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ABSTRACT 
An important family of codes for error control in digital communications are the so-called cyclic codes; therefore, 
finding the weight distribution of a q-ary cyclic code C is not only a problem of theoretical interest, but also of practical 

importance. Typically, when the finite field q  is a prime field, the problem is handled by expressing the Hamming 

weight of each codeword in C by means of certain combination of exponential sums. In this work, we will present a 
new method for computing the weight distribution of the dual of some cyclic codes with two non conjugated zeros. As 
we will see, such distribution is also given by means of the evaluation of certain exponential sums, however, such 
evaluation is only needed to be done over a subset. Moreover, this method has the advantage of flexibility, in the 
sense that it can also be applied to cyclic codes over finite fields of non prime order. 
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RESUMEN 
Una familia importante de códigos para el control de errores en comunicaciones digitales son los llamados códigos 
cíclicos; por lo tanto, encontrar la distribución de pesos de un código cíclico q-ario C, no sólo es un problema de 

interés teórico sino también tiene una importancia práctica. Típicamente, cuando el campo finito q  es un campo 

primo, el problema es manejado expresando el peso de Hamming de cada  palabra de código en C por medio de 
cierta combinación de sumas exponenciales. En este trabajo, presentaremos un  nuevo método para calcular  la 
distribución de pesos del dual de algunos códigos cíclicos con dos ceros no conjugados. Como veremos, tal 
distribución esta dada también en términos de la evaluación de ciertas sumas exponenciales, sin embargo, tal 
evaluación será solamente necesaria sobre un subconjunto. Por otra parte, este método tiene la ventaja de la 
flexibilidad, en el sentido que puede también ser aplicado a códigos cíclicos sobre campos finitos de orden no primo. 
 
1. Introduction 
 
Let  q = pm where p is a prime number and m is a 
positive integer. For some positive integer k, let    

be a primitive element of .kq
  Let C be the cyclic 

code over q  of length = 1.kn q - Finding the 

weight distribution of C is a problem of theoretical 
and practical interest. Typically, when the finite field 

q  is a prime field, the problem is handled by 

expressing the Hamming weight of each codeword 
in C by means of certain combination of  
 
 

 
 
exponential sums. More precisely speaking, if C is  
a reducible cyclic code with parity-check polynomial 

1 2( ) = ( ) ( ) ( ) ( 1),th x h x h x h x t  where 

 ( ) (1 )ih x i t   are distinct irreducible 

polynomials over [ ]p x  with the same degree k, 

and if  - ia  is a zero of   ( ) (1 ),ih x i t  then 

the weight distribution of cyclic code C can be 
derived from the value distribution of the 
exponential sum (see for example [1, 2]) 
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where   is the canonical additive character of ,kp
     

and  
 
In this work, we will present a new method for 
computing the weight distribution of some cyclic 
codes whose dual code has two non conjugated 
zeros; that is, we will show that if C is a cyclic 

code over ,q  whose dual code has zero  1a

and  2 ,a    where  the integers 1a  and 2a  satisfy   
                                       for all  0i  and 

 

1 2gcd( ,( -1) ( -1)) = gcd( ,( -1) ( -1)) = 1,k ka q q a q q                    

 
(2) 

 
then it is always possible to find an integer  in 
such a way that the weight distribution of C can be 
fully obtained by means of the distribution of the 
values 
 

 ( - ) ,
kq

c

dc c
Î

                                      (3) 

 
where ; however, as we will see, the computation of 
such values is only needed to be done over a 
subset of * .kq

  In addition, this alternative method 

has the advantage of flexibility in the sense that it 
can also be applied to cyclic codes over finite fields 
of non prime order. 
 
In order to achieve our goal, we will use several 
results related to linear recurring sequences and 
exponential sums. These results can be found in [3]. 
 
This work is organized as follows: in Section 2, we 
recall the connection between linear cyclic codes 
and linear recurring sequences. In Section 3, we 
use some characterizations for the one-weight 
irreducible cyclic codes in order to obtain some 
preliminary results. Section 4, is also devoted to 
presenting some preliminary results, but now 
related to exponential and Gaussian sums. The  
new method for computing the weight distribution is  
 
 

presented in Section 5. In Section 6, some 
examples are shown, whereas in Section 7, the 
conclusion is presented.    
  
