large in size and consume a 
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negligible power. Thus, a low 1/f noise level is 
expected. Erik F. Dierikx presented two AC voltage 
references in [5]. H. Seppa investigated applications 
of microsystems in precision measurements [6]. R. F. 
Wolffenbuttel and van C. J. Mullem discussed on the 
relationship between microsystems technology and 
metrology in [7]. Dynamic and electrical analysis of 
MEMS capacitor with accelerated motion effects was 
investigated by K. Kawano et al in [8]. M. Behera et 
al presented accurate simulation of phase noise in 
RF MEMS VCOs in [9]. 
 
 

2. An overview on MEMS-based AC voltage 
reference source 
 
Voltage references are fundamental building 
blocks in many instruments like data logging 
systems, digital multimeters, and calibrators. The 
operation of the MEMS-based AC voltage 
reference is based on a characteristic property of 
an electrostatic MEMS component: the pull-in 
voltage. The component is actuated to the 
maximum point of the characteristic current-
voltage curve using AC current. The maximum 
voltage depends only on the component geometry 
and material properties and it is therefore an 
excellent reference. The benefits of MEMS 
components in reference applications are good 
stability, low 1/f noise, large operation voltage 
range, small size, and low power consumption. We 
first investigated the properties of the MEMS 
capacitor. The moving plate capacitor, shown in 
Figure 1, is actuated to the maximum point of its 
characteristic current-voltage curve using AC 

current tItI sinˆ)(  . There is also an effective 

DC voltage, VDC, over the component due to the 
built-in voltage and charges in the oxide layer. The 
electrostatic force FE attracts the electrodes 
together while the spring force FM due to the 
elastically suspended electrode, tries to restore the 
plate position. The force balance equation is 
 

  MVIVEIEE FkxEE
dx

d
FFF  ,,    (1) 

                
where FE,I and FE,V are the electrostatic forces due 
to the AC current I and due to the DC voltage VDC, 
EI and EV are the electrostatic energies, 
respectively, x is the deflection of the moving 
electrode, and k is the spring constant. 

Assuming that the electrodes are in parallel and 
the movement is translational, FE,I can be 
calculated from 
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where C =εA/(d − x) is the component capacitance, 
ε is the permittivity of the medium, A is the 
electrode area, d is the gap between the 

electrodes, and q(t) = dttI )sin(ˆ   is the capacitor 

charge. The force due to the DC voltage is 
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When either the frequency of the actuation current, 
ω/2π, is much higher than the component 
mechanical resonance frequency or the motion of 
the moving electrode is sufficiently damped, the 
position of the moving electrode is stationary over 

the period of driving frequency and the )(cos2 t   

term equals ½. 
 
The rms voltage VAC across the plate as a function 
of the displacement x can now be calculated from 
Equations (1)–(3) as follows: 
 

.)(2
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The maximum of VAC (Î), which is the reference 
voltage, can be calculated from  dV AC(Î)/dÎ = (dV 
AC(x)/dx)( dx/d Î ) = 0 .  

 
Since dx/dÎ ≠ 0, the maximum is reached when  
dVAC(x)/dx=0. 
 

Which occurs dVI pi /)2/3(ˆ  , corresponding 

to x= d /3. The maximum of VAC is 

 
22max
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VVV                                          (5) 
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A
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is the component pull-in voltage. 
Variations of VDC in a short period of time, ∆VDC of 
the VDC can be described as VDC = VDC,0 + ∆VDC, 
where VDC,0 is a constant. Since VDC << VAC, 
Equation (5) can be expressed as [10] 
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Equation (7) demonstrates that selecting VDC,0 = 0, 
small changes in the DC voltage, ∆VDC, have no 
effect on the reference voltage in the first order. A 
schematic view of the MEMS moving plate 
capacitor and its electric equivalent circuit are 
displayed in Figure 1. 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. a) Schematic structure of the silicon cantilever 
used as a moving plate capacitor and b) the equivalent 
circuit. V is the external voltage source, Vbi is the built-in 

voltage of the metal-silicon junction. Cgap is the 
component capacitance (work capacitance), which has a 

parasitic capacitance Cpar in parallel. Cox is the 
capacitor formed by the dielectric layer (usually SiO2). 

Rspring is the resistance of the silicon spring. 
 
3. Using MEMS devices in a micro electronic 
circuit as AC voltage reference 
 
The AC voltage reference electronics block 
diagram is show in Figure 2. A 10 kHz AC voltage, 
Vac-in is fed to the inverting input of the main 
operational amplifier OA2, which acts as a voltage 
to current converter. The amplitude of the input 
current is slowly varied over the maximum point 
and the maximum output voltage was recorded as 
the AC reference voltage (the AC component of 
Vout in Figure 2. The instrumentation amplifier IA1 
isolates the AC source. The stability of the OA2 

gain is recorded at the output of the unity gain 
buffer amplifier OA3 [3]. 
 
The operational amplifier OA2 has a feedback so 
the transfer function OA2 is calculated as Figure 3 
shows. 
 
