

Vol. 10, June 2012 388

Improved Golden-Section Algorithm for the Multi-Item Replenishment
Problem

S. Hernández*1, I. Flores2, J.A. Vázquez1

1 Departamento de Ingeniería Industrial
Instituto Tecnológico de Celaya
Antonio García Cubas s/n, Celaya, México, C.P. 38010
*salvador.hernandez@itcelaya.edu.mx
2 División de Estudios de Posgrado
Facultad de Ingeniería
Universidad Nacional Autónoma de México
Circuito Universitario s/n, Distrito Federal, México, C.P. 04510.

ABSTRACT
This paper presents a procedure for solving instances of the joint replenishment problem using the
golden-section method. The algorithm includes an iterative method for obtaining a narrowing search range
for the continuous variable in order to carry out less iterations. We studied the behavior of the algorithm
experimentally and made comparisons with the heuristic technique known as RAND, solving randomly-
generated problems. The results showed that the golden-section algorithm with the proposed
improvements obtains the optimum solution for up to 100% of the problems solved, it is very stable when
faced with the increase in the number of products in the problem and the runtime is notably competitive.
The procedure is easy to implement and useful for professionals working in planning.

Keywords: line search methods, golden section, inventory management, joint replenishment

RESUMEN
Se muestra un método basado en sección dorada para resolver instancias del problema de
reaprovisionamiento de productos múltiples. El algoritmo incluye un método iterativo para obtener un
intervalo de búsqueda más pequeño. Se estudió el desempeño del algoritmo de manera experimental
realizando las comparaciones con el algoritmo RAND, resolviendo instancias generadas aleatoriamente.
Los resultados muestran que el algoritmo de sección dorada obtiene la solución óptima hasta en el 100%
de las instancias resueltas, es estable frente al número de productos y el tiempo de ejecución es
competitivo. El algoritmo es sencillo de implementar y muy útil para profesionistas dedicados a la
planeación y control de inventarios.

1. Introduction

The problem of determining the frequency of
production or packaging in systems of more than
one product is known as the multi-item
replenishment problem [1]. This problem is very
important for inventory control and has been widely
studied over the last few decades. Since the
publication of Goyal’s enumerative algorithm in
1974[1], a variety of heuristic procedures have
been proposed for the multi-item replenishment
problem (JRP): for example, the Silver method [2],
based on the comparison of the costs of activating
the purchase order, the costs of maintaining

inventory and demand for the products; later,
Kaspi and Rosenblatt proposed and studied a very
efficient algorithm known as RAND in three
consecutive articles [3, 4, 5].

Other contributions are the early version of Goyal’s
algorithm presented in 1973 [6]. Goyal and
Deshmukh [7] performed an extensive series of
tests with the RAND algorithm and the Silver´s
algorithm setting the efficency of the first one,
Hariga [8] proposed an heuristic procedure based
on relaxation of the problem. Nisson et al [9]

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Journal of Applied Research and Technology 389

proposed to group the items according to its
frequency to perform the search; later in Nisson
and Silver [10], there is a proposal of an
implementation on a spreadsheet scheme, which
is in fact the first implementation on a platform
used by practitioners and managers.

We must mention briefly the applications of
metaheuristics techniques: genetic algorithms
were implemented by Khouja, Michalewicz and
Satoskar [11] (using a wide search range for the
variables) and Olsen [12] (with an strategy of direct
grouping), but the comparisons against the RAND
algorithm showed that the quality of the solution
obtained with these techniques decrease rapidly
with the size of the problem; hence, deeper
research is needed in this area. Khouja and Goyal
[13] reviewed the literature on this problem that
was available up until 2005 including variants of
the model with one constraint and models with
stochastic demand.