2..Linear Recurring Sequences and Cyclic 
Codes 

 
First of all, we set, for this section and for the rest 
of this work, the following: 
 
Notation: By using p, q and k, we will denote 
positive integers, such that p is a prime number 

and q is a positive power of p. We will fix = -1kn q    

and =( -1) ( -1).kq q  For now on,   will denote 

a fixed primitive element of .kq
  As usual, wt(c(x)), 

will mean the Hamming weight of the polynomial 
c(x) in the ring .[ ] ( - 1)n

q x x  Also, we will denote 

by "Tr",  the absolute trace mapping from kq
 to 

the prime field ,p  and by /"Tr "
k qq

   the trace 

mapping from kq
 to .q  Finally, we will denote by 

b the cyclotomic coset modulo n over the prime 

field p  which contains b, where   0 .b n  The 

subscript b is called the coset representative 
modulo n (see for example [4, p. 197]). 
 
Let ( )h x  and ( )g x  be monic polynomials over 

,q   such that ( )h x  is irreducible, deg( ( )) =h x k   

and ( ) ( ) = -1.nh x g x x  Without loss of generality, 

we may suppose that 
 

-1 -2
-1 -2 0( ) = - - - - .k k k

k kh x x  h x  h x   h           (4) 

 
Since the coefficients of the polynomial ( ),g x  can 

be obtained through the synthetic division of 

polynomials -1nx  and  ( ), h x  then, if 

 
 -1 -2 - - -1

0 1 -1 -1( ) = + + + + + + ,n n n k n k
k k ng x g x g x g x g x g  
 
 

(5) 
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we have = 0ig   for all  0 -1,i k -1 = 1kg     and 

 
+ -1 + -1 -2 + -2 0= + + + ,m k k m k k m k mg h g h g h g    (6) 

 
With  0 -m n k  That is, the n coefficients of 

( )g x  in (5) are the first n  terms of the kth-order 

impulse response sequence (see [3, p. 402]), 
given by 
 

 + -1 + -1 -2 + -2 0= + + + for = 0,1,2, .m k k m k k m k mg h g h g h g m  

(7) 
 
In agreement with Theorem 8.27 in [3, p. 408], the 
previous sequence is periodic (in the sense of 
Definition 8.5 in [3, p. 398]), where such period, r,    

is equal to the order of ( )h x  (see for example 

Definition 3.2 in [3, p. 84]), that is, = ord( ( ))r h x . 
 
We will use the same notation introduced in [3, Ch. 
8, Secc. 5, p. 423]. Thus, ( ( ))S h x  will denote the 

set of all homogeneous linear recurring sequences 
in q  with characteristic polynomial ( )h x . 

Particularly, we will denote by   the unique 
element in ( ( ))S h x , which corresponds to the kth-

order impulse response sequence whose 
characteristic polynomial is ( )h x . That is, in the 

context of (7), we see that  0 1 2,= .g g g, ,  For 

any sequence  0 1 2= , , ,t t t in ,q  for any integer 

 0s   and for any finite field element d  q, we 

denote by  ( )sd the shifted and weighted 
sequence +1 +2, , ,s s sdt dt dt .Since the period r, of 

 ,   divides the length n, then the n coefficients of 

the polynomial ( )sdx g x , in the ring  [ ] ( -1)n
q x x , 

are the first n terms of the shifted and weighted 

sequence . ( )sd   
 

Let  0 1 2= , , ,t t t be any sequence in .q    

Additionally, let e  q and let N be a positive  

 
 
 
 
 
 

integer. Then, we will denote by e( , , )Z N  the  

number of  i,  0 i N ,  with e=it  (this notation 

is similar to that introduced in [3, p. 453]). Since
r n   then, for the particular case of the sequence 

 ,  we have (see equation 8). 
 
We end this section by recalling that the kth-order 
impulse response sequence  ,  can be given by 
means of the trace function; that is, if   is a root of

( )h x , then by virtue of Theorem 8.24 of [3, p. 

406], we know that there exists    kq
Î  in such a 

way that the elements of the sequence   are 
given by 
 

 /= Tr ( )  for = 0,1,2, .
k qq

m
mg m           (9) 

 
An explicit formula for   is presented in [5, Lemma 3]. 
 

