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ABSTRACT 
This paper presents a multiobjective methodology for optimal zoning design (OZ), based on the grouping of 
geographic data with characteristics of territorial aggregation. The two objectives considered are the minimization of 
the geometric compactness on the geographical location of the data and the homogeneity of any of the descriptive 
variables. Since this problem is NP hard [1], our proposal provides an approximate solution taking into account 
properties of partitioning algorithms and design restrictions for territorial space. Approximate solutions are generated 
through the set of optimum values (Maxima) and the corresponding minimals (dual Minima) [2] of the bi-objective 
function using Variable Neighborhood Search (VNS) [3] and the Pareto order defined over this set of values. The 
results obtained by our proposed approach constitute good solutions and are generated in a reasonably low 
computational time. 
 
Keywords: Optimal Zoning, compactness-homogeneity, maxima, multiobjective optimization. 
 
RESUMEN 
 
Se presenta una propuesta de optimización multiobjetivo para la zonificación óptima (ZO) basada en la agrupación de 
datos geográficos bajo características de agregación territorial. Los dos objetivos a minimizar son la compacidad 
geométrica en la ubicación geográfica de los datos y la homogeneidad de alguna de sus variables descriptivas. Dado 
que este problema es NP Duro [1], nuestra propuesta proporciona una solución aproximada tomando en cuenta las 
propiedades de los algoritmos de particionamiento y de las restricciones espaciales para diseño territorial. Se 
generan soluciones aproximadas a través del conjunto de valores máximos (Maxima) y el dual (Minima) [2] de la 
función bi-objetivo con la  heurística de Búsqueda por Entorno Variable (BEV) [3] y  el orden Pareto definido sobre 
este conjunto de valores. Los resultados obtenidos por nuestra propuesta constituyen buenas soluciones, y se 
produjeron en tiempos de cómputo razonablemente cortos. 
 

 
1. Introduction 
 
In the problem of Optimal Zoning (OZ), the goal is 
to obtain a spatial data partitioning named BGAs 
(Basic Geostatistical Areas). Its composition 
consists of two components: geographical 
coordinates in the plane R2 and a vector of 171 
census descriptive characteristics [4]. The first 
component allows us to obtain a distance matrix 
for the process of calculating the geometric 
compactness, which is one of the objective 
functions to minimize. The second objective 
function is the minimization of the homogeneity of 
any of the census variables stored in the vector´s  

 
 
description, and selected on the basis of a  
particular interest. From this point of view, we look 
for a partition that consists of a set of classes with 
components that are very close geographically, 
and balanced according to one of its census 
variables. 
 
To solve the issue of the bi-objective geographical 
partitioning, a heuristic methodology named 
Variable Neighborhood Search (VNS) [3] was used 
in a multiobjective optimization framework that 
allowed us to find a set of pairs of nondominated  
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and non-comparable solutions named minimals [2]. 
This paper is organized as follows. The 
Introduction is in Section 1. Section 2 presents the 
basic definitions and concepts used throughout 
this study. The problem statement of the Optimal 
Zoning (OZ) problem is described in Section 3. 
Section 4 shows the method used to find the set of 
nondominated solutions (minimals). The 
conclusions are shown in Section 5. 
 
2. Preliminary and theoretical aspects 
 
Multiobjective problems can be more clearly 
understood if the relationships among their 
characteristics, constraints and main objectives to 
be improved are identified. For such problems, it is 
possible to have a model that consists of 
mathematical functions and restrictions expressed 
as constraints. 
We have taken some definitions from [5] which are 
necessary to formally introduce the multi-objective 
partitioning problem on which this paper is 
focused. The definitions are the following 
 
Notions of Optimality 
The minimization in multicriteria optimization 
problems in general is: 
“min” (f1(x), f2(x),..,fp(x)) subject to x ∈ X 
 
The fundamental importance of efficiency (Pareto 
optimality) is based on the observation that any x 
which is not efficient cannot represent a most 
preferred alternative for a decision maker, because 
there exists at least one other feasible solution x´ ∈ 
X such that fk(x´) ≤ fk(x) for all k = 1,..,p, where a 
strict inequality holds at least once, i.e., x´ should 
clearly be preferred to x.  
 