The problem with heuristics is the deterioration in
the quality of the solution: the hardest problems to
solve are the ones where the value of the major
activation cost (S) is low, while, at the same time,
the size of the problem also has an effect.
However, the RAND algorithm is characterized by
being very robust and requiring very little
computational effort and is used as a reference to
compare the new proposals for heuristic
algorithms[10]. In this paper we employ the
golden-section method with some improvements
and compare its behavior with the aforementioned
RAND procedure. The advantage of the golden-
section method lies in the fact that the solution
obtained in an iteration does not depend on the
result of the previous iteration.

Some applications of the golden-section algorithm
can be found in Kabiriana and Ólafssonb [14] for
optimization via simulation, Cai et al[15] in
calculations for the determination of activation
energy, Benavolia, Chiscib and Farinac [16] for
noise filtration, and Tsai, Kolibal and Li [17] for the
calculation of shape parameters in equations.

2. Optimization model

Before presenting the cost model, the following
notation shall be defined:
TC: total cost.

i: product index.
n: number of products.
S: major activation cost, regardless of the number
of products included in the order.
si: lower activation cost for product i.
Di: demand for product i.
hi: inventory carrying cost for product i.
T: base time cycle, continuous variable.
ki: order frequency for product i, integer variable.
m: number of segments.
r: iteration.
Tmin: lower bound for the base time cycle.
Tmax: upper bound for the base time cycle.
Ta: improved lower bound for the base time cycle.
Tb: improved upper bound for the base time cycle.

 ba, : uncertainty range.

U: uniform probability function.
 : stopping criteria.

The relevant costs are the activation cost and the
inventory carrying cost; the optimization model is
as follows:

n.ik

T

hDkT
k
sS

T
TC

i

ii

n

i
i

n

i i
i

1,2,..., integers,1,

0

:to subject

2
11min

11


















 



In the JRP, the order frequency ki (an integer
value) of each product and the base time cycle T*
(the time between two consecutive orders,
continous variable) must be calculated, minimizing
the total order and inventory carrying costs. The
model is non-convex (Figure 1); however, for a
given value of the frequencies the total cost is a
convex function of the base time cycle T [18, 19].
The search range for the continuous variable [Tmin,
Tmax] is determined using the following equations
as proposed in [1] and corresponds to the strict
cyclic policy:

 








ii

i
i Dh

2sTT minminmin
 (4)







































n

i
ii

n

1i
i

hD

sS2
T

1

max max

(5)

(1)

(2)

(3)

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Vol. 10, June 2012 390

3. The RAND heuristic

The RAND heuristic divides the search range [Tmin,
Tmax] into m segments, then carries out a local
search all along segment r: at a given value of T,
the optimum order frequencies are calculated for
each product using Equation (6), rounding up to
the integer value, applying Equation (7)[1]; with the
frequency values calculated, we obtain the new
value of T; these steps are repeated and the
solution converges [3]. As can be seen, the
solution obtained in each iteration depends on the
solution obtained in the previous iteration.

2

2

T
k ii

i
hD

s

i  (6)

    11  iiiii kkkkk (7)

4. Search range

In order to reduce the computational effort, a
variety of methods have been proposed to

determine a more narrow search range  ba T,T ,

one example is the iterative method proposed by

Viswanathan [18]. He observed that for moderate
values of the major setup cost (S), the total cost

TC monotonically decreases from minT to a value

aT , and monotonically increases from a value bT

to maxT (Figure 1). The iterative procedure is

executed only until the improvement in the bounds
is above a certain predetermined value.

 The new bounds reduce considerabily the amount
of operations needed, specially if an enumerative
algorithm (like Goyal´s) is used.

By observing the shape of the objective function,

we concluded that the search range  ba T,T can

also be divided into segments (Figure 1). However,
instead of implementing a local search, similar to
the one used by the RAND algorithm, one viable
solution is to apply a numerical method, such as
the golden-section algorithm. The advantage of
this type of procedures lies in the fact that the
solution obtained in an iteration does not depend
on the result of the previous iteration and also that
at given frequencies the cost function is convex
over the continuous variable T. In our case, we
selected the golden-section algorithm because of
its simplicity and speed of convergence.