3..One-weight Irreducible Cyclic Codes and 
Some of its Consequences 
 
The following definition could be considered as an 
extension of the order, ord(f), of a polynomial f(x)  

q [x]. 
 

Definition 1 Let h(x)  q [x] be a polynomial of 

positive degree with (0) 0h . The least positive 

integer   for which x  is congruent modulo ( )h x , 

to some element of q , is called the quasi-order of   

( )h x and it will be denoted by qord( ( )h x ).  
 
The following set of characterizations for the one-
weight cyclic codes,  that was introduced in [6], will 
be the main tool of this work. 
 

Theorem 1 Let q, k, n,   and   be as before. For 

a positive integer a,  let ha(x)  q [x] be the minimal 

polynomial of . a  Set  = qord( ( ))ah x   and 

( ) = ( -1) ( ).n
a ag x x h x  Then, the following five 

statements are equivalent: 
 
A)  gcd( , ) = 1.a     

B)  deg( ( )) =ah x k  and   =   

            
* 



s
qZ d n Z n d

s

( )( ,0, ) = ( ,0, ), for all

and for any integer 0.

Î
 

 
(8) 
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C) deg( ( )) =ah x k  and  -1wt( ( )) = ( -1) .k
ag x q q   

D). deg( ( )) =ah x k   and, if  is the kth-order 

impulse response sequence with   characteristic 
polynomial  ( ),ah x  then for any nonzero codeword

( )c x  in the cyclic  code  ( )ag x   there exists a 

uniquely determined integer s,   0 ,s  and a 

uniquely  determined field element  d  q, such 

that the n coefficients of ( )c x  are the first n  terms 

of the sequence   ( )= sd  . 

E) ( )ah x  is the parity-check polynomial for a one-

weight cyclic code over q  , of length n and 

dimension k. 
 
With the same notation we present the following: 
 
Remark 1 Observe that if a satisfies Statement (A) 
then, by Statement (B) and Definition 1,   is the 
least positive integer for which                 
 
Remark 2 Observe that if a satisfies Statement (A) 
then, by Statement (B) and Definition 1, there 
exists a uniquely determined field element 

* a qd Î  such that  ( ) = ( )a a ax g x d g x  in the ring

[ ] ( -1),n
q x x  which in turn implies that 

 ( + ) ( )=m m
ad  for any integer   0.m  

 
Keeping in mind the previous remarks, we present 
the following lemmas. 
 
Lemma 1 Assume the same notation as in the 
previous theorem. Also assume that integer a
satisfies Statement (A) and set  . = a  Then 

 
                                                          (10) 

 

 
Proof: It will suffice to prove that 

Therefore, 

suppose the existence of finite field elements 
*

1 2  , qd d Î  and integers   1 20 ,s s   such that  

 1 2
1 2=s sd d . Without loss of generality, we may 

assume 1 2,s s  thus  1 2--1
1 2 = 1,s sd d  which 

implies that *. 1 2-s s
qÎ   But    1 20 -s s  thus, 

by Remark 1, we get ,1 2=s s and, in 

consequence, .1 2=d d                                                                 
 

Lemma 2 With the same notation, let 1a  and 2a   

be two integers such that 
( ) ( , ) 1 2gcd = gcd = 1a a  and 

1 2 (mod -1)ki qa q a  , for all  0i  . Let C be the 

cyclic code over q of length n, whose parity-check 

polynomial is given by ( ) ( ).
1 2a ah x h x   Let  1  and  

 2 be, respectively, the kth-order impulse 

response sequences whose characteristic 
polynomials are, respectively, ( )

1ah x  and ( ).
2ah x   

As usual, let  iA  be the number of codewords in C, 

of Hamming weight i. If we take the following set of 
sequences 
 

*     ( )
1 2  = { - :   0 } ,s

qd d and sÎ   

 
(11) 

 

then = -1kq , and if we set 

 
, ,  -1= { - ( 0 ) : } {( -1) }kn Z n q q �Î È      

 
(12) 

and 
 

, ,  = { :   - ( 0 ) = }iF i and n Z n iÎ Î ,  
 

(13) 
 

then C is a   weight cyclic code of dimension 

2k   whose weight distribution is as follows: 
 

.