Let S be any set. A binary relation on S is a subset 
R of S×S: 
 
Definition 1. A binary relation R on a set S is: 
● an equivalence relation if it is reflexive, 
symmetric, and transitive,  
● a preorder (quasi-order) if it is reflexive and 
transitive. 
 
In the case of R being a preorder set the pair (S, 
R) is called a preordered set. For convenience, we 
will write s1 ≼ s2 as shorthand for (s1, s2) ∈ R and 
s1 ⋠ s2 as a shorthand for (s1, s2) ∉ R. Also, we will 

interchangeably refer to the relation R or to the 
relation ≼. This notation can be read as “preferred to”. 
 
Given any preorder ≼, two other relations are 
closely associated with ≼ : 
s1≺ s2

  iff s
1≼ s2

  and s2⋠ s1
   

s1 ∼ s2
  iff  s

1≼ s2
  and s2≼ s1

   

 
By the choice of an order ≼ on Rp, now it´s 
possible define “min”  
 
 “min” f(x) = “min” (f1(x), f2(x),.., fp(x))  x ∈ X  
With the multiple objective functions, we can 
evaluate objective value vectors (f1(x), f2(x),..,fp(x)). 
However, we can see that these vectors y = f(x), x 
∈ X are not always directly compared in objective 
space, i.e., Rp. 
 
In general, the objective function vectors are 
mapped from Rp to an ordered space, e.g. (Rp, ≼), 
where comparisons are made using the order 
relation ≼ (model map). Now, we can summarize 
the elements of a Multicriteria Optimization 
Problem (MOP): 
 
The feasible set X, the objective function vector f = 
(f1,..,fp) : X → Rp, the objective space Rp, the 
ordered set (Rp, ≼), the model map θ.	
	
Feasible set, objective function vector f, and 
objective space are data of the problem to be 
solved. The model map provides the link between 
objective space and ordered set, in which, the 
meaning of the minimization is defined. Thus, with 
the three main aspects (i.e., data, model map, and 
ordered set) the classification (X, f, Rp)/θ/(Rp, ≼) 
completely describes a multicriterion optimization 
problem. 
 

Definition 2. A feasible solution x* ∈ X is called an 
optimal solution of a Multiobjective Problem (MOP) 
(X,  f, Rp)/θ/(Rp, ≼) if there is no x* ∈ X, x ≠ x* such 
that θ(f(x)) ≼ θ(f(x*)). 
 
For an optimal solution x*, θ(f(x*)) is called an 
optimal value of the MOP. The set of optimal 
solutions is denoted by Opt((X,  f, Rp)/θ/(Rp, ≼)).  
 
Definition 3. A feasible solution x^ ∈ X is called 
efficient or Pareto optimal, if there is no other x ∈ X 
such that f(x) ≤ f(x^). If x^ is efficient, f(x^) is called  
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nondominated point. If x1, x2, ∈ X and f(x1) ≤ f(x2)  
we say x1dominates x2 and f(x1) dominates f(x2).  
 
The set of all nondominated x^ ∈ X is denoted as 
XE and called the efficient set. The set of 
nondominated points y^ = f(x^) ∈ Y where x^ ∈ XE 

is denoted YN and called the nondominated set [5]. 
Finally, we present concepts that we have adapted 
to the problem discussed in this paper. The 
previous definitions allow us to define the problem 
of our interest as follows: 
 
Definition 4. A MOP is defined in the case of 
minimization (and similarly for the case of 
maximization) as:  
Minimize f(x) since f: F ⊆ Rn ⟶ Rq, q ≥ 2 and 
evaluated in  
 

A = {a ∈ F: gi (a) ≤ 0, i ൌ1, ...,n} ≠ ∅. 
 
The constraints set A, called the feasible region, 
and consists of the regular functions  
gi; R

n → R.  
 
2.1 Pareto Dominance  
 
Definition 5. Pareto dominance (DP). A vector   u = 
(u1,..,uk) dominates a vector v = (v1,..,vk) (denoted 
by u ≼ v) if and only if  u  is partially less than v .  
 
That is: 
ui ≤ vi 	for any	 i ൌ1,..,k and denoted by 
u    v if  u ≼ v and u ≠ v . 
 
Another common concept used as Pareto 
dominance is expressed as:  
 
Definition 6. Given the multiobjective problem  
Minimize f(x) where f : F ⊆ Rn → Rq, q ≥ 2 with A ⊆ 
F the feasible region. A vector x* ∈ A is not 
dominated or a Pareto optimal solution if a vector x 
∈ A such that f(x) < f(x*) does not exist [6].  
 
