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ABSTRACT 
The accuracy on time delay estimation given pairs of irregularly sampled time series is of great relevance in 
astrophysics. However the computational time is also important because the study of large data sets is needed. 
Besides introducing a new approach for time delay estimation, this paper presents a parallel approach to obtain a fast 
algorithm for time delay estimation. The neural network architecture that we use is general Regression Neural 
Network (GRNN). For the parallel approach, we use Message Passing Interface (MPI) on a beowulf-type cluster and 
on a Cray supercomputer and we also use the Compute Unified Device Architecture (CUDA™) language on Graphics 
Processing Units (GPUs). We demonstrate that, with our approach, fast algorithms can be obtained for time delay 
estimation on large data sets with the same accuracy as state-of-the-art methods. 
 
Keywords: neural networks, time series, parallel algorithms, machine learning 
 
RESUMEN 
La precisión para estimar retrasos en tiempo en series de tiempo muestreadas irregularmente es de gran importancia 
en astrofísica. Sin embargo, el tiempo computacional también es importante para el estudio de conjuntos de datos de 
gran tamaño. Este artículo primero presenta un nuevo método para estimar retrasos en tiempo, posteriormente se 
presenta una metodología basada en cómputo paralelo para estimar de manera rápida retrasos en tiempo. En ambos 
casos se utiliza una arquitectura de redes neuronales denominada regresión generalizada (General Regression 
Neural Networks — GRNN). Para el cómputo paralelo se utiliza MPI (Message Passing Interface) en un cluster tipo 
beowulf y en una supercomputadora Cray, también se utiliza el lenguaje CUDA™) (Compute Unified Device 
Architecture) para GPUs (Graphics Processing Units). Finalmente se demuestra empiricamente que con nuestra 
metodología se obtienen algoritmos rápidos para estimar retrasos en tiempo en conjuntos de datos de gran tamaño 
con la misma precisión que métodos que se usan en la actualidad. 
 

 
1. Introduction 
 
The time series analysis has great relevance in 
astrophysics [1]. Although diverse sciences study 
time series, in astrophysics time series analysis has 
special characteristics that makes it a challenging 
area open to research. The time series are 
irregularly sampled with several levels of noise and 
with missing data, also known as gaps [2, 3]. The 
problem consists in estimating time delays between 
pairs of time series [1, 4]. In Figures 1-4, we show 
graphically the time delay problem, see §2.3. 
 
Upon predicting that the Hubble’s parameter can be 
estimated through time delays on gravitational 
lenses [5], many observation campaigns have been 
launched since then [4], and new projects for  

 
 
ambitious surveys like Large Synoptic Survey 
Telescope (LSST) and the Super-Nova 
Acceleration Probe (SNAP) devoted to study dark 
matter are in development. Moreover, current 
surveys like The Sloan Digital Sky Survey (SDSS) 
and Sloan Lens ACS (SLACS) are generating a 
tremendous amount of large monitoring data sets. 
The above surveys are not only useful to estimate 
the Hubble’s parameter, because they are also 
important to study lensed supernovae (SNe) [6]. 
Therefore, time delay estimations become a big 
issue to study dark matter and microlensing [7]. 
 
So far, methods to estimate time delays have 
concentrated on the accuracy of time delay 
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estimations [8], because the accuracy to measure 
dark matter depends precisely on the accuracy of 
time delay estimations [4]. 
 
Our approach is based on artificial neural networks, 
in particular, General Regression Neural Networks 
(GRNN) [9], which are based on Radial Basis 
Function neural networks (RBF) [10]. It has been 
shown that GRNN are more suitable for the time 
delay problem than backpropagation-based neural 
networks [11]. 
 
Several time delay methods have been proposed 
across the literature, including a survey of methods 
[8]. In the astrophysics literature, the most popular 
method based on correlation analysis is Dispersion 
Spectra [12]. Another popular method is the PRH 
method [12, 13]. In the machine learning literature, 
only two methods appear: one which is based on 
kernel methods and evolutionary algorithms [14, 
15], and another which is based on Bayesian 
analysis [16]. 
 