   
 

-1

-1

0

0

( -1)( + 2) ( -1)

( -1)

1

( - )

0

1

i k k
i

k k
i

if i

if i and i
A

q F if i q q

q F if i q q and i





Ï

Î

 (14) 

 

Proof: Let ( ) = ( -1) ( )
i i

n
a ag x x h x  and 

 = ( )
ii aC g x , with i=1,2. Since ( ) ( )

1 2a ah x h x    

. 

 * *   :  and .  0 = k

s
q q

d d s Î  
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then, by Theorem 1, we know that  

1 2= = kC C q  and  1 2 = 0,C CÇ  hence the 

dimension of C is 2k. In addition, by Statement (D), 

we conclude that   = -1.kq   

 
We are going to show that if c(x) is a nonzero 
codeword in C then wt( ( )) .c x Î  Any codeword 

( )c x CÎ  is of the form  1 2( ) = ( ) - ( ),c x c x c x  for 

some codewords  1 1( )c x CÎ  and 2 2( )c x CÎ . The 

codeword c(x) will be trivial if at least one of the 
codewords 1( )c x  or 2 ( )c x  is zero and nontrivial if 

the two codewords 1( )c x  and 2 ( )c x  are different 

from zero. Again, by Theorem 1, we know that 1C   

and 2C are both one-weight cyclic codes with 

nonzero weight equal to -1( -1) ,kq q   thus if ( )c x   

is a nonzero trivial codeword we see that  
-1wt( ( )) = ( -1) .kc x q q �Î  Now, suppose that 

( )c x is nontrivial; thus by Statement (D), there 

exist uniquely determined integers 1s  and 2s ,

  1 20 , ,s s and uniquely determined field 

elements *
1 2  , qd d Î , such that the n coefficients 

of ( )c x are the first n terms of the sequence 

.  1 2( ) ( )
0 1 1 2 2= -s sd d  Let s and   be two integers 

in such a way that 2 1+ = +s s s , where 

  0 s  and = 0  or 1. Now, by Remark 2, 

there exists a field  element *
1

 a qd Î  such that 

 
1

( + ) ( )
1 1=m m

ad   for any integer  0.m  Thus, 

let d be the field element in  *
q   in such a way that 

1 2=d dd if = 0 and                    Clearly 

  ( )
1 2= -sd �Î   and, owing to our choice of d 

and s, we have  2( )
2 0=sd   which implies, by (8), 

that  0( ,0, ) = ( ,0, )Z n Z n ,therefore  wt( ( )) .c x �Î  

 
Finally, the weight distribution of C comes from the 
fact that the number of nonzero trivial codewords 
in C is equal to 2( -1)kq  (all of them having 

weight -1( -1) kq q ), and the fact that for each  

sequence  ,�Î   there are exactly  -1kq  different  

 

pairs 2 2( , ),d s  in such a way that the first n terms 

of the sequence  2( )
2

sd  are the n coefficients of 

some nontrivial codeword ( )c x C.Î                                                  

 
4..Some Results on Exponential and Gaussian 
Sums 
 
We begin this section by recalling some notations 
on character and Gaussian sums. Thus, by 
keeping our current notation, we define the 
canonical additive character    of  :kq

  

 

.e  2 Tr( )( ) := ,  for all   k
i c p

q
c c Î           (15) 

 
On the other hand, any multiplicative character of 

kq
 is defined by 

 

e   2 ( -1)( ) := ,  for , = 0,1, , - 2.
kl ijl q k

j j l q  

 
16) 

 
For any multiplicative character   of kq

 and for 

the canonical additive character   of ,kq
 the 

Gaussian sum   ( , )G   is defined by 

 

*

   
 

( , ) := ( ) ( ).
kq

c

G c c
Î

                      (17) 

For any two integers   and i, we define the 
following exponential sum: 
 

  
 

( )E ( ) := ( - ).k

kq

i

q
c

i c c
Î

                       (18) 

The following two lemmas are properties of  
( )E ( )kq

i  : 

 
Lemma 3  Let   and i be two integers, then 
 

.   ( ) ( ) ( ) ( )E ( ) = E ( )   E ( ) = E ( )k k k k
p

q q q q
i i and ip i  

 
(19) 
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Proof:  First of all, observe that 
 

      


( )E ( ) = 1+ ( ) ( ),k

b

b i j

q
b j

i
Î

                                                                (20) 

 
Where b runs through a set of coset representatives modulo n. Thus, the result follows from the 
following identities: 
 

( .