Two vectors x, x’ ∈ A are not comparable iff    
 

f(x) ⋠ f(x’)  and  f(x’) ⋠ f(x ). 
 
The answer to the problem of finding the best 
solutions (nondominated solutions) to a 
multiobjective problem is known as the solution set 
of the problem, and the group of values of the  
 

objective functions, with a domain restricted to the 
vectors of the solution set (i.e., nondominated 
vectors) is known as the Pareto frontier.  
 
In summary, the set of Pareto optimal solutions is 
the space solution of the problem and the Pareto 
Frontier is its image with respect to the function f : 
F ⊆ Rn → Rq , q ≥ 2 being optimized [6] .  
 
Definition 7. Let (A, ≼) be a partially ordered set, 
where an element x* ∈	 X ⊆A is called a minimal 
element of X, iff an element x ∈ X such that x ≺ x* 
does not exist. The set of all minimal elements is 
denoted as M(A, ≼).  
 
In this paper, we propose an adaptation of 
definitions 5, 6 and 7 to obtain: 
 
Definition 8.  Let F ⊆ Rn  and C = {P: P is a partition 
of F}  
 
Minimize f(p) where f : C ⊆ 2F → Rq, q ≥ 2 with A ⊆ 
C the feasible region. A partition p* ∈ A is not 
dominated or a Pareto optimal solution if a partition 
p ∈ A such that f(p) < f(p*) does not exist.  
 
Two partitions p, p’ ∈ A are not comparable iff    
 

f(p) ⋠ f(p’)  and  f(p’) ⋠ f(p ) 
 
3. The Optimal Zoning Problem 
 
The Zoning Problem is informally defined as a 
grouping process of geographical areas with the 
assumption of the existence of a relationship 
between the characteristics of the data that 
constitutes the metropolitan area, the population 
variables and the properties of the problem. Here, 
the main issue is to know how a variable census - 
population is distributed or concentrated in certain 
territorial spaces.  
 
The applications of the Zoning Problem are diverse, 
and primarily focused on solving population issues. 
For example, in order to serve a segment of the 
population that has no basic services, as drainage, the 
problem can be addressed by grouping units of 
territorial areas (in this case BGAs), in larger groups, 
so that the areas that belong to each group, are very 
close and compact, and can be considered in the 
grouping of the variables related to sewer services [7]. 
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This procedure involves creating and analyzing 
small groups because it is not possible to study the 
full extent as a single territorial unit. At this point, 
and according to the territorial design properties, 
Optimal Zoning can be seen as a case arising in 
territorial design. Since the problem of optimal 
zoning seeks answers to several population issues 
(distribution, concentration, density or 
centralization of the population in a metropolitan 
area), the method for addressing optimal zoning 
uses compact territorial units, in this case BGAs 
with two objectives to consider: a) to satisfy the 
geometric compactness property required in 
territorial design, and b) to balance a specific 
population variable in each group (homogeneity). 
This means that the partitioning method for BGAs 
minimizes two objective functions simultaneously 
and checks that the solutions generated are 
minimals [7]. 
 
3.1 Solution Strategy for Optimal Zoning 
 
Generally, the clustering can be addressed as a 
combinatorial optimization problem where the 
clusters are a partition of a set of objects. If only 
one objective function is optimized, the clustering 
algorithm simply incorporates a heuristic method to 
find a global solution [8]. But given the strong 
relationship between spatial design problems and 
geographical partitioning, we know that these 
problems, in order to be solved, require a 
clustering methodology applied on the 
geographical space where the conditions for the 
grouping are territorial design spatial properties 
such as continuity, connectedness, compactness 
and homogeneity. Similarly, the combination of 
geographical data in territorial design has 
produced good results if one optimizes only one 
objective function f and leaves other properties as 
constraints.  
 
The multiobjective partitioning in territorial design 
is an alternative solution to such problems as it 
offers a set of solutions where the decision maker 
can have more than one solution and choose the 
most appropriate for a particular application. There 
are few works on multiobjective partitioning due to 
its various sources of complexity: modelling and 
characterization of the problem, the development 
of implementations articulated with a heuristic 
method and the generation of nondominated 
solutions [9, 10, 11, 12, 13]. 

