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ABSTRACT 
This paper presents a procedure for solving instances of the joint replenishment problem using the 
golden-section method. The algorithm includes an iterative method for obtaining a narrowing search range 
for the continuous variable in order to carry out less iterations. We studied the behavior of the algorithm 
experimentally and made comparisons with the heuristic technique known as RAND, solving randomly-
generated problems. The results showed that the golden-section algorithm with the proposed 
improvements obtains the optimum solution for up to 100% of the problems solved, it is very stable when 
faced with the increase in the number of products in the problem and the runtime is notably competitive. 
The procedure is easy to implement and useful for professionals working in planning. 
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RESUMEN 
Se muestra un método basado en sección dorada para resolver instancias del problema de 
reaprovisionamiento de productos múltiples. El algoritmo incluye un método iterativo para obtener un 
intervalo de búsqueda más pequeño. Se estudió el desempeño del algoritmo de manera experimental 
realizando las comparaciones con el algoritmo RAND, resolviendo instancias generadas aleatoriamente. 
Los resultados muestran que el algoritmo de sección dorada obtiene la solución óptima hasta en el 100% 
de las instancias resueltas, es estable frente al número de productos y el tiempo de ejecución es 
competitivo. El algoritmo es sencillo de implementar y muy útil para profesionistas dedicados a la 
planeación y control de inventarios. 
 

 
1. Introduction 
 
The problem of determining the frequency of 
production or packaging in systems of more than 
one product is known as the multi-item 
replenishment problem [1]. This problem is very 
important for inventory control and has been widely 
studied over the last few decades. Since the 
publication of Goyal’s enumerative algorithm in 
1974[1], a variety of heuristic procedures have 
been proposed for the multi-item replenishment 
problem (JRP): for example, the Silver method [2], 
based on the comparison of the costs of activating 
the purchase order, the costs of maintaining  

 
 
inventory and demand for the products; later, 
Kaspi and Rosenblatt proposed and studied a very 
efficient algorithm known as RAND in three 
consecutive articles [3, 4, 5].  
 
Other contributions are the early version of Goyal’s 
algorithm presented in 1973 [6]. Goyal and 
Deshmukh [7] performed an extensive series of 
tests with the RAND algorithm and the Silver´s 
algorithm setting the efficency of the first one, 
Hariga [8] proposed an heuristic procedure based 
on relaxation of the problem. Nisson et al [9] 
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proposed to group the items according to its 
frequency to perform the search; later in Nisson 
and Silver [10], there is a proposal of an 
implementation on a spreadsheet scheme, which 
is in fact the first implementation on a platform 
used by practitioners and managers.  
 
We must mention briefly the applications of 
metaheuristics techniques: genetic algorithms 
were implemented by Khouja, Michalewicz and 
Satoskar [11] (using a wide search range for the 
variables) and Olsen [12] (with an strategy of direct 
grouping), but the comparisons against the RAND 
algorithm showed that the quality of the solution 
obtained with these techniques decrease rapidly 
with the size of the problem; hence, deeper 
research is needed in this area. Khouja and Goyal 
[13] reviewed the literature on this problem that 
was available up until 2005 including variants of 
the model with one constraint and models with 
stochastic demand. 
 
The problem with heuristics is the deterioration in 
the quality of the solution: the hardest problems to 
solve are the ones where the value of the major 
activation cost (S) is low, while, at the same time, 
the size of the problem also has an effect. 
However, the RAND algorithm is characterized by 
being very robust and requiring very little 
computational effort and is used as a reference to 
compare the new proposals for heuristic 
algorithms[10]. In this paper we employ the 
golden-section method with some improvements 
and compare its behavior with the aforementioned 
RAND procedure. The advantage of the golden-
section method lies in the fact that the solution 
obtained in an iteration does not depend on the 
result of the previous iteration.  
 
Some applications of the golden-section algorithm 
can be found in Kabiriana and Ólafssonb [14] for 
optimization via simulation, Cai et al[15] in 
calculations for the determination of activation 
energy, Benavolia, Chiscib and Farinac [16] for 
noise filtration, and Tsai, Kolibal and Li [17] for the 
calculation of shape parameters in equations.  
 
2. Optimization model 
 
Before presenting the cost model, the following 
notation shall be defined:  
TC: total cost. 

i: product index.  
n: number of products. 
S: major activation cost, regardless of the number 
of products included in the order. 
si: lower activation cost for product i. 
Di: demand for product i. 
hi: inventory carrying cost for product i. 
T: base time cycle, continuous variable. 
ki: order frequency for product i, integer variable. 
m: number of segments. 
r: iteration. 
Tmin: lower bound for the base time cycle. 
Tmax: upper bound for the base time cycle. 
Ta: improved lower bound for the base time cycle. 
Tb: improved upper bound for the base time cycle. 

 ba, : uncertainty range. 

