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ABSTRACT 
In this paper we present a new method for designing a qubit and decoder in quantum computing based on the field 
effect in nuclear spin. In this method, the position of hydrogen has been studied in different external fields. The more 
we have different external field effects and electromagnetic radiation, the more we have different distribution ratios. 
Consequently, the quality of different distribution ratios has been applied to the suggested qubit and decoder model. 
We use the nuclear property of hydrogen in order to find a logical truth value. Computational results demonstrate the 
accuracy and efficiency that can be obtained with the use of these models. 
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1. Introduction 
 
Up to now many papers deal with the possibility to 
realize a reversible computer based on the laws of 
quantum mechanics [1]. 
 
Modern quantum chemical methods provide 
powerful tools for theoretical modeling and 
analysis of molecular electronic structures. 
Implementation of quantum information process-
ing based on spatially nuclear spins in stable 
molecules is one of the wide discussable applied 
sciences areas [2-4]. 
 
For realizing quantum computing, some physical 
systems, such as nuclear magnetic resonance, 
trapped irons, cavity quantum electrodynamics, 
and optical systems have been proposed. These 
systems have the advantage of high quantum 
coherence but cannot be integrated easily to form 
large-scale circuits. Owing to large-scale integra-
tion and relatively high quantum coherence, 
Josephson charge and phase qubits, based on the 
macroscopic quantum effects in low-capacitance 
Josephson junction circuits, have recently been 
used in quantum information processing [7]. In this  
paper different frequency, spin positions and 

different hydrogen atoms in compound applied for 
the qubit and decoder designing. 
 
2. An overview on quantum concepts 
 
In this chapter a short introduction is presented 
into the interesting field of quantum in physics, 
Moore´s law and a summary of the quantum 
computer. 
 
2.1 Quantum in physics 
 
In classical physics, the physical states of an 
object of interest can be defined exactly to a 
degree, which is mainly limited by experimental 
factors such as random and systematic errors. The 
measurement of a physical state in quantum 
mechanics is different as it includes intrinsic 
uncertainty, which cannot be influenced by 
improvements in experimental techniques. This 
concept, originally proposed by Heisenberg, is 
called the uncertainty principle, which states that 
the uncertainties of measurement of energy ∆E 
and interval of time ∆t, during which a microscopic 
particle possesses that energy: 
 

htE  .                    (1) 
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Where h is Planck’s constant. Hence, only the 
probabilities of getting particular results can be 
obtained in quantum mechanical experiments, 
fundamentally distinguishing them from the 
classical ones. The uncertainties in quantum-
mechanical measurements stem from the 
disturbance which measurement itself causes to 
the measured state at a microscopic scale. In 
NMR, the life times of spin states do not generally 
exceed the spin-lattice relaxation time T1 , and 
therefore the half-widths of NMR lines in spectra 
must be at least of the order of 1/T1[2, 3, 8]. 
 
The uncertainties featured in quantum mechanical 
measurements lead to a probability interpretation 
of phenomena, where the quantum mechanical 
states are described by the wave functions given in 
particular representation. In Dirac formulism of 
quantum mechanics used throughout this text, a 
state of a quantum mechanical system is 
described by the vector called ket and written as 
|ψ>. The use of ket instead of the wave function 
allows the form of analysis, which is independent 
of the particular representation chosen. In this 
formulism, different representations are regarded 
as rotations in the vector space, hence the ket |ψ> 
represents the quantum state no matter what 
representation is chosen for the analysis [9]. 
 
The number of the ket components is 2(I) +1, 
where I is spin. Thus, for spin ½ the ket has two 
components, each of which is a complex number. 
The number is represented by its real part only 
when the imaginary part is zero [9]. 
 
In NMR the nuclear spin magnetization is 
manipulated by applying a magnetic field which is 
(a) transverse to the static magnetic field, i.e., in 
the xy-plane, and (b) oscillating at close to the 
Larmor frequency of the spins. Such a field is 
created by passing the output of a radio-frequency 
transmitter through a small coil which is located 
close to the sample [2, 4]. 
 