 

   

     

           



  

 

   
 

   

( ) ( )

( ) ) (( ) ) ( )
b b

bb b b

i j p i j

j j

ip j ip j p i j p i j

j j j j

Î Î

Î Î Î Î

                         (21) 

 
Lemma 4  Let    and i be two integers, then 
 


-2

( )

=0

E ( ) = .
k

k

q
k

q
i

i q                                                                                                 (22) 

 
Proof:  Since  (0) 1 we have 

 

*

.       
- 

  

2 - 2

=0 =0

( - ) = -1+ ( - )
k k

k kq q

q q
i k i

i c ic

c c q c c
 Î Î

                                           (23) 

 

But        - 2 - 2

=0 =0
( - ) = (- ) ( )

k kq qi i

i i
c c c c  and since, for all  0,c  we know that 

    -2 -2

=0 =0
( ) = ( ) = -1

k kq qi i

i i
c  , thus we conclude 

 

*

.    


   
 

- 2 - 2

=0 =0

( - ) = -1 - (- ) = -1- ( ) =
k k

k kq q

q q
i k k i k

i c ic

c c q c q q
Î Î

                  (24) 

 
Lemma  5  Let  and  be two integers in such a way that = ( -1)q . Then, for any integers   

 and y, we have 
 


 

         


  
-1-1

( )

=1 =0

( ) ( , ) ( , ) = - + E ( + ) .k
y k

t t t q
t j

G G q y j                           (25) 

 
Proof:  By using the definition of Gaussian sum, one obtains 
 

* *

* *

 
   




       

 

 

 
 

 

1

1

1
 

1

-1
1 1

 

  

( , ) ( , ) = ( ) ( ) ( ) ( )

= ( ) ( - ) .

k kq q

k kq q

t t t t
c c

t
c c

G G c c c c

c c c c

Î Î

Î Î

                         (26) 
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Lemma 6 Let  1a  and 2a   be two integers and set  

 1 2= gcd( - , -1),a a q , = ( -1)q and    2
2 = a  . 

Assume that 2a  is a unit in the ring  , where  2a  

is its inverse in such ring. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let   
2 1 21+ ( - ),a a a  where the arithmetic 

operations in the definition of     are taken in  . 
Let B be a set of pairs of multiplicative characters 
of  .kq

  For * 1 2,, kq
d Î  we set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the inner sum we substitute -1 -1
1=d c c . Then 

 

* *

*

*

 
  










     

  

 

 

 

 

 



 





-1

-1

-1

- 2

  

  

(

 

)

=

 

0

( , ) ( , ) = ( ) ( - )

= ( )( ( - ) - (0))

= ( ) ( - )

= ( )E ( ),

k kq q

kk qq

kk qq

k

k

t t t
c d

t
cd

t
cd

q
-i

t q
i

G G d dc c

d dc c

d dc c

i

Î Î

ÎÎ

ÎÎ

                                   (27) 

therefore, 
 

,

 
 

   


 

       

 

 



  

  

 

- 2-1 -1
( ) ( - )

=1 =0 =1

- 2 -1
( ) ( )

=0 =0

( ) ( , ) ( , ) E ( ) ( )

- E ( )+ E ( + )

k

k

k

k k

q
y t y i

t t t q
t i t

q

q q
i j

G G i

i y j

                                    (28) 

 

since    has order  . The result now follows by Lemma 4., 

 
 We end this section with the following: 
 
 
 
 
 
 
 
 

 

             
-1

1 2 1 2
( , ) =0

( ) = ( ) ( , ) ( )G( ) ( ) ( ) ( ) .
n

m m

B m

d G d
Î

,                                          (29) 

 

If         
1 2 1( -1)- 1 2, 0 -1, 0k

u u q uB u q u   then, for any integer y, we have    

                                                           


    



2 -1

-1 2 ( )
1 2

=0

( ) = - + E ( + ) .k
y

q
j

n
n y j                                                                  (30) 

 
Proof:  By using B we have 

        

   





 




1 1 2 1 2 1 1

1 2

1 2 1

-2 -1

1 ( -1)- 2 (q-1)-
=0 =0

-1

u 1 ( -1)- 2
=0

( ) = ( ) ( , ) (

.

