

Vol. 10 No.2, April 2012 94

Review of Relevant System Development Life Cycles (SDLCs) in
Service-Oriented Software Engineering (SoSE)

L. Rodríguez-Martínez*1, M. Mora2, F. Álvarez3, L. Garza4, H. Durán5, J. Muñoz6

1 Technological Institute of Aguascalientes
Adolfo López Mateos Avenue, 1801
Aguascalientes, Aguascalientes, México
2,3,4,6 Autonomous University of Aguascalientes
Universidad Avenue, 940
Aguascalientes, Aguascalientes, México
5 Universidad de Guadalajara
Periférico Norte, 799
Zapopan, Jalisco, México
*lrodriguez@mail.ita.mx

ABSTRACT
Service-oriented software engineering (SoSE) is a new paradigm for building software systems, fostered by the
availability of a new -but already mature- computing technology based on services. SoSE advances the current
object-oriented and the component-based software engineering paradigms. Under that new paradigm, multiple
software-system development life cycle (SDLC) methodologies have been proposed; however, none of them have
gained a total acceptance as the dominant SDLC in SoSE. On this theoretical and practical situation, we believe that
a research is required to reach more standardized and stabilized knowledge about SDLCs in SoSE. Thus, this article
reviews nine recent SDLCs proposed for SoSE with the aim to present a descriptive-comparative landscape of a
relevant range of SDLCs for SoSE. Such description-comparison is guided by two criteria: (i) the extent of
completeness of each SDLC, with respect to the proposed phases, activities and delivered artifacts, and (ii) the extent
of the Boehm-Turner’s Rigor-Agility balance. Our results suggest that only three of the nine SDLCs studied already
provide the best level of completeness and Rigor-Agility. Finally, we consider that the reported descriptive-
comparative framework and their findings from each SDLC can be useful also for comparing and elaborating future
SDLCs in SoSE.

Keywords: Service-oriented software systems (SoSS), service-oriented software engineering (SoSE), system
development life cycle (SDLC), software development methodologies, Boehm-Turner’s Rigor-Agility balance level.

RESUMEN
La ingeniería de software orientada a servicios (SoSE – service-oriented software engineering) es un nuevo
paradigma para construir sistemas de software que ha florecido por la disponibilidad de una nueva pero madura
tecnología computacional basada en servicios. SoSE es un avance sobre los paradigmas de la ingeniería de
software orientada a objetos (OOSE – object-oriented software engineering) y basado en componentes (CBSE –
component-based software engineering). En SoSE, se han propuesto múltiples metodologías de ciclo de vida de
desarrollo de sistemas de software (SDLC – software-system development life cycle), sin que alguna de ellas sea
aceptada como SDLC dominante en SoSE. Bajo esta situación, se sugiere investigar con el objetivo de un
conocimiento más estandarizado y estabilizado sobre SDLC en SoSE. Este artículo revisa nueve SDLC para SoSE
recientes, presentando un panorama descriptivo-comparativo de un rango relevante de ellos. Esta descripción-
comparación se guía por dos criterios: (i) el grado de completitud de cada SDLC respecto a sus fases, actividades y
artefactos entregables, y (ii) el grado de balance rigor-agility (Boehm-Turner). Los resultados sugieren que tres de
los SDLC bajo estudio son los más completos y balanceados. Finalmente, se sugiere la utilidad del framework de
descripción-comparación y los hallazgos reportados para la elaboración de algún futuro SDLC para SoSE.

1. Introduction

Service-oriented software engineering (SoSE) is a
new paradigm of software engineering which is

focused on the design and implementation of
service-oriented software systems (SoSS) [1].
SoSE can be defined as (i) the application of a
quantifiable and disciplined approach for the

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 95

development, operation and maintenance of SoSS;
and (ii) the study of approaches referring to point 1
of this definition. SoSE advances the current
Object-oriented [2] and Component-based Software
Engineering [3] paradigms (OOSE, CBSE), based
on the availability of an already mature computing
technology for building software services.

While the concepts of class/object and component
are the fundamental entities in OOSE and CBSE,
the concept of service appears in SoSE as the key
design entity. A service can be defined -in general
terms- as a fully implemented and expected
functionality provided from an entity (service
provider) to other entities (service customer or
customers).

Under this new SoSE paradigm, as in the current
OOSE and CBSE paradigms, the construction and
maintenance of software systems demands a
software-system development life cycle (SDLC). A
SDLC covers the entire spectrum of required
activities -from system conception to system
disposal- for building a software system. A SDLC is
usually realized by a development methodology
(e.g., phases, activities, roles, artifacts, and tools)
that covers the conception, building, and
deployment of a software product (i.e. the software
system). In the software engineering literature,
SDLCs (and their realization methodologies) have
been proposed since 1970. According to
Rodriguez et al. [4], their evolution or adaptation
has occurred because of two main forces: (i) a
knowledge-gap driver, which is manifested in a
process engineering weakness detected in the
utilization of models for new software developments
cases, and/or (ii) a technological change driver,
which is manifested in the radical improvement or
introduction of a new computing technology.
Additionally, important researchers in the software
engineering stream [5, 6] have suggested the
extent of Rigor-Agility of a SDLC as other driver
force that fosters the evolution or adaptation of a
SDLC. In particular, Bohem [7] suggested the need
for rigor in very large-scale projects, but Boehm
and Turner [8] also recommend that for most usual
projects a balance between rigor and agility levels
is required in modern SDLCs. As they indicate [8,
pp. 1]: “every successful venture in a changing
world requires both agility and discipline. If one has
strong discipline without agility, the result is
inflexible hierarchy and stagnation. Agility without

discipline leads to the heady, unencumbered
enthusiasm of a start-up company–before it has to
turn a profit. … Great companies, and great
software projects, have both in measures
appropriate to their goals and environment.”

In spite of such accomplishments in SoSE, we have
identified a research need for more standardized
and stabilized knowledge about SDLCs in SoSE;
this is due to the fact that while several SLDCs
have been proposed in SoSE, none has gained the
majority acceptance in academic and/or practitioner
settings. Consequently, academics and
practitioners have to use ad-hoc adaptations of
SDLCs designed for previous paradigms (e.g.
OOSE or CBSE) instead of more adequate SDLCs
(e.g. designed specially in the SoSE paradigm).