Since optimal zoning is a multiobjective problem, 
the vector of census population variables and the  
geographical coordinates are data that should be 
considered in the clustering process in order to 
create the BGAs. In the aggregation process, 
which is NP-hard in nature, the kinds of clusters 
obtained are subject to compliance with the 
minimization of two cost functions: a measure of 
distance in geographic space and a balance or 
uniformity of population variables.  
 
This implies that the optimization of these objective 
functions will be addressed with a heuristic 
approach, while the solution to the competition 
between these two functions will be solved by 
multi-objective methods for obtaining the set of 
nondominated solutions (minimals). 
 
The general strategy used to solve the problem of 
optimal zoning is:  
a) To develop a geographical partitioning 
combinatorial model that considers the spatial 
layout properties (BGAs restrictions of 
compactness and homogeneity).  
 
b) To solve first the geographical partitioning 
problem, considering only one objective function: 
geometric compactness. Once a compact partition 
is obtained, its homogeneity is simultaneously 
calculated.  
 
c) To develop an algorithm that optimizes both 
compactness and homogeneity with the use of 
VNS to ensure the generation of quality solutions, 
according to a) and b) [7].  
 
d) While the solutions are generated with the 
heuristic algorithm, it is necessary to use a multi-
objective method for the construction of an efficient 
set of solutions defining a Pareto frontier [2, 10]. 
The method used to find nondominated solutions is 
based on the theory of order and obtains the 
minimals [2, 7].  
  
In particular, we emphasize the use of [2] to solve 
the multiobjective problem because of the 
importance of the concepts of Maxima and their 
dual Minima used to find nondominated solutions 
for optimal zoning problems. On the other hand, 
other proposals to address multiobjective problems 
have been studied [10, 11, 12, 13]. The aim has 
been to identify aspects of these methods that 
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could be adaptable to the multiobjective problem 
discussed in this article. However, after an analysis  
of several works, the core support used for the 
multiobjective optimal zoning method proposed in 
this work was the algorithm proposed in [2]. 
 
3. 2 Discretization and representation 
 
The geographical clustering is done in a physical 
space. In the finite geographical units called BGAs 
(Basic Geostatistical Areas) in our research, each 
element is represented by its spatial location and 
an array of descriptive variables (census quantified 
variables). The problem is discrete, combinatorial 
and mixed-integer, and the aggregation is 
performed under the partitioning properties. The 
geographically clustering process produces 
compact groups of BGAs. To do this, we use an 
objective function that minimizes the sum of the 
distances between the elements of the BGAs of 
each group and its centroid. The homogeneity is 
optimized seeking a grouping balance in a census 
variable of interest.  
 
The clustering strategy randomly chooses a certain 
number of BGAs as centroids, which are used to 
represent and identify their respective groups. 
Those BGAs which are not centroids and have the 
shortest distance to a particular BGA-centroid, are 
members of a group. This is defined as geometric 
compactness [8]. Once the groups that minimize 
the sum of the distance of the members of each 
group with its centroid is formed, the homogeneity 
of the groups created is estimated, since both 
objectives are defined in the same partition, i.e., 
the functions to optimize have the same domain for 
all the objectives of the multiobjective problem [10]. 
Thus, on the same partition, the compactness and 
homogeneity are optimized.  
 
The characteristics of this multiobjective problem 
are:  
 
1. Each BGA must belong to only one group 
(constraint for compactness)  
2. In one group, the value of each parameter is the 
value of the census variable (constraint for 
homogeneity).  
3. The groups are disjoint (constraint for 
compactness)  
4. There are no empty groups (constraint for 
compactness)  

5. The population variables may or may not be 
bounded (constraint for homogeneity)  
6. All the variables or only a subset of them can be 
in the cluster (constraint for homogeneity).  
7. The BGAs assigned to each group must 
conform a compact group (Compactness 
Objective).  
8. The groups should be balanced with respect to 
a measurable characteristic (Homogeneity 
Objective).  
 
The following equations, will use this notation: 

Let   1 2, , . . , nG U x x x be the initial set 

of n geographical units, where ix is the t hi   

geographical unit, k is the number of zones or 

groups, iZ is the set of geographical units that 

belong to area ,i n is the number of geographical 

units that belong to area i , tc is the centroid and

d ( i , j ) is the Euclidean distance from node i

to node j (from one BGA to another).  