) ( , ) ( )

( ) ( )

kq

u u u q u u u u
u u

n
m m

u q u
m

d G G d

                                   (31) 
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The inner sum in the last expression is a finite geometric series that vanishes if  
 

    
1 2 11 ( -1)- 2( ) ( ) 1u u q u , because of 

 

         
1 2 1 1 2 1 1 2 11 ( -1)- 2 1 ( -1)- 2 ( -1)-( ) ( ) = ( ) ( ) = (1) (1) =1.n n n n

u u q u u u q u u u q u                      (32) 

 
On the other hand, 
 

)      1 1 2 2 1

1 2 1

+ ( ( -1)- )
1 ( -1)- 2 1( ) ( ) = 1 ( = 1,a u a u q u

u u q u                                           (33) 

 
and clearly 
 

   1 1 2 2 1+ ( ( -1)- )
1 2 2 2 1 1( ) =1 ( -1) ( - ) (m )od -1 ,a u a u q u ka u q a a u q                            (34) 

 
 

but the last congruence implies that 2 1 1( -1) ( - ,)q a a u and since 1 2gcd( - , -1) = ,a a q   

therefore  1 =u t  for  = 0,1, , -1.t Now, also from the previous congruence, we have 

 
 

2 2 2 2 2 1 1( -1) ( - ( )) mod -1 ,ka a u q a a a u q                                                               (35) 

 
but    2 2 = 1a a  for some integer  , thus 

 
 

2 2 2 1 1( -1 ( ),) ( - ) mod -1ku q a a a u q                                                                     (36) 

 
and hence, for each t,  there exists a uniquely   20 u such that  

2 2 (mod ),u a bt  where 

 2 1= ( - )b a a  With this we conclude that  
1

=u t  and 
   2 1 2 2 1( -1)- ( - ) -= =u q u ta a a t t . 

Thus 
 


   

                  



-1

-1 -1
1 2 1 2 1 2

=1

( ) = + ( ) ( , ) ( ) ( , ) ( ).y y
t t t t t

t

n n G G                        (37) 

 

But   
        -1

1 2 1 2( ) ( ) ( ) = 1t t t , and since    = n   then, by means of previous lemma, 

we obtain the desired result.                                                                                                     
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5. The Weight Distribution of some Cyclic 
Codes whose Dual Code has Two Non 
Conjugated Zeros 
 
The following result shows that for some cyclic 
codes C whose dual code has two non conjugated 
zeros, it is always possible to find an integer   in 
such a way that the weight distribution of C can be 
fully obtained by means of the distribution of the 

values   
( - )

kq
c

dc cÎ
, where  * kq

d Î . 

 

Theorem 2 For a positive integer a, let 
 ( ) [ ]a qh x xÎ  be the minimal polynomial of . a   

Let 1a  and  2a  be two integers such that 

, , 1 2gcd( ) = gcd( ) = 1a a  and 

1 2 (mod )-1i ka q a q , for all  0.i   Let 1,  2,  

 ,   ,  2a   and   be as in Lemma 6. Let C be the 

cyclic code over q  of length n, whose parity-check 

polynomial is given by 
1 2
( ) ( )a ah x h x . As usual, let 

iA   be the number of codewords in C, of Hamming 

weight i. Let 

 
 = {0,1,2, , - 2 } ,kq                         (38) 

 
 
7  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and if we set  
 

' :


 � 
-1

-1 ( ) -1

=0

= { ( -1) - E ( + ) } {( -1) }  k
k k

q
j

q q y j y q q
q

Î È                                              (39) 

 
and 
 

'i


      �

-1
-1 ( )

=0

= { :   ( -1) - E ( + ) } ,k
k

q
j

F y i and q q y j i
q

Î Î                                              (40) 

 
then  C is a '  �  weight cyclic code of dimension 2k  whose weight distribution is as follows: 

 

'
.