In this paper, we compare the results obtained from 
several methods: Linear Interpolation (LI) [14], two 
versions of Dispersion spectra method_ܦଵଶ,and ܦସ,ଶଶ  
[12], PRH method [17, 13], Kernel-based method 
(K-V) and a kernel method with evolutionary 
computation (EA-M-CV) [15]. 
 

We compare the results with both artificial and real 
data. In particular, our research focus on large data 
sets so the time computation can be evaluated. The 
contribution of this paper extend in several 
directions: 
 
1. The introduction of a fast method for time delay 
estimation based on GRNN, which is sequential. 
2. The parallelization of the GRNN method. 
3. The performance of the parallel GRNN with MPI 
running on a cluster and on a supercomputer. 
4. A parallel version of GRNN running on GPUs. 
5. The comparison of performance of GRNN with 
state-of-the-art-methods. 
 
The remainder of the paper is organized as follows: 
the next section contains the description of the data 
sets used in this research. In Section 3, we 
describe our sequential algorithm for time delay 
estimation. Section 4 presents our parallel 
algorithms. It follows the experiments and results 
section, and finally it comes the conclusions and 
future work. 
 
2. Time Series and Time Delay 
 
This section describes the type of time series we 
studied. We also describe the time delay problem. 
 

 
Figure 1. Kundic data. Real Data: Q0957+561. Optical data at g-band with 97 observations. 



 

 

Parallel Approach for Time Series Analysis with General Regression Neural Networks, J.C. Cuevas‐Tello et al. / 162‐179 

Vol. 10 No.2, April 2012 164 

2.1 Real Data 
 
First, we start describing real data for the quasar 
Q0957+561, which is the most studied quasar so 
far [4]. We present two data sets for real data: 
Kundic data [4] and Schild data1. We studied 
Kundic data because, apparently, it stopped a 
controversy regarding the definite time delay for the 
quasar Q0957+561 (see Fig. 1) making this data 
set and its time delay the most accepted across the 
literature [29]. Schild data is important because it is 
a large data set with 1,232 observations (see Fig. 
2). Typical data sets for Q0957+561 are about one 
hundred observations, which are far from the new 
generations of observations such as the LSST, 
SNAP, SDSS and SLACS projects. These projects 
will generate data sets with thousands of 
observations automatically. Currently, the data sets 
for quasars are obtained manually [4]. In Figures 1–
2, the x-axis represents the time when the source 
of light is observed and the y-axis represents the 
flux f of light from a source, which is expressed in 
logarithmic units known as magnitudes (mag). 
 

                                                      
1 These data are unpublished data and collected by 
Schild et al. [18], and provided thanks to Somak 
Raychaudhury.  Available on request. 

2.2 Artificial Data 
 
Due to the importance of the study of time delay, 
many efforts have been made to estimate the time 
delay with real and artificial data [12, 13, 17, 20, 
21]. The problem with real data is that the definite 
time delay estimation for most known gravitational 
lenses remains uncertain [20]. Thus, in this paper, 
we also study the GRNN on artificial data. 
 
The public artificial data DS-5 has been generated 
to test algorithms for time delay estimation on 
gravitational lenses [14, 20]. These data simulate 
one observation  every 1.3 years with 50 samples 
taken irregularly. The time delay is 5 days with a 
shift of M = 0.1, between image-A and image-B. 
These data are grouped in five different forms (see 
Fig. 3), tree noise levels 0.03%, 0.106% and 
0.466% (see Fig. 4), fifty realizations per noise level 
and ten realizations per gap size. 
 