Thus, in this article, we review nine recent SDLC
proposed for SoSE with the aim to present a
descriptive-comparative landscape of plausible
SDLCs in this new paradigm. Such description-
comparison is guided by two criteria: (i) the extent
of completeness of the proposed phases, activities
and delivered artifacts, and (ii) the extent of the
Boehm-Turner’s Rigor-Agility balance. The
remainder of this paper continues as follows: in
Section 2, theoretical fundaments for this research
are reported (e.g. 2.1. is a conceptual review of the
evolution of SDLCs, 2.2 is a review of fundamental
concepts in SoSE, 2.3 is a review of MDA
principles, 2.4 is a review of Rigor-Agility concepts,
and 2.4 is the SDLC framework for description and
comparison). In Section 3, a systematic description
and comparison of nine SDLCs reported recently in
SoSE stream is reported. Finally, in Section 4,
conclusions, limitations and recommendations to
advance this research are reported.

2. Conceptual Foundations on Service-Oriented
Software Systems (SoSS)

2.1 Evolution of SDLCs

In Rodriguez et al. [4], thirteen SDLCs from the
software engineering literature (traditional SDLCs)
were reviewed to elaborate a state-of-the-art map
on SDLC evolution. As a result of such study, it
was determined that SDLCs in software
engineering are not service-oriented SDLCs [4].
To develop an SDLC evolution map, three
concepts were used: (i) methodological era, (ii)

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 96

rigor level of SDLCs, (iii) and agility level of
SDLCs. Methodological era is posed by Avison &
Fitzgerald’s [9], and provides a chronological four-
period evolution-classification scheme (e.g., pre-
methodology era, early methodology era,
methodology era, and post-methodology era).
Rigor level of a SDLC represents the extent of
detailed specifications to be achieved in each
phase, activity and task before proceeding to the
next phase. Agility level of an SDLC accounts for
the extent of a system developer’s freedom to
complete phases, activities and tasks in the
application of the SDLC. These two concepts were
assessed by using ordinal scales of four and two
values, respectively (for rigor: null, low, medium,
and high; and for agility: low and high).

A non-trivial inference on the utilization of these
scales is the assertion that both concepts (rigor
and agility) do not represent disjoint sets [10]: i.e.,
the notion of an intersection in both SDLC rigor
and agility sets of scales is supported. In this way,
an SDLC can be balanced when it has either
medium or high assessment in both rigor and
agility levels. It is also possible to name a partially-
balanced SDLC when the assessments are high
and medium or vice versa for both rigor and agility
levels. Hence, in this research both concepts are
not considered antonymous.

In Figure 1, the SLDC evolution map is
presented. For each SDLC, the following items
are reported: (i) year of origin, (ii) its main
change force (a methodological knowledge gap
or the emergence of a new technology), and (ii)
its extent of rigor and agility [4, 8]. In Figure 1,
symbols “” and “” suggest the suitable
locations for balanced and partially balanced
SDLCs, respectively. Under such perspective, a
{ (no rigor, no agility)  (rigor, no agility)  (no
rigor, agility) } evolution can be identified. In
particular, Rodriguez et al. [4] suggest that in
software engineering principles and
foundations, rigor specification takes
precedence over agile attributes. As evidence,
two of the three eras start with at least a
medium rigor level, and each new SDLC usually
evolves from a previous SDLC – e.g., it re-uses
most content than previous ones. However,
generic industrial pressure, for jointly reducing
manufacturing time cycles and keeping high-
quality products and services, also suggests the
need for a trade-off between rigor and agility
specifications in future SDLCs. Hence, a next
generation of SDLCs might be predicted when a
new development technology emerges and/or
new critical knowledge process engineering
gaps are identified.

 Figure 1. Evolution map of SDLCs with possible location for rigor-agility SDLCs.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 97

Currently, the occurrence of two events can
suggest the need for a new SDLC approach: (i)
new computational and information technology
development tools oriented to services are
available [11, 12, 13], and (ii) existence of critical
knowledge gaps about service-oriented software
engineering (SoSE) [14, 1]. Furthermore, in such
emergent SoSE paradigm, some studies [15, 11,
16] suggest a greater complex development
process than in previous SDLCs of past eras,
because a service business layer is added to the
usual system and computational layers.
Consequently, research on current progress on
SDLCs in SoSE can contribute to the advance of
the theoretical and best practices knowledge on
foundations and engineering issues.

2.2 Key concepts on service-oriented software
systems

2.2.1 Service concept

According to Dumas [17], the service concept
comes from the business domain when an
enterprise, group or a single person (called the
service provider) develops one or a set of activities
for clients (called service customers). In general,
the channels for providing these services can be
people or computer-based systems. A service can
be differentiated also as “manual” (from person to

person), or “automated” (from a computer to
another computer or person). In the context of
SoSE, a service can be also interpreted in two
senses: (i) a business service (when we do not
specify the mean or channel to provide it), and (2)
a computing service (when an IT is the
mandatory mean or channel for providing it).

Dumas [17] further classifies computing services
into two types: (a) computing service of
business (when it implements a business
service), and (b) ICT computing service which is
a computing service (when it provides a service
to another software system). This division
between computing service and business
service -on the consideration that a computing
service implements a business service-, implies
that a computing service can implement services
for a user external utilization (i.e. a business
service) and/or for internal utilization (i.e., another
computing service as its internal customer).
Table 1 summarizes these concepts.

A complementary conceptualization of services –
based on business service literature- [19] is toward
the need for value appreciations that are mutually
and explicitly agreed –through a contract – by
providers and customers. Under such perspective,
and Dumas´s service interpretation, in this paper
service is defined as “an intangible functionality

Type of
service

Division Definition Mean of a service composition

Business
Service

Traditional
business
service in
administration

A business service that is
provided by a person or
enterprise directly to a
client.

A business service composition
constitutes a work-flow in an
enterprise, but which is perceived
a functional whole.

Computing
Service

Business
computing
services

A computing service that
is implemented to provide
system’s users with a
business service.

A composition of business
computing services can constitute
a task, a business process, a
work-flow, or even a service-
oriented software system (SoSS).

ICT
computing
services

A computing service
which provides the
software system with a
service and it is based on
additional ICT services.

An ICT computing service can be
provided by a unique service, or
by a service-computing
composition.