U: uniform probability function. 
 : stopping criteria. 
 
The relevant costs are the activation cost and the 
inventory carrying cost; the optimization model is 
as follows: 
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In the JRP, the order frequency ki (an integer 
value) of each product and the base time cycle T* 
(the time between two consecutive orders, 
continous variable) must be calculated, minimizing 
the total order and inventory carrying costs. The 
model is non-convex (Figure 1); however, for a 
given value of the frequencies the total cost is a 
convex function of the base time cycle T [18, 19]. 
The search range for the continuous variable [Tmin, 
Tmax] is determined using the following equations 
as proposed in [1] and corresponds to the strict 
cyclic policy: 
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3. The RAND heuristic 
 
The RAND heuristic divides the search range [Tmin, 
Tmax]  into m segments, then carries out a local 
search all along segment r: at a given value of T, 
the optimum order frequencies are calculated for 
each product using Equation (6), rounding up to 
the integer value, applying Equation (7)[1]; with the 
frequency values calculated, we obtain the new 
value of T; these steps are repeated and the 
solution converges [3]. As can be seen, the 
solution obtained in each iteration depends on the 
solution obtained in the previous iteration. 
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4. Search range 
 
In order to reduce the computational effort, a 
variety of methods have been proposed to 

determine a more narrow search range  ba T,T , 

one example is the iterative method proposed by 

Viswanathan [18]. He observed that for moderate 
values of the major setup cost (S), the total cost 

TC monotonically decreases from minT  to a value

aT , and monotonically increases from a value bT  

to maxT  (Figure 1). The iterative procedure is 

executed only until the improvement in the bounds 
is above a certain predetermined value. 
 
 The new bounds reduce considerabily the amount 
of operations needed, specially if an enumerative 
algorithm (like Goyal´s) is used.  
 
By observing the shape of the objective function, 

we concluded that the search range  ba T,T can 

also be divided into segments (Figure 1). However, 
instead of implementing a local search, similar to 
the one used by the RAND algorithm, one viable 
solution is to apply a numerical method, such as 
the golden-section algorithm. The advantage of 
this type of procedures lies in the fact that the 
solution obtained in an iteration does not depend 
on the result of the previous iteration and also that 
at given frequencies the cost function is convex 
over the continuous variable T. In our case, we 
selected the golden-section algorithm because of 
its simplicity and speed of convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Approximate shape of the objective function. 
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5. The golden-section method 
 
The golden-section algorithm is a numerical 
procedure that calculates the optimum of a 
function within a range  ba, (called uncertainty 

range), it is not necessary to calculate the 
derivative of the function although the function 
needs to be quasiconvex in a certain region 
(Figure 2). The golden-section procedure assesses 

the objective function at points
 αx and βx that 

are to be found within the uncertainty range, these 
points are obtained with Equations (8) and (9): 
 

 abαbx α                 (8) 

 
 abαax β         (9) 

 

If    βα xfxf  , then the region to the left of αx
 

is eliminated and αxa  , thus obtaining the new 

uncertainty range, otherwise, if    βα xfxf  , 

then βxb  and the region to the right of βx is 

eliminated. In each iteration, the range is reduced  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
by a constant amount, 0.618034α , known as the 
golden section. It is worth mentioning that the size 
of the uncertainty range does not depend on the 
result of the r-th iteration, and only one operation 
should be done in the r +1 iteration [20]. 
 
6. Improved golden-section procedure 
 
The heuristic procedure proposed in this report 
shall be denoted as an GS-V algorithm. The 
procedure calculates the initial search range

 maxmin T,T using Equations (4) and (5), the 

improved range  ba T,T is then obtained, 

employing the Viswanathan’s iterative procedure.  
The range is then divided into m segments; the 
local optimum is obtained on segment r (the base 

time cycle T* and the ik frequencies for each 

product that minimize the cost) employing the 
golden section. The entire procedure is given below: 
 

Step 1. Calculate  maxmin T,T using Equations (4) 

and (5).  
 
Step 2. Apply the Viswanathan’s iterative 
procedure [18] to obtain the narrowest range 

 
 
 

Figure 2. Quasiconvex function. 
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 ba T,T , divide it into m segments of the same 

size. 
    
Step 3. Calculate the optimum of segment r 
employing the golden-section method:  

                a. Set the uncertainty range  b,ra,r T,T  

and set ∆. 

                b. Calculate α,rT and β,rT  employing 

Equations (8) and (9), calculate the   

                   respective  values for frequency αi,k  

and βi,k  employing Equations (6) and (7).  

                c. Calculate the respective total cost 

 rα,TTC  and  α,rTTC  using Equation (1). 

                d. If    β,rα,r TTCTTC    then β,rb,r TT   

and αr TCTC  , otherwise ,ra,r TT  ,   

                     and βr TCTC  . Repeat steps b, c 

and d until     Δ rβ,rα, TTCTTC .  