 
3.2.1 First Objective: Minimization of Distances 
(Compactness Objective) 
 
It minimizes the intra-class distance between 
BGAs, defined as    
 


 

     
   
    
 

1
1

k

tk ,. . . ,n
t i c t

M in d ( i , c )  (1) 

 
(where n is the number of iterations, t the number 

of centroids and i the number of BGAs in the 

proximity of that centroid). Once the number k of 

centroids  1tc , t , . . , k is decided, the other 

BGAs are assigned in a random selection, to the 

nearest centroids tc . For each BGA i is fulfilled: 

 

 
 1 tt ,. . . ,k
M in d ( i , c )

   (2)
 

 
The sum of the distances of the BGAs assigned to 

each centroid k is calculated, selecting the 
arrangement that minimizes the sum in (2). 
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3.2.2 Second objective: Homogeneity for census 
variables 
 
When the BGAs in a metropolitan area are 
clustered, seeking for a balance in any census 
variable (VA), it can be said that the BGAs are 
partitioned under a criteria of homogeneity. The 
equilibrium or homogeneity for a specific census 
variable is the second objective considered. To 
balance the groups, an ideal average for the 
variable of interest should be obtained; it ideally 
happens when all the members in the group have 
the same value. As it is not common practice, the 
actual average is calculated for each group and 
subtracted from the ideal average. Minimizing the 
sum of this difference is the homogeneity objective 
function to be optimized.  
 
Let VA be the set of measurable attributes, from 
which a subset will be selected according to the 
problem. 
 

k jV A is the value of the t hk attribute contained 

in the
t hj geographical unit (GU). 

 k k,  are the parameters and tolerances for  

kV A  in any geographical unit GU. 

 k kV A  are bounds on the variables.  

 Then ij

n

j
kjki XVAVA 




1

  
.is the value for the t hk territorial group (TG), 

where i jX is a binary variable that equals one if 

the territorial group i belongs to the basic 

geographic unit j and zero, otherwise. This value 

is defined as the target for the t hk attribute in any 
geographical unit GU. 
 



 
1

n

k k j
j

V A i / m V A

   
Is the ideal target value for the t hk attribute in 
every territorial group. 
 
From (3) and (4), the objective function for 
homogeneity can be defined as:  

 k k iH o m ( V A V A )   

Rewriting (1) and defining BGU as a Basic 
Geographic Unit, we have:  
 



 
1

n

i j i i j
j

D d ( c , B G U ) X

  

 
 

Finally, the multiobjective model for the optimal 
zoning problem (compactness and homogeneity) 
can be written as: 

 

Minimize  1 2f ( x ) ( f , f )             

 
Where 

1f : is the cost of minimizing the distance 
between BGAs according to equation (6). 
 

2f : is the cost of minimizing the homogeneity for 
a census variable of the BGAs according to 
equation (5). 
 
The functions 1 and 2 in (7) are subject to the 
following constraints: 
 

 iZ for  1i , . . . , k   (the groups are not 

empty) 
  i jZ Z for i j (Every BGA can 

only belong to one group) 
 


 1

k

ii
Z U G (The union of all groups are all 

the BGAs) 
 




1

1
m

ij
i

X is the allocation of BGAs (BGA mean 

GU),  
 

with  1ijX  if G U ∈ iT G
 
o  

 0i jX  if  iG U T G  

 
4. Non-dominated solutions to Optimal Zoning 
 
In order to find the Pareto optimal solutions to the 
problem of our interest, Pareto ordering (implicit in 
the definition of Pareto dominance) was initially 
applied to the VNS generated solutions of the 
problem at hand. These solutions are a partially 

(3)

(4)

(5)

(6)

(7)
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ordered sets of pairs (cI, hI) according to the 
definition of Pareto dominance [6].  
 
However, it is necessary to verify that the set of 
final solutions (cI, hI) obtained in a test, satisfies 
the definition of Pareto dominance and is indeed a 
set of nondominated solutions. For that purpose, 
the optimal zoning solutions have been processed 
with an application named NODOM or 
NDOMINATED (nondominated), built according to 
the algorithm presented in [2].  
 