Table 1. Service concept view and the meaning of Service Composition [18].

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 98

(which uses also tangibles goods) that a
provider enables for customers to benefit
through a channel, and where its value and
cost is mutually agreed in an implicit or explicit
contract, and determined in terms of several
properties –defined also mutually by customer
and provider- (e.g., security, quality, and
reputation, among other properties)”

2.2.2 SoSS concept

A service-oriented software system (SoSS) refers to
a distributed and loosely-coupled software system
which is constructed based on the definition and
implementation of a suite of services that forms it
[13]. A typical SoSS owns the following attributes
(Table 2 is extended and adapted from [20] and [21]):

In particular, web services can be considered as the
most deployed technology for SoSS. However, we
consider that key service concept for SoSE not
necessary must be deployed using such
technology. Thus, in this study services are not
synonymous of web services.

2.2.3 MDA-based SDLC SoSE framework
components

Rodríguez et al. [22] developed an initial
descriptive and comparative SoSE SDLC
framework which is derived from (a) a model-
driven architecture (MDA) framework [23], (b) a
service-oriented analysis and design (SOAD)
approach [15], (c) a set of software service
conceptualizations [11], and (d) a three-phased
macro model [24]. Table 3 reports a summarized
scheme of the first three conceptual schemes for
SDLCs in SoSE.

The MDA is an abstract system development
process where none methodological detail on how
to generate its deliveries is reported [23]. MDA is
based on the design paradigm where the definition
and implementation of system architecture must be
independent of its realization technology. The MDA
abstract process defines three deliveries (models)
based on three related viewpoints: (1) computing
independent model (CIM) is focused on the system
requirements and its environment without any

Attribute
Object-oriented

Software System
Component-based
Software System

Service-oriented
Software Systems

Key analysis
entity

Class
Business component

Business service

Key design entity Object (conceptual)
Component
(conceptual)

Business computing
service

Key building
entity

Object (local runtime)
Component (local or
distributed runtime)

ICT computing service

Coupling level
with remainder
software

Tightly Medium Loosely

Cohesion level Normal High Very high

Platform
Interoperability

Minimal or null High Very high

Typical
technology

C++ JavaBeans
Web services from
several languages
(Java, C#, PHP)

Table 2. Comparative Table of OOSE, CBSE y SOSE paradigms.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 99

technical consideration of computing platform,
(2) platform independent model (PIM) is focused
on detailed system operational specifications but
not instanced for a specific platform, and (3)
platform specific model (focused on the specific
implantation). From its official specification [23],
a fourth delivery can be inferred. In this study,
this fourth model is called the platform
executable model (PEM) focused on the final
runtime model.

The service-oriented analysis and design (SOAD)
[15] approach attempts to address three domains
(business, architecture and application) or levels of
abstraction through the integration of business model
process (BMP), enterprise architecture (EA) and
object-oriented analysis and design (OOAD)
approaches in two phases: analysis and design. Our
adaptation of the SOAD approach considers the
complete SDLC by aggregating the development
phase. Such adaptation is presented in Figure 2.

MDA [23]
SOAD Layers

[15]
Service-oriented Products [11]

CIM – Computation
independent model

Business Service identification

PIM – Platform independent
model

Architecture

Service specification
Service realization

Service orchestration (service composites)
Service choreography

PSM – Platform specific
model (for its generation a
platform model is needed) Application

Service implementation specification

Platform executable model Service implementation.

Table 3. SDLCs SOSE Fundamental Schemes.

Figure 2. SOAD scheme [adapted from Zimmermann [15].

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 100

SOAD is elaborated using two dimensions: (1) the
vertical dimension represents the three addressing
domains, and (2), the horizontal dimension
represents the phases of an SDLC. Four generic
activities are proposed in SOAD: business
process model, enterprise architecture, solution
architecture, and object-oriented analysis and
design. These activities can be performed (in a
separate way) with the BPM, EA y OOAD
approaches or in an integrated way with SOAD.

In Rodríguez et al. [24], a similar scheme -based
on systems engineering- with three macro-phases
is reported. Such macro-phases are (1) system
definition, (2) system development, and (3) system
evolution. From these previous schemes,
Rodríguez et al. [22] proposed an integrated
framework, as shown in Figure 3.

Figure 3 presents the MDA-based SDLC for SoSS
which is used as the conceptual base for the
descriptive-comparative framework for this study.
This MDA-based SDLC for SoSS is presented as
an approach extended and adapted from SOAD in
two dimensions: (1) levels of abstraction
(business, architecture, application) and, (2)
generic phases of SDLC defined in Rodriguez et al
[24] (requirements, design, construction and
operation, which are grouped in macro-phases
definition, development and evolution). Nine
generic activities (A1 .. A9) are proposed. Also,
each level of abstraction is matched with each
MDA model: Business level with computation
independent model (CIM), architecture level with
platform independent model (PIM), and application
level with platform specific model (PSM).
Additionally, application level is also matched with

Figure 3. The generic MDA-based SDLC for SOSS.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 101

platform executable model proposed in [22] for the
executable model of the system implemented on a
specific computing platform.

2.3 The Boehm-Turner’s rigor-agility scheme

Figure 4 shows the rigor-agility SLDC assessment
scheme [8] and its assessment scale (data are
from M2 methodology, which is one of the final
nine SoSE SDLCs analyzed in this study). The
scale uses the values from 0 to 4 as follows: 0
means that the issue is not considered, 1 means
the issue is a little considered, 2 means the issue
is considered to some extent, 3 means the issue is
amply considered. This assessment scheme uses
three main factors. Factor 1 (levels of concerns of
the SDLC) assesses the organizational scope for
which the SDLC provides specific guidance (i.e.,
how much the SDLC addresses the expected
assumptions and where fewer concerns imply
greater agility). Factor 2 (system development life

cycle coverage) assesses the life cycle activities
that the SDLC have (i.e., how much the SDLC
covers the expected phases and activities). In this
case, less coverage implies a more agile SDLC.
Factor 3 (sources of constraints in the SDLC)
assesses the extent of mandatory restrictions to be
respected by the developers. Fewer restrictions
imply a more agile SDLC. The source of
constraints also indicates what risks are covered.