'


    
  

�

�

-1

-1

1 0

0 0

( -1)( + 2) ( -1)

( -1) ( -1)

i k k
i

k k
i

if i

if i and i
A

q F if i q q

q F if i q q and i

Ï

Î

                                                              (41) 

 
 
Proof: Let 1  and  2 be, respectively, the kth-order impulse response sequences whose characteristic 

polynomials are, respectively,  
1
( )ah x  and 

2
( )ah x  . Let ,    and  iF  be as in Lemma 2. Thus, in the 

context of the proof of Lemma 2, it will suffice to prove the existence of a bijection ,  from  onto ,�  in 

such a way that if  ( ) = y  then 

 

, ,


  
-1

-1 ( )

=0

( -1) - E ( + ) = - ( 0 ).k
k

q
j

q q y j n Z n
q

                                                                  (42) 
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For this, we assume that  ( ) ( ) ( )
0 1 2= , , , ,i i i

i g g g for = 1,2.i  Additionally, by using (9), we take i   

such that /  ( ) = Tr ( ) ,i m
m F K i ig for  = 1,2i  and  = 0,1,2,m  . Since  ( ) 1

iah x ,  for = 1, 2,i  we 

have    -1
1 2 0.  With this, we now use Lemma 1 in order to define the bijection   in the following way 

 
       ( ) -1

1 2 1 1 2( = - ) = = .s s yd y d–                                                      (43) 

 
So, it only remains to compute , ,( 0 ).Z n  For this, let    be the canonical additive character of ,q  

then, by the orthogonal property of ,  we have 

 

.


 





(1) (2)
(

 

(1) 2) 1 if =1
( ( - )) =

0 otherwise
q

m+s m
m+s m

c

dg g
c dg g

q Î

                                                  (44) 

 
Thus,  

/ /, ,           




-1
+

1 1 2 2
=0  

1
( 0 ) = (Tr ( )) (Tr (- )).

k q k qq q
q

n
m s m

m c

Z n dc c
q Î

                         (45) 

 
   If   denotes the canonical additive character of ,kq

  then    and   are related by 

/   (Tr ( )) = ( )
k qq
  for all .  kq

Î  Therefore, 

 

*

      

     

 

 





-1
+

 

 

1 1 2 2
=0

-1
+

1 1 2 2
=0

1
( ,0, ) ( ) ( )

1
+ ( ) ( )

=

=

 

.

q

q

n
m s m

c m

n
m s m

mc

Z n dc c
q

n
dc c

q q

Î

Î

                                            (46) 

 
 Now, by means of the expansion of the restriction of   to *

kq
  in terms of the multiplicative characters 

of ,kq
  with Gaussian sums as Fourier coefficients (see for example [3, p. 195]), we know that 

     +
1 1 2 2( ) ( )m s mdc c  is equal to 

 

,
 

          +
1 1 2 22

1
( ) ( , ) ( ) ( ),

( -1)
m s m

k
dc G c G

q
                                           (47) 

 
where the sums are extended over all multiplicative characters   and   of .kq

  Since = -1kn q  

then, by substituting the last expression into (46), we obtain 
 

*

, ,
 

          

    

 

 


1 2 12

-1

1 2
=0  

1
( 0 n) + ( ) ( , ) ( ) ( , ) ( )

( ) ( ) ( )( ).

=

q

s

n
m m

m c

n
Z G G d

q qn

c
Î

                      (48) 
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6. Some Examples 
 
The main key for the determination of the weight 
distribution, in the context of Theorem 2 is the 

evaluation of the exponential sums ( )E ( ),kq
i   for a 

fixed ,  and for = 0,1, , - 2.ki q  However, thanks 

to the second equality in Lemma 3, such 
evaluation is only needed to be done for a set of 

coset representatives modulo -1.kq Taking this 

into consideration, and by using our current 
notation, we present the following examples. 
 

1) Let = 4,q  = 2,k  1 = 6a and 2 = 3,a  then 

 = 5,   = 3,   =1,  2 = 2a  and  =7. If we  

choose 16 2= ( ),  with  4 + +1= 0,  we find 

that (7) (7)
16 16E (0) = E (1) = 0,  (7)

16E (3) = 4,  (7)
16E (5) = 8

and (7)
16E (7) = -4.  Since  = 4b  for b = 1,3,7, 

 5 = 2  and  0 =1  then, by Theorem 2 we have 

'= {12, 9, 6, 15},�  12 = 5,F   9 15= = 4F F and 

6 = 2.F  Therefore 6 3 4( ) ( )  [ ],h x h x xÎ  is the 

parity-check polynomial for a four-weight cyclic 
code over 4,  of length 15, dimension 4 and 

weight enumerator polynomial:  
.6 9 12 15( ) = 1+ 30 + 60 +105 + 60A z z z z z   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) Let = 4,q  = 2,k  1 = 6a and 2 = 2,a  then 