If the field is applied along the x-direction and is 
oscillating at ωRF, the Hamiltonian for one spin is 
 

XRFz tIIH  cos2 10         (2) 

 
 
 

The first term represents the interaction of the 
spin with the static magnetic field and the second 
one represents the interaction with the oscillating 
field. The strength of the latter is given by ω1. It is 
difficult to work with this Hamiltonian as it 
depends on time. However, this time dependence 
can be removed by changing to a rotating set of 
axes or a rotating frame. These axes rotate about 
the z-axis at frequency ωRF, and in the same 
sense as the Larmor precession. In such a set of 
axes the Larmor precession is no longer at ω0, 
but at (ω0–ωRF); this quantity is called the offset, 
Ω. The more important result of using the rotating 
frame is that the time dependence of the 
transverse field is removed. The details of how 
this comes about are beyond the scope of this 
paper but can be found in a number of standard 
texts on NMR. In the rotating frame, the 
Hamiltonian becomes time independent [2, 4]. 
 

XzRF IIH 10 )(          (3) 

                XZ II 1  

 
Commonly, the strength of the radiofrequency field 
is arranged to be much greater than typical offsets: 
ω1»Ω. It is then permissible to ignore the offset 
term and so write the pulse Hamiltonian as (for 
pulses of either phase). 
 

xxpulse IH 1,    or    yypulse IH 1,    (4) 

 
Such pulses are described as hard or non-
selective, in the sense that they affect spins over a 
range of offsets. Pulses with lower field strengths, 
ω1 are termed selective or soft [2, 4]. 
 
Single spin ½ in static magnetic field acting along 
z-axis has two eigenkets: |α> (spin along the field) 
and |β> (spin is opposite to the field) described by 
columns: 

 

 1
0      and     0

1     (5) 

 
In general, the state of spin ½ may be represented 
by the combination of eigenkets written as the ket 
|ψ> where: 
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C1 and C2 are complex numbers which relate to 
probabilities of a spin to be in the particular state, 
either in state |α> or in state |β>. The eigenkets are 
special kets, which are normally orthogonal and 
represent the states in which a quantum-
mechanical system can be found when its state is 
measured. The particular eigenkets can be chosen 
for description of a quantum mechanical state, like 
a frame of reference. However, any chosen set of 
eigenkets must be normalized and complete, in 
order to be appropriate for a representation of a 
quantum mechanical state [2, 10, 11]. 
 
In physics and mathematics, the Boltzmann 
distribution is a certain distribution function or 
probability measure for the distribution of the 
states of a system; it underpins the concept of the 
canonical ensemble, providing its underlying 
distribution. A special case of the Boltzmann 
distribution, used for describing the velocities of 
particles of a gas is the Maxwell-Boltzmann 
distribution. In more general mathematical settings, 
the Boltzmann distribution is also known as the 
Gibbs measure. The Boltzmann distribution for the 
fractional number of particles X=Ni / N occupying a 
set of states i possessing energy Ei is 
 

 TZ
Tk

E
g

N

N
X

B

i
i

i /exp. 






 
   (7) 

 
where kB is the Boltzmann constant, T is 
temperature (assumed to be a well- defined 
quantity), gi is the degeneracy (meaning, the 
number of states having energy Ei), N is the total 
number of particles and Z(T) is the partition 
function [2-6]. 
 


i

iNN
      

   






 


i B

i
i Tk

E
gTZ exp.  

 
 
 

Alternatively, for a single system at a well-defined 
temperature, it gives the probability that the system 
is in the specified state. The Boltzmann distribution 
applies only to particles at a high enough 
temperature and low enough density that the 
quantum effects can be ignored and the particles 
obey Maxwell–Boltzmann statistics. The 
Boltzmann distribution is often expressed in terms 
of β = 1/kT where β is referred to as 
thermodynamic beta. The term "exp (-βEi)" or "exp 
(-Ei/(kBT))", which gives the (unnormalized) 
relative probability of a state, is called the 
Boltzmann factor and appears often in the study of 
physics and chemistry [12, 13]. 
 