2.4 The descriptive-comparative framework for
SoSE SDLCs

Based on the previous theoretical and practical
MDA, SoSE and rigor-agility concepts, we propose
a descriptive-comparative framework as presented
in Table 4. This framework is proposed in two
dimensions: (1) the phases of the MDA-based
SDLC, and (2) the required domain levels
(business, architecture and application) to consider
a SDLC as a complete one.

Figure 4. The Boehm-Turner’s rigor-agility SDLC assessment scheme.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 102

The framework represents each possible
combination between the three levels (business,
architecture, and application) and four phases
(requirements, design, construction, and operation)
of the MDA-based SDLC for SOSS. Thus such
generic activities are classified through the list
level-phase over considering each generic activity
would be part of different levels, and at the same
time, we keep the generic MDA models (CIM, PIM,
PSM) separated by the reclassification of the
generic activities into CIM, PIM, PSM, platform
executable model (executable PM) and evaluation
and evolution plan (E & EP). In this
reclassification, it is proposed that CIM is the
generic expected artifact of the requirements
phase, PIM and PSM are the generic expected
artifacts of the design phase, executable PM is the
expected artifact of the construction phase and E &
EP are the expected artifacts of the operation
phase. The framework enables a uniform
comparison of SDLCs and helps to find
methodological gaps in emerging SoSE SDLCs.

3. Application of the descriptive-comparative
framework for SoSE SDLCs

Using the descriptive-comparative framework for
SoSE SDLCs reported in Table 4, we review
nine relevant SDLC methodologies identified in
the core SoSE literature during the 2000-2007
period (see Table 5).

For this aim, firstly each SDLC is described in a
synthesized mode. Secondly, the activities
proposed in each SDLC are placed in the most
suitable position of the descriptive-comparative
SoSE SDLC framework. Using this particular
criterion, all activities proposed in each SoSE
SDLC can be compared more uniformly given
that they are compared versus a unique and
similar structure rather than between them.
Thirdly, the rigor-agility assessment framework
for SDLCs is used to assess each methodology
on such criterion.

Table 4. Descriptive-comparative SoSE SDLC framework.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 103

3.1 Description of the nine relevant 2000-2007
SoSE SDLCs

This section presents a brief description of each
one of the nine SoSE SDLCs. We identify the main
characteristics associated with MDA, SoSE, and
rigor-agility issues in each SDLC.

M1.WSbBP: Web service-based business
processes methodology [25]

WSbBP is based on web services technology. It
relies on the concept of business work-flows called
“web service-based business processes” or “WS-
flows” (web service flows). According to authors
[25], WS-flows are significant compositions of
tasks for business problem solutions which
demand the conversion of such tasks in discrete
web services, in a predefined order according to
business rules rigorously specified. WSbBP does
not predefine specific tools and protocols for using
in the development of WS-flows, but several items
are recommended (XML, BPEL, BPML, XSLT, and
BPWS4j). WSbBP proposes six activities: (1)
“process template modeling and assembly”, (2)
“process definition generation”, (3) “pre-
processing”, (4) “deployment”, (5) “execution time
(services coordination) ” and (6) “post-run time
(analysis)”. WSbBP is focused on the building of

business flows which can be implementable in
some agreed web services-based technology. It is
required to count with several enabled web
services already orchestrated on business flows
and coordinated by coordination protocols
according to a B2B1 standard. This SDLC intends
a fast and easy development of business
processes via web services code generation
automation. This approach is suggested to reduce
the manual work of developers, to help an easy
creation of business flows, and to promote code
reusing, abstraction (via templates), and take
advantage of web service flows technology. While
this SDLC is strong through its contribution of web
services code generation automation, it also lacks
of specific process guidance on requirements
definition, system architecture design, and system
evolution. However, Karastoyanova’s study [25]
contributes with one of the first generic
methodologies to define, build and reach an
executable business process based on web
services.

1 B2B – Business to Business. It refers to electronic commerce
between enterprises. It is a type of service in which the service
provider is a business organization and the consumer is also a
business organization.

ID SDLC Name Source

M1
WSbBP (Web services-based business processes
methodology)

Karastoyanova, 2003 [25]

M2 COMPOSE (COMPonent-oriented software engineering) Kotonya, 2004 [3]

M3
Toward an SODM (Toward a service-oriented development
methodology)

Ivanyukovich et al., 2005 [26]

M4
Toward an SODM for the orchestration and validation of
cooperative e-business components

Kühne et al., 2005 [27]

M5
SOA-LC management (Service-oriented architecture life
cycle management).

Cox et al., 2005 [28]

M6
Automatic derivation of BPEL4WS from IDEF0 process
models

Karakostas et al., 2006 [29]

M7 BP-DLC (Business process development life cycle) Papazoglou et al., 2007 [30]

M8
A stakeholder-driven SOA-LC model (SOA-LC – Service-
oriented architecture life-cycle model).

Qing and Lago, 2007 [31]

M9
Rational unified process for systems engineering (RUP-
SE)

Rational, 2003 [32]

Table 5. Nine relevant 2000-2007 SoSE SDLCs.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 104

M2. COMPOSE: COMPonent-oriented software
engineering [3]

COMPOSE extends the original computing-
oriented service concept toward a business
service in the requirements definition activity. It
provides a framework for mapping requirements
to a hybrid component and service-oriented
architecture. COMPOSE is a dual business-
management and computing service-based
approach, which supports also a hybrid
component-service oriented development.
COMPOSE fosters also a reuse process. The
method proposes two great set of activities:
planning and development. The planning stage is
not detailed in the source paper. In the
development stage there are four activities: (1)
requirements engineering, (2) design and
composition, (3) verification, and (4) negotiation.
The authors indicate techniques to use in each
phase and address challenges that organizations
face up when intend to adopt a “service-oriented
development”. COMPOSE realizes the need for
more adequate SDLCs to develop SoSS and for
minimizing the implicated risks. The authors
realize also the need to develop systems with
hybrid software models, where components and
services co-exist in a same system. According to
authors, the proposed method incorporates
negotiation as a key process to balance aspects
of systems requirements and of business
constraints, with assumptions and capacities of
the architecture that are implicated in the
component and services software.