We simulated gap size in observations by imposing 
five blocks of missing data. The blocks were 

 
 

Figure 2. Schild Data. Real Data: Q0957+561. Image-A is shifted up 0.6 mag for clarity.  
Optical data at r-band with 1,232 observations.
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located randomly with at least one sample between 
them. We used gap sizes of 1, 2, 3, 4 and 5. Since 
this process is repeated ten times, we obtained ten 
pairs of time series with randomly located gaps. 
 
For each noise level, there are fifty different 
realizations in which the percentage of noise is 
represented by the size of the error bars which, in 
turn, are proportional to the mag (y-axis). 
 
Considering all forms, the different noise levels and 
gap sizes, the DS-5 contains 38,505 pairs of time 

series (see Table 1). The true time delay is known 
to be five units. These data are shown in Fig. 5. 
These data simulate optical data with short time 
delay and high precision. Figure 5 shows 
realizations for different noise levels and gap sizes: 
(a) Form 3, no gaps and no noise, (b) Form 3, no 
gaps and noise level of 0.106%, (c) Form 3, no 
gaps and noise level of 0.466%, (d) Form 3, gap 
size 1, realization 1, noise level of 0.466%. (e) 
Form 3, gap size 1, realization 6, noise level of 
0.466%, and (f) Form 3, gap size 5, realization 2, 
noise level of 0.106%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                       (a) Form 1.                                                                             (b) Form 2. 
 

 
 
 

                     (c) Form 3.                                                                             (d) Form 4. 
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2.3  Time Delay Problem 
 
The main problem is the estimation of the time shift 
between pairs of time series. In Figure 3, it is clear 
that there is a time shift between A and B. The 
same occurs with Figures 1 and 2, which show real 
data. In fact, the presence of the time shift is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
clearer on artificial data, since real data have gaps 
and noise. The study of the time delay is important 
because it is a method to measure dark matter. The 
time delay is proportional to the mass that causes 
the time delay, which acts as a gravitational lens. 
This fact has many implications and applications in 
astrophysics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(e) Form 5. 
 

Figure 3. The artificial data DS-5. The data is grouped in five different 
forms or shapes. These examples do not contain noise. 

 Gap Size 
Noise 0 1 2 3 4 5 

0% 1 10 10 10 10 10 

0.03% 50 500 500 500 500 500 

0.106% 50 500 500 500 500 500 

0.466% 50 500 500 500 500 500 

SUB-TOTAL 151 1510 1510 1510 1510 1510 

 
 

Table 1. Artificial Data DS-5. 7,701 pairs per form, generating 38,505 pairs of time series. 
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3. General Regression Neural Network (GRNN) 
 
The GRNN model (see Fig. 6) is supported by the 
theory of non-linear regression theory [22]: (ܺ|ݕ)ܧ =  ௬(,௬)ௗ௬ಮషಮ (,௬)ௗ௬ಮషಮ                   (1) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where X is the input vector (x1 , x2 , ..., xd ) with d 
inputs and y represents the output. E(y|X) is the 
expected value of the output given the input X, and 
f(X,y) is the probability of a density function. By 
using a Parzen estimator to obtain f(X,y) from the 
training data of size m, the output is as follows: 

 
 

(a) Level of noise 1.                                                                             (b) Level of noise 2. 
 
 

 
 
 

(c) Level of noise 3. 
 

Figure 4. Form 1 with error bars, and different noise levels. 
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(ܺ)ݕ = ሿܺ|ݕሾܧ = ∑ ௪థసభ∑ థసభ                (2) 

 

The ϕi functions represent the radial functions, 
which give to RBF networks their name. In the 
kernel methods literature, these ϕi functions are 
known as kernel functions k(·,·),where the ϕ 
function embeds the data into a feature space 
where the nonlinear pattern now appears linear 

[9,39]. Functions ϕi may have different forms 
including Gaussian, multicuadratic and inverse 
multicuadratic. However, the Gaussian functions 
are the most used in the literature, known as 
Parzen-Rosenblatt density estimator or Parzen 
window [10, 25]. Consequently, ϕi (n) is defined as 
follows: ߶݅ (݊) = exp ൬ି∥()ି∥మଶఙమ ൰              (3) 

 

 
 

(a)                                                                           (b)  
 

 
 
 

(c)                                                                              (d)  
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where  ∥X(n) − ci ∥ is the Euclidean distance 
between the input X(n) and the center ci (located at 
each observation of the training data). The 
standard deviation, spread, of the Gaussian 
function is σi (Parzen window size). 
 