The gyromagnetic ratio (also sometimes known as 
the magnetogyric ratio in other disciplines) of a 
particle or system is the ratio of its magnetic dipole 
moment to its angular momentum, and it is often 
denoted by the symbol "γ", gamma. Its SI units are 
radian per second per tesla (R/(S·T)) or, 
equivalently, coulomb per kilogram (C/kg). The 
term "gyromagnetic ratio" is sometimes used as a 
synonym for a different but closely related quantity, 
the g-factor. The g-factor, unlike the gyromagnetic 
ratio, is dimensionless. For more on the g-factor, 
see below, or see the article g-factor. Protons, 
neutrons, and many nuclei carry nuclear spin, 
which gives rise to a gyromagnetic ratio as above. 
The ratio is conventionally written in terms of the 
proton mass and charge, even for neutrons and for 
other nuclei, for the sake of simplicity and 
consistency. The relation is as follows: 
 


N

p

gg
m

e  
2

    (9) 

 
Where μN is the nuclear magneton, and g is the g-
factor of the nucleon or nucleus in question. The 
gyromagnetic ratio of a nucleus is particularly 
important because of the role it plays in nuclear 
magnetic resonance (NMR) and magnetic 
resonance imaging (MRI). These procedures rely 
on the fact that nuclear spins press on a magnetic 
field at a rate called the Larmor frequency (as 
discussed previously), which is simply the product 
of the gyromagnetic ratio with the magnetic field 
strength. Approximate values for hydrogen atom 
nuclei equals 42.5787 (γ / 2π (MHz/T)) [2-6]. 
 
 

(8) 
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2.2 Moore´s Law 
 
Electronic computer building is a fast improving 
technology but its future is yet to be determined. 
Gordon Moore, founder of Intel, observed an 
interesting rule called Moore’s law in 1965. He 
concluded that since the invention of transistors 
the number of transistors per chip roughly doubled 
every 18–24 months (see Figure 1) [14]. 
 

 
 

Figure 1. Representation of Moore´s law. The years 
 are given horizontally; the number of electrons 

 per device is represented vertically. 
 
It means an exponential increase in the computing 
power of computers. Although this was an 
empirical observation in 1965 the law seems to be 
valid nowadays. This law estimates serious 
problem around 2015 [14]. 
 
The growth in processor’s performance is due to 
the fact that we put more transistors on the same 
size microchip. 
 
This requires smaller and smaller transistors, 
which can be achieved if we are able to draw 
thinner and thinner lines onto the surface of a 
semiconductor disk. Around nanometer thickness 
we reach the nano world, where the new rules are 
explained by the quantum mechanics [14]. 
 
2.3 Quantum Computer 
 
General purpose quantum computers do not exist 
yet nor are they likely to exist for 20–30 years, 
although small-scale laboratory models and small 
specialized commercial models have been 
developed [16]. Owing to its property of large scale 
integration, the superconducting qubits are the 

promising candidates for scalable quantum 
computing [17]. Nowadays the power and 
capability of a quantum computer is primarily 
theoretical speculation; the advent of the first fully 
functional quantum computer will undoubtedly 
bring many new and exciting applications [15]. 
 
Recently, much attention has been paid to the 
physical realization of a quantum computer, which 
works on the fundamental quantum mechanical 
principle. The quantum computer can solve certain 
hard problems exponentially faster than its 
classical counterpart. By using unitary quantum 
logic networks, a conventional quantum computer 
may be implemented [17]. 
 
On the other hand, Raussendorf and Briegel 
recently proposed an intriguing alternative 
quantum computing strategy, i.e., the one-way 
quantum computer, which constructs quantum 
logic networks by using only single qubit projective 
measurements on a generated cluster state. In the 
quantum computer, quantum information is 
encoded in the cluster state, processed, and read 
out from the cluster state. The quantum computer 
is universal in the sense that arbitrary unitary 
quantum logic networks can be carried out based 
on a suitable generated cluster state. Cluster 
states thereby serve as a universal source for 
quantum computers. Meanwhile, the cluster states 
can also be used as entanglement resources, 
which means that other entanglement states can 
be constructed from the cluster states. As 
mentioned above, the cluster states have special 
characteristics and practical applications, hence 
the preparations of the cluster states have been 
implemented by many physical systems [17]. 
 