M3. T-SODM: toward a service-oriented
development methodology [26]

This study does not report a single SDLC per se
but a set of design guidelines and four plausible
SDLCs (XP, RUP, TROPOS and MAP). It presents
also a structured approach to analyze such four
SDLCs under specific concerns of service-oriented
applications. In this study, the lack of a
compressive methodological approach to develop
SoSS is also remarked. Key software design
concepts for understanding the evolution toward
SoSS are also reported as follows: (1) service-
oriented, (2) object-oriented and (3) component-
oriented. T-SODM proposes the study of existing
SDLCs over three dimensions: (1) “managing
change in software development”, (2) “specifying

the software development process” and (3)
“targeting the stakeholder goals”. For each
dimension it identifies SDLCs that are capable of
reaching the characteristic challenges SoSS
toward definition of a service-oriented development
methodology (SoSE SDLC). Main findings of each
dimension related to existent SDLCs are (a) the
use of some characteristics of XP for an agile
development, (b) characteristics of RUP to specify
the development process, and (c) selection of two
goal-oriented approaches for the requirements
specification as stakeholders’ goals (TROPOS and
MAP). Four existent SDLCs (XP, RUP, TROPOS
and MAP) are reviewed and authors conclude that
all of them contribute to service domain, but
adaptations for addressing specific domain
characteristic are required. However, none specific
proposals are reported for implementing such
adaptations. Furthermore, not a new SoSE SDLC
is reported.

M4. T-SODM: toward a service-oriented
development methodology [27]

T-SODM is more focused on the computing layers
(PSM or ICT service concepts) than in a balanced
SoSE SDLC. Customer needs are roughly
described as high level business descriptions
which manually derive in implementation models.
T-SODM proposes a first view for a SDLC which
enables automation of developments steps
through combined approaches of requirements
analysis, transforming and checking models. This
semi-automated development process should
enable efficiency and quality improvements.
In this SDLC, a SoSS is developed through the
design and semi-automated implementation of
orchestrated services compositions. Such last
items are realized by transforming the high level
definition of business requirements toward a
technical specification which is able to be
executed. T-SODM proposes system-orchestration
of distributed cooperative components by using
semi-automation tools to build part of SoSS. In T-
SODM three activities are proposed: (1) structured
analysis of requirements, (2) validation, and (3)
transformation. The last delivered product by this
SDLC is an orchestrated model skeleton (i.e., a
model based requirements specification) which by
manual development is completed into an
executable orchestration model. Hence, while the
notion of an automated or semi-automated design

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 105

is powerful, its implementation is not trivial for
integrating complex e-business scenarios. In
particular, just three activities of nine plausible are
proposed in T-SODM. It can be considered as a
weakly completed SDLC.

M5. SOA-LC management: service-oriented
architecture life cycle management [28]

This study does not report an SDLC per se.
However, it makes the case for a service-oriented
architecture life cycle management process.
According to authors [28], SOA is built on a
distributed system but it advances on some of their
derived problems (a reliable integration of
disparate applications, a seamless reusability, and
a demand for a variety expertise on different
computing technologies implementations).
However, although SOA addresses such
limitations, deployments based on services also
introduce new managerial and control issues in the
development of SoSS. For instance: development
and test of applications composed by operational
service components, deployment and provision of
distributed secure and efficient applications based
on services through organizational frontiers, and
tracking the impact of the business services on the
business process that these services are
supporting. Authors [28] pose that the
development and deployment of SOA relies on a
real word viewpoint, in which a set of services are
assembled and reused for adapting to new
business needs. This flexibility is pursued by
organizations as a core value of SOA trying to
reach wide transformations over how software is
constructed. In particular, this SDLC proposes two
set of activities: (1) Preproduction and (2)
Production. It also adds control points in each
activity of these sets. Included activities are not
explicitly reported.

M6. BPEL4WS automated approach [29]

M6 proposes an automated process to derive an
executable service composition from a process
model specified in IDEF0 format. M6 arguments
that in the business-service level, the IDEF0
models enable an effective capture of business
processes requirements. Constructs of IDEF0 are
used for coding requirements of service web
execution (these requirements are input, web
service parameters, and outputs). Then, this

IDEF0 specification can eventually to be translated
to a set of web services, including specifications on
how these services interact, and on how the
business logic which controls them must be
executed. According to authors [29] such IDEF0
specifications capture all required information for
service orchestration of web services at run-time.
M6 describes a business process management
engine (CLSM Prototype Engine) which analyzes a
XML definition of an IDEF0 model, identifies how
web services interacts, and automatically
generates orchestration code in the selected
orchestration language. The authors of this related
work create a module that enables to a “CLMS
Prototype Engine” for generating executable
process descriptions into BPEL4WS. These
process descriptions can eventually be executed in
a BPEL motor (e.g. “Oracle’s BPEL Process
Manager”). This approach permits a top-down
analysis for business process and their web
services. This also avoids inconsistency things
between the web service process and its
corresponding business process toward
maintenance of architectural integrity. Hence, the
specification of complex scenarios is limited to the
expressivity power of the IDEF0 diagrams and the
translator of such diagrams to the execution code.

M7. BP-DLC: business process development
life cycle [30]

In this study is strongly defended the need for
counting on a well-defined SDLC for efficiently and
effectively designing, building, monitoring and
managing the expected SoSS enterprise
applications which must support the set of usually
agile and complex business process. Thus, the
authors propose design guides to ensure the
autonomy and self-containing of services and
achieving modular business processes with clear
frontiers defined and with discrete end-point
services. Such service must be of low-coupling
and high cohesion. M7 is a well-defined SDLC
(from a more traditional viewpoint than a service-
oriented view) with six activities: (1) planning, (2)
service and process analysis and design, (3)
construction and testing, (4) provisioning, (5)
deployment, (6) execution and monitoring. Its
definition of BP-DLC is also the most complete
SDLC because in an explicit/implicit way it
proposes for each of the six phases: its
description, a few sets of activities, deliverables

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 106

and tools. Also BP-DLC includes some emergent
activities such as service requirements, business
modeling, service architecture design, and service
orchestration. Transition through these activities
tends to be incremental and iterative by nature and
can imply reviews in situations where their scope
cannot be defined totally a priori.