Employing the Gaussian functions as basis in Eq. 
2, it is expressed as [22]: 

(ܺ)ݕ = ∑ ௪௫ቆషವమమమ ቇసభ∑ ௫ቆషವమమమ ቇసభ = ௌௌೢೞ             (4) 

 
where Di is the Euclidean distance, similar to Eq. 3. 
Note that Eq. 4 is similar to Eqs. 5.134 and 5.138 
[10], which correspond to the Nadaraya-Watson 
regression estimator and the normalized RBF 
network, respectively. 
 
In practice, the advantage of the GRNN model 
over the RBF one, is that σ (known as spread) is 
the only parameter to estimate. 

3.1 Learning in GRNN 
 
Now, the issue is how to estimate wi in Eq. 4, 
which refers to the learning process of the weights.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In backpropagation, we use the steepest descend 
methods based on gradients to learn the weights 
while, in RBF, linear algebra is used through the 
pseudo-inverse and singular value 
decomposition (SVD) for the same purpose [10, 
26, 27, 28]. In GRNN, it is well known in the 
literature that the weights are obtained 
straightforward from the outputs of the training 
data, see Eq. 1 against Eq. 2 [22]. 
 
Here, we show from Gaussian mixture models 
(GMM) how the weights ݓ  in Eq. 4 are learned 
from data [29, 30]. Let us see the output y as a 
probabilistic model: 
(ݕ)  = ∑ ୀଵ߶(݅|ݕ)              (5) 
 
which is a linear combination of m models where 
each ϕi  is a Gaussian model, and p(y|i) are the 
mixing coefficients (weights). Therefore, p(y) is a 
combination of Gaussian models ϕi. Assuming the 
data X is Gaussian ܰ(ߤ, ሿ(݅|ݕ)ሾܧ ଶ), thenߪ = µ. 
Now, Eq. 5 reads: 
(ݕ)  = ∑ ߶ୀଵߤ              (6) 
 

   
 

(e)                                                                                     (f) 
 
 

Figure 5. These plots show the form 3 from DS-5 with different noise levels and gap sizes. 
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where  ߤ comes from the observed data (ݔ, ŷ), so 
the weights ݓ  are equal to ߤ. It is important to 
recall that, in supervised learning, the observed 
data comes in pairs(ݔ, ŷ) , the input and the 
observed output. 

3.2 Sequential Algorithm for Time Delay Estimation 
with GRNN 
 
We have two irregularly sampled time series with 
noise as input (series A and series B) and the time 
delays for those series as the output. In this 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
method, series A and B are combined to generate 
a new series called C. This series must be learned 
by a GRNN. To achieve this, a parameter σ 
(spread) must be found. We have two different 
series with potentially different spreads. Using five-
fold cross-validation, we find σ for every time 
series. The average of these two values σp  is used 
for the GRNN. We define a range of values ∆= ൣ∆,∆௫൧ where the real time delay is found 
and we test for each ∆p. In other words, ∆ and ∆௫ are defined with prior knowledge about the 
quasar under analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. GRNN Architecture. 