Figure 1. Approximate shape of the objective function.

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Journal of Applied Research and Technology 391

5. The golden-section method

The golden-section algorithm is a numerical
procedure that calculates the optimum of a
function within a range  ba, (called uncertainty

range), it is not necessary to calculate the
derivative of the function although the function
needs to be quasiconvex in a certain region
(Figure 2). The golden-section procedure assesses

the objective function at points
 αx and βx that

are to be found within the uncertainty range, these
points are obtained with Equations (8) and (9):

 abαbx α  (8)

 abαax β  (9)

If    βα xfxf  , then the region to the left of αx

is eliminated and αxa  , thus obtaining the new

uncertainty range, otherwise, if    βα xfxf  ,

then βxb  and the region to the right of βx is

eliminated. In each iteration, the range is reduced

by a constant amount, 0.618034α , known as the
golden section. It is worth mentioning that the size
of the uncertainty range does not depend on the
result of the r-th iteration, and only one operation
should be done in the r +1 iteration [20].

6. Improved golden-section procedure

The heuristic procedure proposed in this report
shall be denoted as an GS-V algorithm. The
procedure calculates the initial search range

 maxmin T,T using Equations (4) and (5), the

improved range  ba T,T is then obtained,

employing the Viswanathan’s iterative procedure.
The range is then divided into m segments; the
local optimum is obtained on segment r (the base

time cycle T* and the ik frequencies for each

product that minimize the cost) employing the
golden section. The entire procedure is given below:

Step 1. Calculate  maxmin T,T using Equations (4)

and (5).

Step 2. Apply the Viswanathan’s iterative
procedure [18] to obtain the narrowest range

Figure 2. Quasiconvex function.

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Vol. 10, June 2012 392

 ba T,T , divide it into m segments of the same

size.

Step 3. Calculate the optimum of segment r
employing the golden-section method:

 a. Set the uncertainty range  b,ra,r T,T

and set ∆.

 b. Calculate α,rT and β,rT employing

Equations (8) and (9), calculate the

 respective values for frequency αi,k

and βi,k employing Equations (6) and (7).

 c. Calculate the respective total cost

 rα,TTC and  α,rTTC using Equation (1).

 d. If    β,rα,r TTCTTC  then β,rb,r TT 

and αr TCTC  , otherwise ,ra,r TT  ,

 and βr TCTC  . Repeat steps b, c

and d until     Δ rβ,rα, TTCTTC .

 Do r
* TCTC  .

Step 4. Stop the algorithm if 1-r
* TCTC  .

Otherwise 1 rr and repeat Step 3.

We must point out that we adapted the golden-
section method in this paper for the problem
without relaxing the constraint that the frequencies
must be integer values [19].

n 10, 20, 30, 50
S 5, 10, 15, 20, 30
h U (0.5 – 5)
s U (2 – 3)
D U (100 – 100,000)

Table 1. Values of number of products(n), major
activation cost (S) and ranges for randomly generating
the inventory carrying parameter (h), lower activation
cost (s) and demand (D).

7. Experimental procedure

The GS-V and RAND procedures were encoded in
Fortran 94 and the tests were done on a computer
with a 2 GHz Intel-Pentium Dual Core processor

with 2 Gb RAM. No benchmark of instances exists
(as for example the economic lot scheduling
problem, ELSP), instead the problems must be
randomly generated following the guidelines
established in [3] and [10]: values of the major
activation cost (S) and the number of products (n)
are shown in Table 1. For each combination of S
and n, 100 problems were generated, randomly
generating the cost inventory parameter (h), lower
activation cost (s) and demand (D). In total, 2000
problems were generated.

In the case of the GS-V algorithm, we carried out
tests with m=10, 20, 30 and 50 segments and a
value of 0.01Δ  , while for the RAND algorithm
tests were done with m=10 and 20 segments. As a
means of comparison, we determined the number
of times each algorithm returned the optimum in
each m test. The optimum was calculated for each
problem using Goyal’s procedure [1].