The general description NODOM is: 

Let 1 2 dU ,U , . . . ,U be totally sets ant let V be 

a set of n d-dimensional vectors in the cartesian 

product   1 2 dU U . . . U . For any vectors 

v in V let ix ( v ) denote the t hi  component 

of v . A partial ordering   is definided on V in 

a natural way, that is, for  v , u V ,v u if 
only if  

i ix ( v ) x ( u ) for all  1i , . . . , d where 

 is the total ordering on U . For v V , v is 

defined to be a maximal element of V if there 

does not exist u V such that u v and 
u v .  

 
The algorithm was implemented in the C 
programming language and identifies nondominated 
solutions of a dataset. The source code and 
information about its use are available in [11].  
 
NODOM works like this: accepts as an input file a 
set of vectors (txt format document). NODOM 
needs as well the number of objectives as input. 
The output is a file that contains the set of 
nondominated solutions.  
 
Once it is understood that the maxima are 
"nondominated points" but also non-comparable 
(for the problem solved in this paper), it is 
necessary to propose a method to discover all 
pairs of equally non-comparable solutions.  
 
Given this situation, we have to revisit the ordering 
imposed by Pareto dominance, since this relation 
must include noncomparability.  
A Pareto ordering implies:  

Given a solution (a, b) the following solution (a ', b') 
is accepted if:  
 
(a '> a ∧ b' = b) ∨ (b '> b ∧ a' = a) ∨	ሺa '> a ∧ b'> b) 
∨ (a = a '∧ b = b')       (1a) 
 
When a comparison of the pair of solutions is 
made using expression 1a, a point at the Pareto 
boundary is reached. 
 
The negation of expression 1a allows the 
production of approximations to the Pareto 
boundary by several chains.  However, it is also 
necessary to iteratively examine that the non-
comparable solutions fulfill the Pareto dominance.  
Lastly, the solution set obtained is a set of 
minimals (Pareto boundary). 
 
A pair of solutions is non-comparable in a given 
partial order if it does not fulfill the trichotomy 
property, in this case it means that two pairs (a, b) 
and (a’, b’) are Pareto non-comparable if 
 
¬ ((a, b) < (a ', b')) ∧ ¬ ((a ', b') < (a, b)), that is 
(a > a '∨ b > b') ∧ (a ' > a ∨ b' > b)     (2b) 
 
Under this strict partial order, that we have called 
“Pareto Non-Comparable” (2b), suitably combined 
in an iterative manner with Pareto dominance, we 
obtain all pairs of minimal solutions; a fact that is 
confirmed when NODOM has been applied to all 
the solutions generated by optimal zoning. 
 
Some other authors also considered the properties 
of the non-comparable relation as an extension of 
the classical Pareto ordering and used these 
properties to find the Pareto frontier for their own 
specific problems [12, 13]. 
 
Finally, note that the average of the minimal 
solutions is non-comparable [7]. 
 
If the solutions are not comparable (non-
comparable), this does not imply that they are   
minimal. However, if we have solutions that are not 
comparable and also nondominated then these 
solutions are minimal.  
 
This set of solutions is defined as minimal for 
optimal zoning and are precisely the solutions 
forming the Pareto frontier for the optimal zoning  
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problem. This problem has been a well-defined 
Pareto front of nondominated solutions consisting 
of minimal-optimal zoning solutions (see Figures  
1, 2, 3 ,4, 5 and 6).   
 
This point can be illustrated in the following 
example:  
 
Example 1: The BGAs of the metropolitan area of 
Toluca Valley are going to be grouped in five 
compact and homogeneous partitions that only 
include elements whose variables have values in 
the ranges indicated below. It is important to note 
that these variables are bounded in a value that is 
above the average: 
 
Male Population under 6 years (X001). 
Male population between 6 and 11 years (X003). 
Male population between 15 and 17 (X007). 
The homogeneity will be obtained on the variable 
X003. 
 
We considered two different neighborhood 
structures and 15 iterations for the local search in 
the VNS. 
In this example of five groups, we can see the 
optimal zoning minima pairs obtained as solutions 
with the program NODOM [2]. 
 
Table 2 shows the subset of the generated 
solutions accepted as non-comparables according 
to the proposed definition in 8 of section 2. The 
bold numbers in Table 2 are the solutions that 
match the solutions obtained with NODOM and 
shown in Table 1, i.e., the solutions in the table are 
obtained, by applying NODOM to all the solutions 
generated with the VNS heuristic, according to the 
characteristics described in example 1. 
 