                   Do r
* TCTC  . 

Step 4. Stop the algorithm if 1-r
* TCTC  . 

Otherwise 1 rr  and repeat Step 3. 
 
We must point out that we adapted the golden-
section method in this paper for the problem 
without relaxing the constraint that the frequencies 
must be integer values [19]. 
 

n 10, 20, 30, 50 
S 5, 10, 15, 20, 30 
h U (0.5 – 5) 
s U (2 – 3) 
D U (100 – 100,000) 

 
Table 1. Values of number of products(n), major 
activation cost (S) and ranges for randomly generating 
the inventory carrying parameter (h), lower activation 
cost  (s) and demand (D). 
 
7. Experimental procedure 
 
The GS-V and RAND procedures were encoded in 
Fortran 94 and the tests were done on a computer 
with a 2 GHz Intel-Pentium Dual Core processor  
 
 

with 2 Gb RAM. No benchmark of instances exists 
(as for example the economic lot scheduling 
problem, ELSP), instead the problems must be 
randomly generated following the guidelines 
established in [3] and [10]: values of the major 
activation cost (S) and the number of products (n) 
are shown in Table 1. For each combination of S 
and n, 100 problems were generated, randomly 
generating the cost inventory parameter (h), lower 
activation cost (s) and demand (D). In total, 2000 
problems were generated. 
 
In the case of the GS-V algorithm, we carried out 
tests with m=10, 20, 30 and 50 segments and a 
value of 0.01Δ  , while for the RAND algorithm 
tests were done with m=10 and 20 segments. As a 
means of comparison, we determined the number 
of times each algorithm returned the optimum in 
each m test. The optimum was calculated for each 
problem using Goyal’s procedure [1].  
 
The results are given in Tables 2 and 3, which are 
described as follows: the first column shows the 
number of products, the second column 
corresponds to the S parameter, the third column 
corresponds to the number of problems generated 
for the n and S combination, columns 4-5 show the 
percentage of problems in which the GS-V 
algorithm returned the optimum solution for each m 
test; the last two columns show, for each m test, 
the percentage of problems in which the RAND 
algorithm returned the optimum. 
 
The results obtained with GS-V10 and GS-V20 
are as follows: the GS-V10 algorithm returns 
the optimum solution in 97.25% of the problems 
solved , which is a lot lower than that would be 
achieved with RAND10 (98.05%) and RAND20 
(99.3%) and in the test with GS-V20 , 99% was 
achieved (Table 2). 
 
Table 2 also shows that the GS-V10 algorithm 
obtains for n=50 products the worst results: 
when S=5, the GS-V10 algorithm returns the 
optimum solution in 79% of the problems solved, 
when S=10, it returns the optimum solution in 
90% and, finally, for the values of S=15 and 20, 
the algorithm returns the optimum solution in 96 
and 99% of the problems. 
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The average difference in respect of the optimum 
solution (some authors call it the penalty cost and 
it is to be found in brackets in the same table) 
varies but in general behaves in the same way: it is 
large for low values of S. The tests using GS-V20 
give better results as they achieve a global 99% for 
the number of times the optimum solution is 
obtained. However, this is slightly lower than 
results of the test using RAND20, in which a 
percentage of 99.35 is achieved (Table 2). No 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
other test was done using the RAND procedure since 
(according to the authors) the improvements that can 
be obtained in penalty costs do not justify the 
additional computational effort [5].  The GS-V10 and 
GS-V20 algorithm behave favorably for high values 
of S, and its behavior deteriorates when the S 
parameter is reduced. In this respect, it is important 
to point out that the hardest problems are precisely 
the ones where the value of S is low, which has been 
reported on previous occasions [10].  
 
 
 
 

n  # of  GS-V10 GS-V20 RAND10 RAND20 

 S problems      

10 5 100 100% 100% 100% 100%

 10 100 100 100 100 100

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

20 5 100 95% (0.987) 100% 99% (0.85) 100%

 10 100 100 100 97 (1.92) 98 (1.97)

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

30 5 100 87% (1.29) 96% (0.657) 96% (1.17) 100%

 10 100 99 (0.37) 100 95 (0.856) 99 (0.29)

 15 100 100 100 100 100

 20 100 100 100 98 (0.835) 100

 30 100 100 100 98 (0.40) 100

50 5 100 79% (1.07) 88% (0.51) 90% (1.94) 98% (0.185)

 10 100 90 (0.20) 97 (0.20) 95 (0.788) 97 (0.14)

 15 100 96 (0.45) 99 (0.21) 96 (2.07) 97 (1.57)

 20 100 99 (0.63) 100 97 (1.43) 98 (0.645)