With the progress of high-precise fabricating 
technique, superconducting qubits have shown their 
competence in quantum computing. The Josephson 
charge qubit and flux qubit are based on the 
macroscopic quantum effects on superconducting 
circuits. The decoherence time of superconducting 
qubits is not very long, but the number of quantum 
operations that can be completed during the 
coherence time is also comparable with other 
systems. Owing to its property of large-scale 
integration, the superconducting qubits are the 
promising candidates for scalable quantum 
computing [17]. 
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2.4 The Quantum Bit 
 
In the classical information the smallest information 
bearing unit is called a bit. In digital computers, the 
voltage between the plates of a capacitor 
represents a bit of information: a charged capacitor 
denotes bit value 1 and an uncharged capacitor bit 
value 0, but in advanced computers, one bit of 
information can be encoded using two different 
polarizations of light or two different electronic 
states of an atom. However, if we choose an atom 
as a physical bit then quantum mechanics tells us 
that, apart from the two distinct electronic states, 
the atom can be also prepared in a coherent 
superposition of the two states. This means that 
the atom is both in state 0 and state 1. Quantum 
computers use quantum states which can be in a 
superposition of many different numbers at once. 
The simplest quantum system can be described by 
means of a two-dimensional complex valued 
vector in a two-dimensional Hilbert space. We call 
it quantum bit, qubit or qbit (Figure 2). A quantum 
computer manipulates qubits by executing a series 
of quantum gates, each being unitary 
transformation acting on a single qubit or pair of 
qubits [14, 15]. 
 

 
 

Figure 2. The general representation of a qubit in 
 a two dimensional Hilbert-space. 

 
In applying these gates in succession, quantum 
computers can perform complicated unitary 
transformations to a set of qubits in some initial 
state. The qubits can then be measured with this 

measurement serving as the final computational 
result. This similarity in calculation between a 
classical and quantum computer affords that in 
theory, classical computers can accurately 
simulate quantum computers. The simulation of 
quantum computers on classical ones is a 
computationally difficult problem because the 
correlations among quantum bits are qualitatively 
different from correlations among classical bits, as 
first explained by John Bell. For example: take a 
system of only a few hundred qubits, this exists in 
a Hilbert space of dimension that in simulation 
would require a classical computer to work with 
exponentially large matrices (to perform 
calculations on each individual state, which is also 
represented as a matrix), meaning it would take an 
exponentially longer time than even with a primitive 
quantum computer [10, 11]. 
 
The simplest quantum system is a half-state of the 
two-level spin. Its basic states, spin-down |↓ۄ and 
spinup|↑ۄ, may be relabelled to represent binary 
zero and one, i.e., |0ۄ and|1ۄ, respectively. The 
state of such a single particle is described by the 
following wave function: 
 

10       (10) 

 
The squares of the complex coefficients |α|2 
and|β|2 represent the probabilities of finding the 
particle in the corresponding states. 
 
Generalizing this statement to a set of k spin ½ 
particles, we find that there are now 2k basis 
states (quantum mechanical vectors that span a 
Hilbert space) which is like saying that there are 2k 
possible bit-strings of length k. 
 
However, observing the system would cause it to 
collapse into a single quantum state corresponding 
to a single answer a single list of 500 1s and 0s, as 
dictated by the measurement axiom of quantum 
mechanics. The reason for this is an exciting result 
derived from the massive quantum parallelism 
achieved through superposition, which would be 
the equivalent of performing the same operation on 
a classical super-computer with 10150 separate 
processors [10]. 
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3.:An introduction to binary logics and 
applications 
 
Digital design is concerned with the design of 
digital electronic circuits. The subject is also known 
by other names such as logic design, switching 
circuits, digital logic, and digital systems. Digital 
circuits are employed in the design of systems 
such as digital computers, electronic calculators, 
digital control devices, digital communication 
equipment, and many other applications that 
require electronic digital hardware [14]. 
 

3.1 Decoder 
 
Discrete quantities of information are represented 
in digital system with binary codes. A binary code 
of n bits is capable of representing up to distinct 
elements of the coded information. A decoder is a 
combinational circuit that converts binary 
information from n input lines to a maximum of 2n 
unique output lines. If the n-bit decoded 
information has unused or don’t-care 
combinations, the decoder output will have less 
then 2n outputs [18]. 
 
As an example, consider the 3-to-8 line decoder 
circuit of Figure 3.  
 

 
 

Figure 3. 3-to-8 line decoder. 
 
The three minterms are decoded into eight 
outputs, each output representing one of the 
minterms of the 3-input variables. The three 
inverters provide the complement of the inputs, 
and each one of the eight AND gates generate one 

of the minterms. A particular application of this 
decoder would be a binary-to octal conversion.  
 