 = 5,   =1,   = 3,  2 = 3a  and  =13.  Due to 

the first equality in Lemma 3, we have 
(13) (7)
16 16E ( ) = E ( )i i  for all i  (0 15).i  Thus, by 

using the previous example, we have  
 






2

0 5(13)
16

=0

16 if
E ( + 5 ) = ,

0 otherwisej

y
y j

 Î È
 

 
 implying that '= {8, 12},�  8 = 3F and 12 =12.F  

Therefore  6 2 4( ) ( )  [ ],h x h x xÎ  is the  parity-

check polynomial for a two-weight cyclic code over 

4,  of length 15, dimension 4 and weight 

enumerator polynomial:  
.8 12( ) = 1+ 45 + 210A z z z   

 
 3) Let = 2,q  = 4,k  1 = 7a  and 2 =1,a  then 

 =15,  = =1,  2 =1a  and  =7. Thus, by 

using Example 1), we have '= {8, 6, 4, 10},�  

8 = 5,F   6 10= = 4F F and 4 = 2.F  Therefore 

1 7 2( ) ( )  [ ],h x h x xÎ  is the parity-check polynomial 

   If the restriction of   to *
q  is nontrivial, then, by the orthogonal property of ,  we have 

*   
( )( ) = 0.

qc
cÎ

 Consequently, it suffices to extend the previous sum over the set B of pairs of 

characters   and   for which   is trivial in *,q  so that ( ,0, )Z n  is equal to 

 

 

              
-1

1 2 1 1 22
( , ) =0

-1
+ ( ) ( , ) ( ) ( , ) ( ) ( ) ( ) .

n
s m m

B m

n q
G G d

q qn Î

                (49) 

 
Since *    = { 0 ( -1)},s

q s q  then 

 

        
1 2 1( -1)- 1 2, 0 -1, 0 .k

u u q uB u q u                                   (50) 

 
But, by bijection ,  we know that    -1

1 1 2= ,s yd  thus a direct application of Lemma 6 
proves (42).                                                                                                                                   
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for a four-weight binary cyclic code of length 15,  
dimension 8 and weight enumerator polynomial:  

.4 6 8 10( ) = 1+ 30 + 60 +105 + 60A z z z z z   

 
 4) Let = 3,q  = 3,k  1 = 4a and 2 = 2,a  then 

 =13,  = 2,   =1,  2 = 7a  and  =15.  If we 

choose 27 3= ( ),  with  3 + 2 +1= 0,  we find 

that for {0,2,4,7,13,14,17},i Î  (15)
27E ( ) = 0,i  

(15) (15)
27 27E (1) = E (8) = 9 and (15)

27E (5) = -9.  Since 

 = 3b  for b = 1,2,4,5,7,8,14,17 and  =1b  for b 

= 0,13 then, by Theorem 2 we have 
' 18, 12, 24� ={ },  18 =17,F  12 = 6F  and 

24 = 3.F  Therefore 4 2 3( ) ( )  [ ],h x h x xÎ  is the 

parity-check polynomial for a three-weight cyclic 
code over 3,  of length 26, dimension 6 and 

weight enumerator polynomial:  
.12 18 24( ) = 1+156 + 494 + 78A z z z z  

 
 
7. Conclusion 
 
In general, the problem of determining the weight 
distribution of a cyclic code over a finite field 
seems to be difficult. Typically, when the finite field 
is a prime field, the problem is handled by 
expressing the Hamming weight of each codeword 
by means of certain combination of exponential 
sums. In this work, we presented an alternative 
method for computing the weight distribution of 
some cyclic codes whose dual code has two non 
conjugated zeros (Theorem 2). This method also 
needs the evaluation of some exponential sums, 
however, as we saw in the previous section, such 
evaluation is only needed to be done over a set of 
coset representatives modulo n. Additionally, this 
method has the advantage of flexibility, in the 
sense that it can also be applied to cyclic codes 
over finite fields of non prime order. 
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