In all tables, the first column corresponds to the 
values of homogeneity (HOM) and the second is 
the compactness (COMP).  
 
Test 1 (example 1): 
 
 
 
 
 
 

 
Table 1. NODOM (test 1, example 1). 

 
 
 

Figure 1. Pareto frontier for NODOM 
(test 1, example1). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Non-comparable 

 (test 1, example 1.) 
 
 

 
 
 

Figure 2. Pareto frontier Non-comparable  
(test 1, example1). 

 
 

HOM COMP 
55262 3256.4 
37111 4419.6 
73647 2162.4 
94983 1217.2 

COM HOM 
75083 3184.4 
42396 4646.8 
37111 4419.6 
45867 4419.6 
44397 4419.6 
65229 4556.4 
55262 3256.4 
57265 4251.6 
73647 2162.4 
94983 1217.2 
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Test 2 (example 1): 
 
 
 
 
 
 
 
Table 3. Pareto frontier for NODOM (test 2, example 1). 
 

 
 

Figure 3. Pareto Frontier for NODOM 
(test 2, example 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Non-comparable 
 (test 2, example 1). 

 
 
 
 
 
 
 
 
 

 
 

Figure 4. Pareto frontier for Non-comparable 
 (test 2, example 1. 

 
Comparing Figures 3 and 4, we can see the 
intersection between the minima obtained with 
NODOM and those obtained with the Non-
comparable definition proposed in this paper. 
However, a future contribution of this work will be 
to "release" some additional solutions far from the 
minima, which should be otherwise filtered.  
 
Example 2: We have taken the characteristics 
example 1 but considering 200 different 
neighborhood structures and 150 iterations for the 
local search in the VNS and 30 groups. The 
homogeneity changed on to the variable male 
population: 
 
 
 
 
 
 
 
 
 

Table 5. Pareto solutions NODOM and 
Non-comparable (test 1, example 2). 

 
 
 
 
 
 
 
 

HOM COMP 
66123 2010 
30578 3090.7 
14839 3250.7 
37876 2218.7 

HOM COMP 
53450 4926 
66123 2010 
50792 3736 
65280 5064 
30578 3090.667 
47952 4792 
14839 3250.667 

28715 5364.6667 
37876 2218.667 
50007 4332.6667 

HOM COMP 
257091 17655.3 
274789 28974.0 
288349 2021.5 

267543 23452.0 
282018 22171.3 
252626 23854.7 
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Figure 5. Pareto frontier NODOM and Non-comparable 

(test 1, example 2). 
 
 
Test 2, example 2: in this test, we consider the 
characteristics of the example 2 with 15 groups, 
200 different neighborhood structures and 150 
iterations for the local search in the VNS: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6. Pareto solutions NODOM and Non-comparable 

(test 2, example 2). 
 
 
 
 
 
 
 

 
 
Figure 6. Pareto Frontier NODOM and Non-comparable 

(test 2, example 2). 
 
 
5. Conclusions 
 
One of the main contributions of this paper was the 
design of a partitioning model for bi-objective 
combinatorial optimization, where the objectives 
were the minimization of the compactness and the 
homogeneity of a particular census variable, 
solved with VNS. The set of solutions generated 
was a selected subset of the non dominated 
solutions that form the Pareto frontier of the 
problem.  
 
The results were satisfactory and showed that the 
heuristic adopted to find the values of 
compactness and homogeneity and the method 
used to find minimal bi-points have been 
appropriate, as evidenced by the Pareto frontier 
obtained.  
 
Our method can also be applied to other problems 
with special data, but adjusting the implementation 
of the particular problem. 
 
We have chosen VNS as our search engine 
because of the good performance that it has shown 
in single-objective partitioning problems [8]. 
However, the comparison of VNS with other search 
methods is also desirable in the near future. 
 
 
 
 
 

HOM COMP 
1764511 156618 
1805407 175342 
1708714 147318 
1602015 243672 
2026415 93894 
1626607 208688 
1890192 140800 
1967572 122920 
1917498 140052 
1668354 197974 
1852111 140558 
1925789 137184 
1920692 139924 
1973937 110058 
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As part of our future work, we also intend to design 
a factorial experiment for the multiobjective 
problem and to improve the Pareto Non-
comparable’s algorithm in order to obtain a more 
accurate approximation of the Pareto frontier. 
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