The input variables may represent a binary 
number, and the outputs will then represent the 
eight digits in the octal number system. However, 
the 3-to-8 line decoder can be used for decoding 
any 3-bit code to provide eight outputs, one for 
each element of the code [18]. 
 

Input Output 
X Y Z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 
0 1 1 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 1 0 0 0 
1 0 1 0 0 0 0 0 1 0 0 
1 1 0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 0 0 0 1 

 
Table 1. Truth table of 3-to-8 line decoder. 

 
The operation of the decoder may be further 
clarified from its input-output relationships, listed in 
Table 1. Observe that the output variables are 
mutually exclusive because only one output can be 
equal to 1 and represents the minterm equivalent 
of the binary number presently available in the 
input lines [18]. 
 
3.2 Encoder 
 
An encoder is a digital function that produces a 
reverse operation from that of a decoder. An 
encoder has 2n (or less) input lines and n output 
lines. The output lines generate the binary code for 
2n input variables. An example of an encoder is 
shown in Figure 4 [18]. 
 

 
 

Figure 4. Octal-to-binary encoder. 
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The octal-to-binary encoder consists of eight 
inputs, one for each of the eight digits, and three 
outputs that generate the corresponding binary 
number. It is constructed with OR gates whose 
inputs can be determined from the truth table given 
in Table 2. The low-order output bit z is 1 if the 
input octal digit is odd. Output y is 1 for octal digits 
2, 3, 6, or 7. Output x is a 1 for octal digital 4, 5, 6, 
or 7. Note that D0 is not connected to any OR gate; 
the binary output must be all 0’s. This discrepancy 
can be resolved by providing one more output to 
indicate the fact that all inputs are not 0’s [18]. 
 

Input Output 
D0 D1 D2 D3 D4 D5 D6 D7 X Y Z
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 1 
0 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 0 1 1 
0 0 0 0 1 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 1 0 1 
0 0 0 0 0 0 1 0 1 1 0 
0 0 0 0 0 0 0 1 1 1 1 

 
Table 2. Truth table of octal-to-binary encoder. 

 
The encoder in Figure 4 assumes that only one 
input line can be equal to 1 at any time; otherwise 
the circuit has no meaning. Note that the circuit 
has eight inputs and could have 28 = 256 possible 
input combinations. Only eight of these 
combinations have any meaning. The other input 
combinations are don’t-care conditions [14]. 
 
Encoders of this type (Figure 4) are not available in 
IC packages, since they can be easily constructed 
with OR. The type of encoder available in IC form 
is called a priority encoder. These encoders 
establish an input priority to ensure that only the 
highest-priority input line is encoded. Thus, in 
Table 2, if priority is given to an input with higher 
subscript number over one with a lower subscript 
number, then if both D2 and D5 are logic-1 
simultaneously, the output will be 101 because D5 
has a higher priority over D2. Of course, the truth 
table of a priority encoder is different from the one 
in Table 2 [14]. 
 

4. Qubit and quantum decoder design 
 
In this section we propose a new method for qubit 
and decoder implementation using the quantum 
theory. We use the states of hydrogen nuclear spin. 

 
4.1 Hydrogen Nuclear Spin 
 
The reason statistics of the Maxwell-Boltzmann 
probability distribution function is used in order to 
do this is a direct result of the infinite small size of 
atoms, molecules and spin populations. If a 
computer were to keep track of a sample of the 
nuclear spins at the selected temperature and 
pressure, it would need to dynamically account for 
the position and velocity vectors for the number of 
nuclear spins (here, for hydrogen atoms). This is 
too many operations for most modern computers 
to handle adequately. Other problems occur of 
course which stem from quantum mechanics and 
our increasing inability to precisely know the exact 
positions and velocities if nuclear spins were 
chosen to examine [19]. 
 
The values of the magnetic field powerful (B0, in 
Tesla), Frequency (υ in MHz), Boltzmann 
distribution ratio (X = Ni /N) and τ = ln (1/(1–X)) of 
hydrogen nuclear magnetic resonance are shown 
in Table 3. The "τ" values which are shown in 
Table 3 introduce the Napierian logarithmic of the 
ratio of 1/ (1–X) as a digital index (constant 
temperature). 
 