 
 

Figure 7. Algorithm to combine the series A and B. 
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The combination of the series is made as follows: 
we have two vectors, A and B, representing both 
time series and the vector T representing the 
sampling time for both series. A new vector TB is 
generated representing the time of the series B. A 
delay ∆t is applied to this vector. Now we generate 
two new vectors, C and TC, representing the 
combined series and its sampling time, 
respectively. Vectors T and TB are orderly included 
in ࢀ and the corresponding values for A and B 
into C. If the time value Ti of vector T is equal to 
the time value ࢀ of vector TB, then we use ܥ  = ܥ)  + ܤ) +  where M is the vertical ,2/((ܯ
shift between A and B. This procedure is 
summarized in Fig. 7. 
 

Once the combined time series has been 
generated, the neural network is trained with the 
time series ( ܶ,  )  and σ. Then, we obtain theܥ
Mean Squared Error (MSE), at training points 
between C and the curve generated by GRNN. 
Afterwards, we register the pair (∆,  in a (ܧܵܯ
vector called RMSE. Finally, the best time delay is 
obtained when the MSE reaches its minimum in 
RMSE. The pseudo-code of the sequential 
algorithm is showed in Fig. 8. 

 
 
 
 
 
 

We performed a time complexity analysis of the 
sequential GRNN algorithm. This analysis is 
based on asymptotic notation [31], especially on 
the O-notation which is an upper bound. In other 
words, we are interested on the order of growth 
of the running time of an algorithm. Because we 
are looking at the input size (of training data) to 
nd the upper bound of the running time (time 
complexity), we are studying the algorithm 
efficiency [31]. 

Therefore, the time complexity of the sequential 
GRNN algorithm is O(n2). Because the cross-
validation procedure is always quadratic. 
 
4. Parallel Algorithm for Time Delay Estimation 
with GRNN 
 
In the next two sections, we introduce our parallel 
algorithms for time delay estimation. The 
parallelization is carried out using two 
technologies: MPI and GPU. Therefore, we come 
up with two versions of a parallel algorithm. These 
parallel algorithms are based on our sequential 
algorithm described in §3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 8. Sequential GRNN to estimate the time delay between pairs of time series. 
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4.1 Performance Analysis of GRNN 
 
Before parallelizing the GRNN sequential 
algorithm, we performed a study that allows us to 
calculate the amount of time spent in each routine. 
So, we used the GNU profiler, i.e. gprof. The 
results are in Table 2, where % time is the 
percentage of the total running time; cumulative 
seconds is a running sum of the number of 
seconds accounted for by this function and those 
listed above it; self seconds means the number of 
seconds accounted for by this function alone; calls 
is the number of times this function was invoked; 
and name is the name of the function. 
 
From Table 2, we can see that the time-consuming 
functions are OutputHidden and CreateGRNN. 
These functions correspond to the pattern-layer of 
GRNN (see Fig. 6), and also the parallel part of the 
GPU-CUDA™ approach below. 
 
4.2 MPI 
 
MPI is a widely used interface to parallelize 
algorithms, due to its portability [32]. This 
feature makes it an important option to develop 
parallel algorithms using clusters and 
supercomputers as targets. 
 
The first aspect to consider when parallelizing 
algorithms is using data parallelizing, which means 
dividing the input data in several parts in order to 
be concurrently processed [33, 34]. This technique 
dramatically reduces the processing time. There is 

a limit in the number of processes to use. In other 
words, as we increase the number of processes, 
we expect to reduce the computing time. However, 
the more processes there are, the more the 
exchange of information among processes will be. 
This is known as the latency time [35]. For 
example, in Fig. 13, when the number of processes 
reaches the amount of nine, the computational time 
starts increasing rather than decreasing, because 
of the latency time. Upon comparing a cluster with 
a supercomputer, it tourns out that the latency time 
of a cluster is greater than that of a supercomputer, 
due to the technology of the communication among 
nodes – including the bandwidth. Nevertheless, it is 
a lot cheaper to build a cluster than a 
supercomputer [36]. 
 
Given the portability of MPI, we use this 
technology to test our parallel algorithms using 
different architectures. 
 