M8. SOA-LC model: A stakeholder-driven
service-oriented life cycle model [31]

This study also claims for new SDLCs for building
SoSS. As authors [31] report: “… because new
roles and new development tasks are introduced in
service-oriented development as opposed to
traditional software engineering, a new approach
to service life cycle management is required…”.
The SOA-LC model defines an SOA stakeholder
as any entity that covers computing architectural
roles including service providers, service
consumers (or application providers) and service
brokers. In this study, it is observed that current
proposals lack clear indications on how SOA
stakeholders and service life cycle stages (design
time, run time and change time) interact. M8
proposes that SoSS can be developed in two parts
like two applications: (i) a service provider that
provides the services to their use, and (ii) a service
consumer that is composed of several workflows,
service compositions and user interfaces that
access the services published by the service
provider (as end-user applicatin). Hence, a SoSS
is a system comprising the service provider, the
broker and the consumer. SOA-LC does not
define phases, only proposes particular SDLC
activities for the “SOA stakeholders”: (1) for
“service provider”, activities are market scan,
requirements engineering, business modeling,

service design, service development, service
testing, service publishing, service provision,
service monitoring, service management; (2) for
“service broker”, the activities are registry
selection, registry update and registry
maintenance; and finally, (3) for “service
consumer”, the activities are requirements
engineering, application design, implementation
and module testing, service
orchestration/composition, service negotiation,
service invocation, application testing, service
monitoring, and application maintenance.

M9. RUP-SE: rational unified process for
systems engineering [32]

RUP-SE is the systems engineering extension and
adaptation of the well-known RUP SLDC for
software engineering. It relies on the key concept
of system as “… a set of resources that provide
services that are used by an enterprise to carry out
a business purpose or mission. System
components typically consist of hardware,
software, data, and workers. Systems are
specified by the services they provide, along with
other non-behavioral requirements such as
reliability or cost of ownership. Designing a
system consists of specifying components, their
attributes, and their relationships.” [32].

RUP-SE is focused on designing generic
engineering systems (which can or not include
software). In this study, RUP-SE is considered
explicitly for SoSS development. RUP-SE
considers (i) modeling of system architecture, (ii)
details concerning with all system components
(hardware, workers, information components), this

RUP-SE modeling level The level expresses:
Context The system and its actors.

Analysis
Initial partition of the system over each view point
to establish the conceptual approach.

Design
Transformation of the analysis-level model into
specifications of hardware, software and people.

Implementation
Realization of design model into specification for
a specific configuration.

Table 6. RUP-SE modeling levels (abstraction levels of modeling).

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 107

is to say, not just software concerning (iii) multiple
teams in concurrent way, (not just individual or a
single team work), and (iv) redesign of IT
infrastructure to support evolving business-
processes. RUP-SE proposes a suite of
abstraction levels for modeling the system (RUP-
SE modeling levels) shown in Table 6.

The modeling levels can be particularized by
specific viewpoints such as enterprise,
computation, engineering, information, and
process. Trough these levels of RUP-SE
modeling, the design process comes from the
abstract to the physic layers (similar to the
model transformation proposed by MDA). In
each modeling level (context, analysis, design
and implementation), a model is achieved for
each viewpoint (enterprise, computation,
engineering, information, process). Each pair
modeling level and viewpoint is called a
“system view”, e.g., for the context level the
contextual view of the enterprise is created, the
logical-contextual view, the information-
contextual view, the physical-contextual view,
the process-contextual view, and so for the next
two modeling levels. For the implementation
level just two views are created
(implementation-enterprise view and a second
view of implementation that embraces
computational, information, engineering and
process viewpoint). For each view, one or
more specific artifacts are proposed. RUP-SE
is an extent of RUP that embraces several
characteristics of modern systems, such as the
need for an architecture and business
orientation, but it is not focused especially on a
service-oriented view.

3.2 Comparison of the nine relevant 2000-2007
SoSE SDLCs

Table 7 shows the comparison between the
nine relevant SDLCs identified in core SoSS
literature during the 2000-2007 period. The first
column reports the macro phases. The second
column captures the different SDLC phases.
The third column focuses on SDLC artifacts
based on MDA. The fourth column shows the

business, architectural and application
domains. The fifth column denotes the MDA-
based SDLC activity. The remainder columns
are for describing, and comparing, each SoSE
SDLC (indicated as M1 through M9 for ease of
reference).
The main findings of such a conceptual
comparison are the following:

(a) M7, M8 and M9 are the most complete
SDLCs but even these have “methodological
gaps” when compared with the generic MDA-
based SDLC (reported in Figure 5).

(b) The activity of business process modeling
can be identified as mainly addressed by
almost all of the SoSE SDLCs.

(c) M4 is the least complete SDLC of the nine
SDLCs used in the comparison. However, this
contributes with a skeleton for proposal system
constructions.

(d) M1, M6 and M7 include the development
phase in which service definitions are
transformed into executable services in an
executable BPEL4WS format. This is
considered of high practical relevance because
these SDLCs take advantage of the available
computing service technology which has
emerged before service-oriented
methodologies.

(e) M5 is strongly based on MDA but still lacks
some core activities identified in the generic
MDA SDLC (e.g., enterprise architecture
design, planning, system modeling (composition
and orchestration).

(f) Out of the most complete SDLCs (M7, M8,
and M9), M7 is the most innovative SLDC
through the inclusion of analysis tools and
techniques as “green-field, “top-down”, “bottom-
up”, “out-of-the-middle”, XML, WSDL and
BPEL. However, it still fails to consider
important activities such as requirements,
business modeling, architecture, service
orchestration, among others.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 108

Table 7. Comparative view of SOSE SDLCs.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 109

Figure 5 complements this comparison showing
the activities of the generic MDA-based SDLC
included in each SoSE SDLC.

Explicit findings shown in Figure 5 are the
following: (a) Some SDLCs (M1 and M6) are
generally focused on the application domain, with
little or null specific attention to the business and
architectural domains. Similarly, their focus on the
macro phases is primarily situated in the
development macro-phase, and partially in the
definition and evolution macro-phases; (b) M1 and
M6 have a similar structure of activities, but in
particular M1 considers a related post-mortem
evaluation while M6 does not consider it; (c) M2
and M5 also have a similar structure of activities
(and additionally these consider three levels in
cascade) but none propose system planning
activity, and (d) M7, M8 and M9 are the most
complete SDLCs (their ID appears in almost the
nine generic activities proposed in the generic

 MDA SoSE SDLC). Hence, this comparison has
been based on the completion criterion compared
with a generic MDA-based SDLC. Nevertheless, a
rigor-agility balance analysis is still required.