The results are given in Tables 2 and 3, which are
described as follows: the first column shows the
number of products, the second column
corresponds to the S parameter, the third column
corresponds to the number of problems generated
for the n and S combination, columns 4-5 show the
percentage of problems in which the GS-V
algorithm returned the optimum solution for each m
test; the last two columns show, for each m test,
the percentage of problems in which the RAND
algorithm returned the optimum.

The results obtained with GS-V10 and GS-V20
are as follows: the GS-V10 algorithm returns
the optimum solution in 97.25% of the problems
solved , which is a lot lower than that would be
achieved with RAND10 (98.05%) and RAND20
(99.3%) and in the test with GS-V20 , 99% was
achieved (Table 2).

Table 2 also shows that the GS-V10 algorithm
obtains for n=50 products the worst results:
when S=5, the GS-V10 algorithm returns the
optimum solution in 79% of the problems solved,
when S=10, it returns the optimum solution in
90% and, finally, for the values of S=15 and 20,
the algorithm returns the optimum solution in 96
and 99% of the problems.

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Journal of Applied Research and Technology 393

The average difference in respect of the optimum
solution (some authors call it the penalty cost and
it is to be found in brackets in the same table)
varies but in general behaves in the same way: it is
large for low values of S. The tests using GS-V20
give better results as they achieve a global 99% for
the number of times the optimum solution is
obtained. However, this is slightly lower than
results of the test using RAND20, in which a
percentage of 99.35 is achieved (Table 2). No

other test was done using the RAND procedure since
(according to the authors) the improvements that can
be obtained in penalty costs do not justify the
additional computational effort [5]. The GS-V10 and
GS-V20 algorithm behave favorably for high values
of S, and its behavior deteriorates when the S
parameter is reduced. In this respect, it is important
to point out that the hardest problems are precisely
the ones where the value of S is low, which has been
reported on previous occasions [10].

n # of GS-V10 GS-V20 RAND10 RAND20

 S problems

10 5 100 100% 100% 100% 100%

 10 100 100 100 100 100

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

20 5 100 95% (0.987) 100% 99% (0.85) 100%

 10 100 100 100 97 (1.92) 98 (1.97)

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

30 5 100 87% (1.29) 96% (0.657) 96% (1.17) 100%

 10 100 99 (0.37) 100 95 (0.856) 99 (0.29)

 15 100 100 100 100 100

 20 100 100 100 98 (0.835) 100

 30 100 100 100 98 (0.40) 100

50 5 100 79% (1.07) 88% (0.51) 90% (1.94) 98% (0.185)

 10 100 90 (0.20) 97 (0.20) 95 (0.788) 97 (0.14)

 15 100 96 (0.45) 99 (0.21) 96 (2.07) 97 (1.57)

 20 100 99 (0.63) 100 97 (1.43) 98 (0.645)

 30 100 100 100 99 (0.77) 99 (0.18)

 % Global 97.25% 99% 98.05% 99.30%

Frequency 2000 1945 1980 1961 1986

Table 2. Test results with GS-V10 and GS-V20: % of optimums obtained per number of products.

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Vol. 10, June 2012 394

In the test with GS-V30, we obtained a small
increase in the global result achieving 99.35%
(Table 3); finally, in the test with GS-V50 the
procedure returns the optimum solution in 100% of
the problems solved (Table 3). Table 3 also shows
that for n=50 and S=5, the GS-V30 algorithm
returns the optimum solution in 89% of the
problems and when S= 10 it returned 98%. Finally,
in the GS-V50 test, we obtained the optimum in
100% of the problems.