In Figure 9, we present the MPI algorithm for the 
time delay estimation. From the sequential 
algorithm (Fig. 8), we parallelize the loop For each ∆ ∈  As we can see in Fig. 9, the master .∆ 
process divides the tasks according to ∆ =ሾ∆, ∆௫ሿ and the number of computing 
processes desired. The master process sends 
each part to its corresponding computing process. 
Then, the best time delay for each part is 
estimated with the computing process and is 
returned to the master process. Finally, the best 
time delay result, out of all of the parts, is 
computed by the master process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% time cumulative seconds self seconds calls name 

74.78 5.62 5.62 367,330 OutputHidden 
13.57 6.64 1.02 49,742 CreateGRNN 

4.79 7.00 0.36 61’220,544 FindIndex 

4.79 7.36 0.36 99,384 CreateCVSets 

2.13 7.52 0.16 50 CombineSeries 

 
 

Table 2. Results of GNU profiler for GRNN. 
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4.3 GPU and CUDA™ 
 
Although the GPU was originally designed for 
graphics processing, nowadays it is been used for 
parallelizing algorithms which are not related to 
graphics processing [37, 38, 39]. This is due to the 
fact that the GPU has several cores help to 
speedup floating point operations. 
 
GPU programming can use different 
technologies including NVIDIA® CUDA™ [40], 
GLSL2 and OpenCL3. For these technologies, a 
kernel definition is required for GPU 

                                                      
2 http://www.opengl.org/documentation/glsl/ 
3 http://www.khronos.org/opencl/ 

programming. When a kernel is called, it is 
executed M times in parallel by M different 
threads, as opposed to only once in sequential 
programming. This is illustrated in Fig. 10. 
 
Contrary to our parallel GRNN algorithm with MPI, 
in our parallel GRNN algorithm with CUDA™, we 
use our sequential GRNN algorithm as reference. 
Then, we only parallelize the pattern-layer of 
GRNN (see Fig. 6). If we observe Fig. 8, the 
parallelized part corresponds to the computing of 
the curve estimated by the GRNN, which was also 
used to obtain the mean squared error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 9.  Parallel GRNN with MPI. This algorithm estimates the time delay between pairs of time series. 
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Figure 10.  Kernel example. Two vectors A and B of size N are added and the result is  
stored as vector C, where i is the identifier of a thread in M threads per core. 

 
 
 

Figure 11.  Parallel GRNN. GPU kernel to compute the output of a pattern-layer. 
 
 

In Fig. 11, we present the kernel for our CUDA-based algorithm for time delay estimation. This 
kernel computes a single output of a pattern layer, i.e. ܵ௪ and ܵ௦ in Eq. 4. Our parallel GRNN 
algorithm with CUDA™ is the combination of our sequential algorithm and the algorithm shown 
in Fig. 12. 

 
 
 

 
 
 

Figure 12. Parallel GRNN with GPU. Function to simulate a GRNN with input x. 
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5. Results and Discussion 
 
First, we tested the sequential algorithm to estimate 
time delays on the artificial data, dataset DS-5, 
described in §2.2. In order to test the accuracy of 
our algorithm, we compared these results using 
several methods: Linear Interpolation (LI) [14], two 
versions of the Dispersion spectra method ܦଵଶ and ܦସ,ଶଶ  [12], PRH method [13, 17], K-V a Kernel- 
based method [20] and EA-M-CV method 
(evolutionary algorithm) [15]. These are state-of-
the-art methods used across the literature, and for 
each of these methods, trial time delays in the 
range of  ∆=  0.1 to ∆௫ =  10  were used with 
increments of 0.1, since the true delay is known a 
priori, i.e., to be 5 days [20]. 
 