 30 100 100 100 99 (0.77) 99 (0.18)

  % Global 97.25% 99% 98.05% 99.30%

Frequency  2000 1945 1980 1961 1986

 
Table 2. Test results with GS-V10 and GS-V20: % of optimums obtained per number of products. 
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In the test with GS-V30, we obtained a small 
increase in the global result achieving 99.35% 
(Table 3); finally, in the test with GS-V50 the 
procedure returns the optimum solution in 100% of 
the problems solved (Table 3).  Table 3 also shows 
that for n=50 and S=5, the GS-V30 algorithm 
returns the optimum solution in 89% of the 
problems and when S= 10 it returned 98%. Finally, 
in the GS-V50 test, we obtained the optimum in 
100% of the problems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The GS-V algorithm is very stable, in other words 
the difficulty in returning a quality solution is not 
significantly affected when the size of n is 
increased, by comparison, the RAND algorithm is 
very obviously affected. As can be seen in Figure 
3, the optimum solution is obtained in all the 
problems solved in the test with GS-V50 and, as 
shown below, a shorter runtime is required. 
 
 
 
 
 

 
n  # of  GS-V30 GS-V50 RAND10 RAND20

 S problems   

10 5 100 100% 100% 100% 100%

 10 100 100 100 100 100

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

20 5 100 100% 100% 99% (0.85) 100%

 10 100 100 100 97 (1.92) 98 (1.97)

 15 100 100 100 100 100

 20 100 100 100 100 100

 30 100 100 100 100 100

30 5 100 100% 100% 96% (1.17) 100%

 10 100 100 100 95 (0.856) 99 (0.29)

 15 100 100 100 100 100

 20 100 100 100 98 (0.835) 100

 30 100 100 100 98 (0.40) 100

50 5 100 89% (0.63) 100% 90% (1.94) 98% (0.185)

 10 100 98 (0.35) 100 95 (0.788) 97 (0.14)

 15 100 100 100 96 (2.07) 97 (1.57)

 20 100 100 100 97 (1.43) 98 (0.645)

 30 100 100 100 99 (0.77) 99 (0.18)

  % Global 99.35% 100% 98.05% 99.30%

Frequency  2000 1987 2000 1961 1986

 
Table 3. Test results with GS-V30 and GS-V50: % of optimums 

 obtained per number of products 
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Figure 3. Percentage de optimums returned by both algorithms. 
 

Table 4 shows the available runtimes for each test and for each value of n. We observe that the time is 
shorter for all the tests with GS-V than that required by the RAND algorithm. 
 

 Test 

n GS-V10 GS-V20 GS-V30 GS-V50 RAND10 RAND20 

10 0.54 0.54 0.56 0.66 0.54 0.68 

20 0.62 0.62 0.68 0.78 0.78 1.6 

30 0.72 0.8 0.9 0.98 1.08 2.5 

50 0.98 1.12 1.24 1.5 1.84 3.04 

 
Table 4. Available runtime (miliseconds). 

 
 

Figure 4 compares runtimes for GS-V10, GS-V50 tests (where the optimum is obtained in all the 
problems), RAND10 and RAND20. It is apparent that more time is required in the tests using the RAND 
algorithm. 
 

 
 

Figure 4. RAND10, RAND20, GS-V10 and GS-V50 runtimes. 
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Table 5 details the runtime per number of 
products: for a value of n=10 the runtime for the 
test using GS-V50 is slightly less than the time 
reported with RAND20; for n=20 products the 
difference is 48.75%; for n=30 products, the 
difference in the times is 39.20%, finally for n= 50 
products, the difference is 49.34%. 
 

n 
GS-V50 
(milisec.) 

RAND20 
(milisec.) 







 

20

100
RAND

VGS

time

time

10 0.66 0.68 97.06% 

20 0.78 1.6 48.75% 

30 0.98 2.5 39.20% 

50 1.5 3.04 49.34% 

 
Table 5. Percentage of difference in the runtimes:  

GS-V50 vs RAND20 
 
8. Conclusions 
 
This article proposes an application of the GS 
method to solve instances of the JRP. Unlike 
other procedures, no exhaustive enumeration is 
employed and the result of one iteration is not 
affected by the result of a previous iteration. The 
algorithm was adapted to solve the unrelaxed 
problem and also includes an iterative method 
for obtaining narrower search range for the 
continuous variable. The results for the tests 
with 2000 randomly generated problems show 
that the GS-V algorithm can even return the 
optimum solution for up to 100% of the problems 
and is very stable when the number of products 
n is increased. The average required runtime is 
less in the tests using the GS-V algorithm, even 
if the number of segments (m) is increased or 
the number of products (n) increased. The 
algorithm can be easily adapted and will be very 
useful to professionals in charge of planning 
inventories; also, it has applications for the 
constrained problem or the ELSP problem. 
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