3.3 Comparison of the nine 2000-2007 SOSE
SDLCs: agility – rigor view

Table 8 shows the results of the rigor level
assessment for each SOSE SDLC. The ordinal
scale used is null, low, medium, and high, using
scores from 0 to 3, where null is 0 and high is 3.
Scores from 4 to 5 are reserved for traditional
SDLCs which is congruent with Boehm and Turner
[8] assessment. Thus, the maximum rigor score in
this analysis for each SOSE SDLC is 45 points (15
items x 3 points).

To demonstrate the level of rigor and agility, M3
can be used as an example. Given that M3 is
strongly based on RUP, its rigor can match that

Figure 5. Generic MDA-based SDLC and the nine SOSE SDLCs.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 110

proposed by Boehm and Turner [8] for RUP (i.e.,
medium to high agility level). From Table 8, the
comparative level of rigor of each SoSE SDLC can
be reported. Table 9 shows similar results (rigor
level of each SoSE SDLC) but ordered and already
classified. The rigor level is derived directly from
the scores assigned in Table 8. Agility scores are
calculated from the maximum rigor score (45
points) minus the rigor score reached by the SDLC
under review. For instance, for SDLC M2, the rigor
level score is 9, and the agility level score is 36
points (e.g. 45-9).

Finally, an assessment of the rigor and agility
balance of each SoSE SDLC is reported in Table

9. Theirst column reports the SDLC. The second
and third columns report the agility and rigor rates
(total score divided by maximum score of 45
points) respectively. The fourth column reports
the percentage range of balance (for example, for
M9 whose values are 40 percent and 60 percent
for agility and rigor levels, respectively.). Finally,
in the fifth column, the rigor-agility balance Index
is reported. Such index is calculated dividing the
minimal percentage of rigor-agility balance by the
maximal percentage of agility or rigor balance
reached by each SDLC. For instance, for M9 the
minimal and maximal percentages were 40
percent and 60 percent for agility and rigor
balances, respectively.

Table 8. Comparison of nine SOSE SDLCs: rigor-agility view.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 111

Hence, the main findings from this rigor-agility
balance comparison are as follows: (a) most of
the SoSE SDLCs are focused on agility issues
rather than on rigor; (b) there is a bias to
unbalanced SDLC (e.g., more focus on agility or
rigor) in most of the SoSE SDLCs; (c) the
unbalanced bias is toward the agility issue; (d) no
main traditional SDLC emerges as a common
base (however, the most balanced SoSE SDLC
(M3) is based on RUP); (e) main proposals are
focused on the definition macro phase, the
requirements phase, and the business domain; (f)
while all of the SoSE SDLCs contribute to our
knowledge of how to develop service-oriented
software systems, all of them can be considered
incomplete regarding the generic MDA-based
SDLC; (g) new dimensions for comparing SoSE
SDLCs have emerged to complement SDLC
rigor, SDLC agility and SDLC rigor-agility balance
levels (these new ones are SDLC completeness
[19] and SDLC automation (CASE) support); and
(h), M9 and M3 are the most balanced SLDCs.

4. Conclusions

In this study a conceptual description and
comparison of nine relevant SoSE SDLCs
identified in core SoSE literature during the 2000-
2007 period has been presented. This comparison

 has been developed from (i) a MDA-based SDLC
completeness level, and (ii) a Boehm-Turner’s
rigor-agility criterion. In the first case, three SDLCs
(M7, M8 and M9) emerge as most complete. In the
second case, only two emerge (M9 and M3).
Combining both set of results, M9 emerges as the
most recommended SoSE SDLC at the time of this
study. From a practical viewpoint, these three
criteria can be also considered for selecting a
SDLC for developing SoSS: (i) the overall
completeness and rigor-agility balance criteria (M9:
a rational unified process for systems engineering
(RUP-SE)) because it appears in both top lists), (ii)
the agility preference criterion (M8: a stakeholder-
driven SOA-LC model (SOA-LC – service oriented
architecture life cycle model), or M7: BP-DLC
 (business process development life cycle), and (iii)
the completeness criterion (M9 or M3: toward an
SODM (toward a service-oriented development
methodology).

We believe that this conceptual study contributes
to SoSE discipline through the organization and
methodological description and comparison of
relevant contemporaneous (2000-2007 period)
SoSE SDLCs reported in the literature. It also
provides practitioners with an initial generic MDA-
based generic SDLC and three criteria for
selecting a SoSE SDLC. Before this study,

Table 9. Rigor-agility balance assessment for the nine SoSE SDLCs.

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Vol. 10 No.2, April 2012 112

practitioners had to select a SoSE SDLC from a
disperse variety of proposals or use a similar one
to that used for non service-oriented software
systems. Because SoSE transcends the previous
OOSE paradigm, we hypothesize that OOSE
SDLCs cannot be used directly in SOSE projects.

We consider also that a main limitation of this
study is its high-level perspective given the vast
quantity of conceptual information to be analyzed.
However, the novelty of this scheme and the few
overall comparisons reported suggest that this
study serves as an initial comparison framework
for identifying the current contributions from
several proposed SDLCs as well as for detecting
knowledge gaps. Finally, the main academic
conclusion that emerges is that none of the nine
SoSE SDLCs can be considered a standardized
and totally accepted SoSE SDLC for academy and
by extension for practitioners and thus, further
conceptual and empirical research on SoSE
SDLCs is recommended.

Acknowledgements

Authors thank Dr. Carol Pollard from Appalachian State
University for his insightful recommendations for
improving this paper.

References

[1] Di Nitto E., Hall R.J., Han J., Han Y., Polini A.,
Sandkuhl K. & Zisman A., Report on the International
Workshop on Service Oriented Software Engineering
(IW-SOSE06), ACM SIGSOFT Software Engineering
Notes, Vol. 31 No. 5, 2006, pp. 36

[2] Stiller E. & LeBlanc C., Project–based Software
Engineering: an object-oriented approach, Addison-
Wesley, 2001

[3] Kotonya G., Hutchinson J. & Bloin B., A Method for
Formulating and Architecting Component and Service-
oriented Systems, Computing Department, Lancaster
University, LA1 4YR, 2004, pp. 1-23, UK.