Table 3 contains the results obtained from all of 
the methods, including our sequential GRNN 
algorithm. The statistic values of MSE (Mean 
Squared Error), AE (Absolute Error, average), ̂ߤ 
(mean) and ߪො (standard deviation) were obtained 
over the 38,505 datasets described in §2.2. The 
best results are highlighted in bold text. The 
sequential GRNN method shows the best results 
when taking into account the MSE, AE and ߪො 
statistic values, while the ܦଵଶ method shows the 
best results when considering the ̂ߤ  statistic value. 
 
MSE and AE measure the accuracy of 
estimates, that is the error between the 
estimated delay {∆;  ݅ =  1, 2, . . . , 38 505} and the 
true delay ∆=  5. The ̂ߤ  measures the bias and ߪො the dispersion or variance. 
 

Secondly, we tested our algorithms on real data 
(see §2.1). We use ∆=  400 and ∆௫=  449. 
Two datasets were used: Kundic and Schild data. 
Kundic data is the most accepted data across the 
literature [19]. Our algorithms on these data 
suggest a time delay of 420 days, which are 
consistent with previous estimations of time delays 
on Q0957+561 [14]. It is worthwhile mentioning 
that the time delay for a given quasar must be the 
same regardless of the dataset used and the time 
delay estimation method [5]. 
 
We also test our parallel GRNN algorithm on 
Schild data. We use this large dataset because it 
has more than one thousand samples. New 
projects such as LSST, SNAP, SDSS and SLACS 
(see §1) will generate large datasets in the future. 
Our motivation for this paper is based precisely on 
the fact that fast and accurate algorithms will be 
required to deal with such datasets. Furthermore, it 
is important to emphasize that some current time 
delay estimation methods cannot manage large 
datasets [15]. 
 
With Schild data, our aim was to test the speedup 
of our algorithms. Our sequential GRNN algorithm 
lasts one second on Kundic data (97 samples) and 
108 seconds on Schild data (1232 samples). The 
best time delay from Schild data is 428 days. In 
Table 4, we show the results of our parallel 
algorithm, MPI and CUDA™, on Schild data only. 
Let us describe Table 4, the first row shows the 
computational time from a sequential algorithm 
and the specifications of the computer where the 
algorithm was running. The second row shows the 

Statistic L1 ࡰ ࡰ,  PRH K-V EA-M-CV GRNN 

MSE 0.49 0.74 0.99 13.46 0.47 0.63 0.30 

AE 0.39 0.52 0.59 3.01 0.39 0.41 0.31 ࣆෝ 5.068 5.013 5.589 2.704 4.946 5.015 5.034 ࣌ෝ 0.70 0.86 0.80 2.86 0.68 0.79 0.54 

 
 

Table 3. Comparison among different methods, including GRNN 
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Parallel GRNN MPI Cluster (1p) and the 
computational time from a cluster with a single 
process. This cluster is a beouwolf-type cluster, 
and it has six nodes including the master node, 
each one with a single processor. The third row 
presents the results from the cluster with six 
processes. The forth and fifth rows show the 
results from the Parallel GRNN with MPI running 
on a Cray XD1 with one or eight processes. The 
sixth row refers, once again, to the sequential 
GRNN results obtained from a different 
computer, which has the GPU graphics card. 
The last two row shows the results from our 
parallel algorithm with CUDA™ using two 
different graphics cards. 
 
From Table 4, we can observe that the best 
results were obtained from our parallel GRNN 
method with MPI running on the Cray XD1, since 
it was the fastest one. Therefore, in Figure 13, 
we compare the results from the number of 
processes against the computing time of the 

Cray on Schild data. Our best results occur 
when we use eight processes. 
 
Although we compared two versions of our 
parallel GRNN method, the parallelization 
between MPI and CUDA™ turned out to be 
different. Nevertheless, we achieved to optimize 
both technologies in order for them to run as 
good as possible. It was determined that the 
GPU memory management restricts the 
parallelization procedure, if the CUDA™ version 
runs as MPI works. 
 