In this study, the values that are introduced in 
Table 3 were utilized as input for a decoder model. 
The first value of the magnetic field was 
approximated to zero. The Boltzmann distribution 
ratio (X = Ni /N) and the "τ" values decreased by 
increasing the magnetic field (B0, in Tesla) and the 
induced frequency. By using these 3 values in the 
decoder model of this study, different outputs can 
be observed during the process. 
 
Figure 7 shows the process of input of the different 
3 values for H-atom (B0, υ and γ values) and 
various matrices output as result of the process. 
By changing one or more of the values, various 
matrices result as output. 
 
4.2 Qubit Design 
 
The external field magnitudes on the nuclear spin 
produce the spin moment in the Larmor frequency. 
 
If this frequency overlaps by electromagnetic 
radiation with the Larmor frequency, it gives the 
energy and change of spin state (see Figure 5).  
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The previously mentioned practice is the act of 
writing. By removing the external field, the spin 
returns to an earlier state which is called the act of 
reading. Here the effect of reading is radiated in 
the wave form. 
 

 
 

Figure 5. Nuclear spin in external field. 
 
Considering Table 1 and the above materials, B0 is 
drawn on as a logic zero:  
0 (Low): B0=10-5T, f1=4.25787×10-4 MHZ, 
τ1=23.409663. 
And B1=2 T that makes X decrease, called the 
binary one: 
1 (High): B1=2T, f2=85.157444 MHZ, 
τ2=11.203597. 
In this design we can use some B for the zero and 
one state that shows the relation between B and τ 
in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. The spin status of hydrogen 
 in different magnetic fields. 

 
 
 
 
 
 
 

 

 
 

Figure 6. The relation between B and τ. 

 
By implementing the special frequency in the 
external field effect use writes in the bit in order to 
release the energy in atom for the read in the bit. 

4.3 Quantum decoder design 
 
In the excitation process of an organic compound, 
if there is frequency sweeping in excitation, atoms 
of hydrogen resonate in separated frequencies. 
Different positions of hydrogen atoms is the reason 
for this phenomenon. We can use this 
phenomenon implementation as in Figure 7. 
 
 
 
 
 
 
 
 

 
N
O 

Magnet
ic Field 
(B0, in 
Tesla) 

 
Frequency 
(υ in MHz) 

 
Boltzmann 

Distribution Ratio 

 = ࣎ 
ln(1/1– X) 

1 10-5≈ 0 4.25787 
10– 4 

0.999999999931874 23.409663 

2 0.5 21.289361 0.999996593708047 12.589886 
3 1.0 42.578722 0.999993187427698 11.896741 
4 1.5 63.868083 0.999989781158951 11.491277 
5 2.0 85.157444 0.999986374901806 11.203597 
6 2.5 106.446805 0.999982968656265 10.980455 
7 3.0 127.736166 0.999979562422326 10.798135 
8 3.5 149.025527 0.999976156199990 10.643986 
9 4.0 170.314888 0.999972749989256 10.510457 
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Figure 7. Decoder implementation. 
 
Where B is external field magnitude, ν is the 
Larmor frequency of the field, T is temperature and 
γ is magnetogyric of atoms. τi is yield from Eq. (11). 
 

)
1

1(
X

Ln


     (11) 

 
We will have a unique peak in one of the f1, f2… fn 
frequencies. If we have  a peak in fi , then 
associated output τi is high. Thus, it can be used as 
a decoder. In a similar manner. It can be used for 
multi true value logic (as J. Lukasiewicz logic) 
implementation. 
 
5. Conclusion 
 
This paper introduces the concept of a new 
method for the design, analysis, modeling, 
simulation of a qubit and decoder in a quantum 
computer. Based on our proposal, we can 
summarize our findings as follows: 
 
1. We used the spin field effect for the qubit 
design. The difference between the classical bit 
and the qubit proposed is that a qubit can be in a 
state other than 0 or 1. Additionally, the decoder 
proposed has several lines for the selected in 
output on a scale of the other one. 
 
2. The suggested qubit and decoder needs to be 
verified by more theoretical and experimental 
research to determine its potential as an applicable 
feature in the future. 
 

3. The authors believe that the proposed 
techniques can be applied to quantum computing. 
Further research could be conducted to confirm 
the effectiveness of the proposed techniques using 
a variety of quantum computing techniques. 
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