[4] Rodríguez L.C., Mora M. & Alvarez F.J., A
Descriptive/Comparative Study of the Evolution of
Process Models of Software Development Life Cycles
(PM-SDLCs), SIS 07: Simposio de Ingeniería de
Software in ENC 2007: Encuentro Internacional de
Computación, 2007, pp. 1-6, Morelia, México

[5] DeMarco T. & Boehm B., The Agile Methods Fray,
IEEE Computer Society, Software Technologies, June,
2002, pp. 90-92

[6] Beck K. & Boehm B., Agility through Discipline: A
Debate, IEEE Computer Society, June, 2003, pp. 44-46

[7] Boehm B., Get Ready for Agile Methods, with Care,
IEEE Computer Society, Software Development,
January, 2002, pp. 64-69

[8] Boehm B. & Turner R. Balancing Agility and
Discipline: Evaluating and Integrating Agile and Plan-
Driven Methods, Proceedings of the 26th International
Conference on Software Engineering (ICSE’04), 0270-
5257/04, IEEE, 2004, pp. 718-719

[9] Avison D. & Fitzgerald G., Where now for
development methodologies?, Communications of the
ACM, 46(1), 2003, pp.78-82

[10] Williams L., A Survey of Agile Development
Methodologies, North Carolina State University,
Computer Science Department, 2004, pp. 209-227

[11] Amsden J., Modeling SOA IBM (PARTES 1,2,3,4,5),
Level: Introductory, STSM, IBM, 2007

[12] Ruokolainen T., Service-Oriented Software
Engineering: An Introductory Lecture,
Toni.Ruokolainen@cs.Helsinki.FI, 2006

Review of Relevant System Development Life Cycles (SDLCs) in Service‐Oriented Software Engineering (SoSE), L. Rodríguez‐Martínez et al. / 94‐113

Journal of Applied Research and Technology 113

[13] Arsanjani J., Hailpern B., Martin J. & Tarr P.L., Web
Services: Promises and Compromises, IBM Research
Division, Thomas J. Watson Research Center, 2006, pp.
1-18

[14] Papazoglou M.P., Traverso P., Schahram D.,
Leymann F. & Bernd J., Service-Oriented Computing:
Research Roadmap, Tilburg University, The Netherlands,
e-mail: mikep@uvt.nl., 2006, pp. 1-29

[15] Zimmermann O., Krogdahl P. & Gee C., Elements of
Service-Oriented Analysis and Design: An
interdisciplinary modeling approach for SOA projects,
IBM, 2004, pp. 1-17

[16] Mora, M., Gelman, O., Frank, M., Cervantes, F. &
Forgionne, G., Toward an Interdisciplinary Engineering
and Management of Complex IT-intensive Organizational
Systems: a Systems View, International Journal of
Information Technologies and the Systems Approach,
1(1), 2008, pp.1-24

[17] Dumas M., Towards a Semantic Framework for
Service Description, Cooperative Information Systems
Research Centre, 2000, pp. 1-20, Queensland University
of Technology, Australia

[18] Rodríguez-Martínez L.C., Mora-Tavarez M. &
Macías-Luévano J., La Integración de Servicios
Informáticos: Un reto actual para el Cambio de las
Organizaciones Modernas, XIV ACACIA, 2010, pp. 1-18,
México

[19] Mora, M., Gelman, O., O’Connor, R., Alvarez, F. &
Macias-Luevano, J., A Conceptual Descriptive-
Comparative Study of Models and Standards of
Processes in SE, F. Stowell and M. Mora Editors, SwE
and IT disciplines using the Theory of Systems,
International Journal of Information Technologies and the
Systems Approach, 2008, pp. 156-184

[20] Korbyn C., Modeling Components and Frameworks
with UML. ACM Communications Vol. 43, No. 10, 2000,
pp. 31-38

[21] Hopkins J., Component Primer, ACM
Communications Vol. 43, No. 10, 2000, pp. 27-30

[22] Rodríguez L.C., Mora M., O’Connor R., Garza L.A.,
Álvarez F.J., Durán H.A., Toward a Framework for
Comparison System Development Life Cycles (SDLCs)

in Service –Oriented Software Engineering (SOSE),
GITMA 2009 Conference, June 14-16, 2009, pp.

[23] Miller J. & Mukerji J., MDA Guide Version 1.0.1,
OMG,2003

[24] Rodríguez L.C., Mora M., Alvarez F.J. & Vargas
Martín M., Process Models of SDLCs: Comparison and
Evolution, M. Rahman Syed and S. Nessa Syed Editors,
Handbook of Research con Modern Systems Analysis and
Design Technologies and Applications, 2008, pp. 76-89

[25] Karastoyanova D., A Methodology for Development
of Web Services-based Bussines Processes,
Thechnische Universität Darmstadt, 2003, pp. 1-8

[26] Ivanyukovich A., Gangadharan G.R., D’Andrea V. &
Marchese M., Towards a Service-Oriented Development
Methodology. Department of Information and
Communication Technology, University of Trento, 2005,
pp. 1-10, Italy

[27] Kühne S., Thränert M. & Speck A., Towards a
methodology for orchestration and validation of
cooperative e-business components, Institute of
Cybernetics at Tallinn Technical University, ISBN 9985-
894-89-8, 2005, pp. 29-34

[28] Cox D. E. & Kreger H., Management of the service
oriented-architecture life cycle, IBM SYSTEMS
JOURNAL, VOL 44, NO 4, IBM Corporation, 2005, pp.
709-726

[29] Karakostas B., Zorgios Y. & Alevizos C.C.,
Automatic derivation of BPEL4WS from IDEF0 process
models. Software & System Modeling 5(2), 2006, pp.
208-218

[30] Papazoglou M.P. & Van Den Heuvel W., Business
Process Development Life Cycle Methodology,
Communications of the ACM, Vol. 50, No. 10, 2007, pp.
79-85

[31] Qing Gu & Lago P., A stakeholder-driven Service
Life Cycle Model for SOA, ACM IW-SOSWE’07, 2007,
pp. 1-7, Dubrovnik, Croatia

[32] Cantor M., Rational Unified Process for Systems
Engineering, Rational Brand Services IBM Software
Group, 2003