In fact, we performed a profiling analysis for the 
CUDA™ version similar to the sequential algorithm 
in §4.1. We use the Compute Visual Profiler for 
NVIDIA® CUDA™ technology, the results are in 
Table 5. We found that the time-consuming 
methods in CUDA™ are memcpyHtoD and 
memcpyDtoH, which correspond in Figure 12 to 
Copy ... in the graphics device and Copy ... from 
the graphics device, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Technology Time Specifications 
Sequential GRNN 108.00 seg Intel Core2 2.40GHz, 2GB 
Parallel GRNN, MPI Cluster (1p) 256.80 seg Intel PIV 2.80GHz, 512MB 

Parallel GRNN, MPI Cluster (6p) 81.13 seg Intel PIV 2.80GHz, 512MB 

Parallel GRNN, MPI Cray XD1 (1p) 45.54 seg AMD Dual Core 2.2GHz 

Parallel GRNN, MPI Cray XD1 (8p) 12.32 seg AMD Dual Core 2.2GHz 

Sequential GRNN 158.00 seg Intel Core2 1.86GHz, 2GB 

Parallel GRNN, CUDA™ CPU+GPU 87.00 seg Intel Core2 1.86GHz, 2GB GeForce 8800 
GTX (Graphics card) 
Number of multiprocessors: 16 Number of 
cores: 128 

Parallel GRNN, CUDA™  CPU+GPU 20.00 seg AMD Phenom II 3 Ghz , 2GB GeForce 
GTX 470 (Graphics card) Number of 
multiprocessors:14 Number of cores: 448 

 
 

Table 4. Sequential GRNN versus Parallel GRNN (MPI and CUDA™). 
 
 
 

Method #Calls GPU time (μs) % GPU time

memcpyHtoD 147,750 175,277 0.65
memcpyDtoH 729,904 1.9e+06 7.17

 
Table 5. Results of Compute Visual Profiler for NVIDIA® CUDA™. 
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We tested a MPI version similar to the CUDA™ 
version, i.e. parallelizing the pattern-layer of GRNN 
(see Fig. 6), but the MPI algorithm in Figure 9 give 
us the best performance. 
 

6. Conclusions 
 
We introduced a new approach for time delay 
estimation based on GRNN. According to the best 
of our knowledge, this is the first methodology for 
time delay by using artificial neural networks. In 
Table 3, we show that our sequential algorithm 
based on GRNN (Fig. 8) is competitive with state-
of-the-art methods in terms of accuracy. Since the 
speedup on large datasets is important for new 
monitoring projects, i.e. LSST, SNAP, SDSS and 
SLACS, besides the new sequential algorithm 
based on GRNN, we developed two parallel 
versions of our sequential algorithm. The first 
version of our parallel algorithms is based on MPI 
(Fig. 9), running in a cluster and a supercomputer. 
The second parallel version is based on CUDA™ 
for GPU (Fig. 12). Therefore, we also presented 
the computing time from our sequential and 
parallel GRNN algorithms in Table 4. Finally, we 
conclude that the parallel GRNN with MPI running 
on a Cray supercomputer with eight processes  
provides a superior performance, because the 
Cray architecture, i.e. communication among 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
nodes, allows fast data transfer. As we see in  
Table 5, the bootleneck of GPU are the functions 
to manage the GPU memory for data transfer 

7. Future work 
 
Part of the future work is to explore new CUDA™ 
capabilities, so we can take advantage of the GPU 
technology. The new survey projects are starting to 
generate new large datasets and some of these 
projects are still in development. As part of the 
future work, we would like to test the performance 
of our parallel approaches on real large datasets, 
because these datasets may differ to the Schild 
data used in our experiments. We only parallelize 
the GRNN method, so the parallelization of other 
methods has not been done. More work on this 
direction is also part of our future work. 
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Figure 13. Number of processes versus computing time. This plot was obtained with  
Schild Data and Parallel GRNN with MPI running on a supercomputer Cray XD1. 
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