The GS-V algorithm is very stable, in other words
the difficulty in returning a quality solution is not
significantly affected when the size of n is
increased, by comparison, the RAND algorithm is
very obviously affected. As can be seen in Figure
3, the optimum solution is obtained in all the
problems solved in the test with GS-V50 and, as
shown below, a shorter runtime is required.

n # of GS-V30 GS-V50 RAND10 RAND20

 S problems

10 5 100 100% 100% 100% 100%

 10 100 100 100 100 100

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

20 5 100 100% 100% 99% (0.85) 100%

 10 100 100 100 97 (1.92) 98 (1.97)

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

30 5 100 100% 100% 96% (1.17) 100%

 10 100 100 100 95 (0.856) 99 (0.29)

 15 100 100 100 100 100

 20 100 100 100 98 (0.835) 100

 30 100 100 100 98 (0.40) 100

50 5 100 89% (0.63) 100% 90% (1.94) 98% (0.185)

 10 100 98 (0.35) 100 95 (0.788) 97 (0.14)

 15 100 100 100 96 (2.07) 97 (1.57)

 20 100 100 100 97 (1.43) 98 (0.645)

 30 100 100 100 99 (0.77) 99 (0.18)

 % Global 99.35% 100% 98.05% 99.30%

Frequency 2000 1987 2000 1961 1986

Table 3. Test results with GS-V30 and GS-V50: % of optimums

 obtained per number of products

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Journal of Applied Research and Technology 395

Figure 3. Percentage de optimums returned by both algorithms.

Table 4 shows the available runtimes for each test and for each value of n. We observe that the time is
shorter for all the tests with GS-V than that required by the RAND algorithm.

 Test

n GS-V10 GS-V20 GS-V30 GS-V50 RAND10 RAND20

10 0.54 0.54 0.56 0.66 0.54 0.68

20 0.62 0.62 0.68 0.78 0.78 1.6

30 0.72 0.8 0.9 0.98 1.08 2.5

50 0.98 1.12 1.24 1.5 1.84 3.04

Table 4. Available runtime (miliseconds).

Figure 4 compares runtimes for GS-V10, GS-V50 tests (where the optimum is obtained in all the
problems), RAND10 and RAND20. It is apparent that more time is required in the tests using the RAND
algorithm.

Figure 4. RAND10, RAND20, GS-V10 and GS-V50 runtimes.

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Vol. 10, June 2012 396

Table 5 details the runtime per number of
products: for a value of n=10 the runtime for the
test using GS-V50 is slightly less than the time
reported with RAND20; for n=20 products the
difference is 48.75%; for n=30 products, the
difference in the times is 39.20%, finally for n= 50
products, the difference is 49.34%.

n
GS-V50
(milisec.)

RAND20
(milisec.) 







 

20

100
RAND

VGS

time

time

10 0.66 0.68 97.06%

20 0.78 1.6 48.75%

30 0.98 2.5 39.20%

50 1.5 3.04 49.34%

Table 5. Percentage of difference in the runtimes:

GS-V50 vs RAND20

8. Conclusions

This article proposes an application of the GS
method to solve instances of the JRP. Unlike
other procedures, no exhaustive enumeration is
employed and the result of one iteration is not
affected by the result of a previous iteration. The
algorithm was adapted to solve the unrelaxed
problem and also includes an iterative method
for obtaining narrower search range for the
continuous variable. The results for the tests
with 2000 randomly generated problems show
that the GS-V algorithm can even return the
optimum solution for up to 100% of the problems
and is very stable when the number of products
n is increased. The average required runtime is
less in the tests using the GS-V algorithm, even
if the number of segments (m) is increased or
the number of products (n) increased. The
algorithm can be easily adapted and will be very
useful to professionals in charge of planning
inventories; also, it has applications for the
constrained problem or the ELSP problem.

References

[1] Goyal S.K., Determination of optimum packaging
frequency for items jointly replenished, Management
Science, Vol. 21, No. 4, 1998, pp. 436-443.

[2] Silver, E., A simple method of determining order
quantities in joint replenishments under deterministic
demand. Management Science, Vol. 22, No. 12, 1976,
pp. 1351-1361.