The transfer equation is given in Equation (8): 
 

V OUT = -aV A                                                 (8) 
 

The node voltage is described by Equation (9), and 
Equation (10) is obtained by combining Equations 
(8) and (9). 
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We have simulated circuit given in figure 2 with 
using equation (10) with replacing parameters: 
 

ZF= R3 || 
)(

1
jCMEMS

    ,    ZG =R1                     (11) 

 
where || means parallel devices.  
           

 
Figure  2. Electronics block diagram 

 of the  AC voltage reference. 
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Figure  2. Inverting Op Amp. 

 
 
4. An overview of artificial neural networks 
 
Artificial neural networks are directly inspired from 
the biology of the human brain, where billions of 
neurons are interconnected to process a variety of 
complex information. We used a 1-2-1 artificial 
neural network (figure 4). 
 
For training the network we suggest the 
Levenberg-Marquardt (LM) algorithm. In the 
following the Levenberg-Marquart method is 
reviewed [12]. In the EBP algorithm, the 
performance index F(w) to be minimized is defined 
as the sum of squared errors between the target 
outputs and the network's simulated outputs, 
namely: 
 

eewF T)(                                          (12) 

 
where   consists of all weights of the network, e is 
the error vector comprising the error for all the 
training examples. When training with the LM 
method, the increment of weights ∆w can be 
obtained as follows: 
 

  eJIJJw TT 1
                           (13) 

 
Where J is the Jacobian matrix, µ is the learning 
rate which is to be updated using the β depending 
on the outcome. In particular, µ is multiplied by 
decay rate β (0<β<1) whenever )(wF  decreases, 

whereas µ is divided by β whenever )(wF   

increases in a new step. 
 
 

 
The standard LM training process can be 
illustrated in the following pseudo-codes, 
1. Initialize the weights and parameter µ (µ=.01 is 
appropriate). 
 
2. Compute the sum of the squared errors over all 
inputs )(wF . 

 
3. Solve (8) to obtain the increment of weights ∆w 
 
4. Recompute the sum of squared errors  )(wF  

Using w + ∆w as the trial w, and judge 
IF trial )()( wFwF   in step 2 THEN  
 

www   
)1.(    

 
Go back to step 2 

ELSE  


   

 
go back to step 4 

END 
 

Considering the performance index is eewF T)(  

using the Newton method we have as 
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The gradient can write as 
 

)(2)( weJxF T                                 (18) 
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)(wJ   is called the Jacobian matrix. 

 
Next we want to find the Hessian matrix. The 
k, j elements of the Hessian matrix yields as  
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The Hessian matrix can then be expressed as 
follows: 
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If we assume that )(wS  is small, we can 

approximate the Hessian matrix as:                                                         
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Using (14) and (21) we obtain the Gauss-Newton 
method   
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The advantage of the Gauss-Newton Method is 
that it does not require calculation of second 
derivatives. On the other hand, the Gauss-Newton 
method has a drawback:  matrix H=JTJ may not be 
invertible. This can be overcome by using the 
following modification: 
The Hessian matrix can be written as                              
 

IHG                                                  (25) 

 
Suppose that the eigenvalues and eigenvectors of 
H are {λ1, λ2,…….,λn} and {z1,z2,…….,zn}, then 
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Therefore, the eigenvectors of G are the same as 
the eigenvectors of H, and the eigenvalues of G 
are (λi+µ). Matrix G is positive definite by 
increasing µ until (λi+µ)>0 for all I, hence the 
matrix will be invertible. 
 
This leads to the Levenberg-Marquardt algorithm:                   
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As known, the learning parameter µ is illustrator of 
steps of actual output movement to desired output. 
In the standard LM method, µ is a constant 
number. 
 
In this paper, the input matrix for training NN has 
1*1000 dimensions and the output matrix has 
1*1000 dimensions. After training NN, for testing 
NN a 1*100 matrix is given as input of NN and the 
results are evaluated. 
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5. Simulation results 
 
In this study, we have added noise with different 
magnitude to input voltage in node 1 in Figure 2 
and eliminate noise effect with changing of  R1. 
We used an   1-2-1 artificial neural network (Figure 
4). The net used was feed-forward neural network 
trained by the Levenberg-Marquart algorithm. 
Mean squared error (MSE) is shown in Figure 5. 
Figure 6 compares the variation maximum voltage 
with change noise with neural network and without 
neural network. 
 
 
 
 
 
 
 

Figure  4. Schematic of neural network. 
 
 
 

 
 
Figure  5. MSE of  artificial neural network  training error. 
 
 
 
 
 
 
 
 
 

 

 
 
Figure  6. Variation maximum voltage with change noise 

with neural network and without neural network. 
 
 
 

6. Conclusions 
 
In this study, we used a neural network to 
decrease the effect noise on an ac voltage 
reference. The reference is based on the 
characteristic AC current – voltage curve of the 
component having a maximum, the value of which 
depends on the geometry of the component and 
material properties of single crystalline silicon. 
Stability of AC voltage reference is very important. 
We should try to decrease effect noise and 
temperature on this references so  using neural 
network is a suitable way to compensate these 
effects. 
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