[3] Kaspi M., Rosenblatt M.J., An improvement of
Silver’s algorithm for the joint replenishment problem. IIE
Transactions, Vol. 15, No. 3, 1983, pp.264–267.

[4] Kaspi M, Rosenblatt M.J., The effectiveness of
heuristic algorithms for multi-item inventory systems with
joint replenishment costs. International Journal of
Production Research, Vol. 23, No. 1, 1985, pp. 109-116.

[5] Kaspi M., Rosenblatt M. J., On the economic ordering
quantity for jointly replenished items. International
Journal of Production Research, Vol. 29, No. 1, 1991,
pp. 107–114.

[6] Goyal S.K., Determination of economic packaging
frequency of items jointly replenished. Management
Science, Vol. 20, No. 2, 1973, pp. 232-235.

[7] Goyal S.K. and Deshmukh S.G., A note on: the
economic ordering quantity for jointly replenished items.
International Journal of Production Research, Vol. 31,
No. 12, 1993, pp.2959-2961.

[8] Hariga M., Two new heuristic procedures for the joint
replenishment problem. Journal of the Operational
Research Society, Vol. 45, No. 4, 1994, pp. 463–471.

[9] Nisson A., Segersted A., van der Sluis E., A new
iterative heuristic to solve the joint replenishment
problem using a spreadsheet technique. International
Journal of Production Economics, No. 108, No. 1-2,
2007, pp. 399 - 405.

[10] Nisson A., Silver E., A simple improvement on
Silver’s heuristic for the joint replenishment problem.
Journal of the Operational Research Society, Vol. 59,
No. 10, 2008, pp.1415-1421.

Improved Golden‐Section Algorithm for the Multi‐Item Replenishment Problem, S. Hernández et al. / 388‐397

Journal of Applied Research and Technology 397

[11] Khouja M., Michalewicz Z., Satoskar S.,A
comparison between genetic algorithms and the RAND
method for solving the joint replenishment problem.
Production Planning and Control, Vol.11, No. 6, 2000,
pp.556-564.

[12] Olsen A.L., An evolutionary algorithm to solve the
joint replenishment problem using direct grouping.
Computers & Industrial Engineering, Vol.48, No. 2, 2005,
pp. 223–235.

[13] Khouja M., Goyal S., A review of the joint
replenishment problem literature: 1989–2005. European
Journal of Operational Research, No. 186, No. 1, 2008,
pp. 1- 16.

[14] Kabiriana A, Ólafssonb S, Continuous optimization
via simulation using Golden Region search European
Journal of Operational Research. Vol.208, No.1, 2011,
pp. 19–27.

[15] Cai J., Han D., Chen Ch., Chen S., Application of
the golden section search algorithm in the nonlinear
isoconversional calculations to the determination of the
activation energy from nonisothermal kinetic conversion
data. Solid State Sciences, Vol. 12, No. 5, 2010, pp.
829-833.

[16] Benavolia A., Chiscib L., Farinac A., Fibonacci
sequence, golden section, Kalman filter and optimal
control. Signal Processing, Vol. 89, No. 8, 2009, pp.
1483–1488.

[17] Tsai C.H, Kolibal J, Li M., The golden section search
algorithm for finding a good shape parameter for
meshless collocation methods. Engineering Analysis with
Boundary Elements, Vol. 34, No. 8, 2010, pp. 738-746.

[18] Viswanathan S., A new optimal algorithm for the
joint replenishment problem. Journal of the Operational
Research Society, Vol. 47, No. 7, 1996, pp. 936 - 934.

[19] Frenk J.B.G., Kleijn M.J., Dekker R., An efficient
algorithm for a generalized joint replenishment problem.
European Journal of Operational Research, No.118, No.
2, 1999, pp. 413- 428.

[20] Bazaraa M., Sherali H., Shetty, C.M., Nonlinear
programming. John Wiley and Sons, 2006, pp. 343 – 351.

