

Journal of Applied Research and Technology 629

A Multi-Agent System Approach Applied to Light Raycasting

H. Andrade*, F. Ramos, Y. Kotsarenko

Tecnológico de Monterrey
Cuernavaca, Morelos, México
*humberto.andrade@gmail.com

ABSTRACT
Light and shadows caused by the interaction with objects are important features in computer graphics which are
usually taken into account to achieve realistic images. In order to simulate them, some attempts have been carried out
which are based on direct illumination classical approaches as shadow mapping and shadow volumes. However,
classical approaches in their beginnings could not support semi-transparent objects, soft-shadows, light interactions
inside objects and the possibility to update a scene based on previous information.

In this paper a novel shadow casting approach is proposed to solve the previously mentioned problem using an
interactive cooperative multi agent system to provide a better understanding and easy customization of the rendered
scenes; for instance, the scenes are represented with object agents that propagate rectilinear photon information
through them causing several changes on photon properties such as wavelength, intensity, among others. This
system uses a two-dimensional space represented by pixels.

Our multi-agent system (MAS) uses a blackboard architecture for storing and sharing data and the implicit invocation
design pattern. The system was developed to calculate direct illumination in a two-dimensional space. In addition, the
proposed system supports point light agents, opaque agents, semi-opaque agents and empty agents.

A comparison is presented between the classic approaches and the proposed one presented in this work in scenes
composed of opaque and semi-opaque objects. The proposed approach, as opposed to the classical ones, allows the
shadows to be casted by the light that passes through semi-opaque objects. The light is casted by one or many light
agents producing hard and soft shadows.

Keywords: shadows, ray-casting, multi agent system, blackboard.

RESUMEN
Luz y sombras causadas por la interacción con los objetos son características importantes en gráficas
computacionales para lograr realismo en las imágenes. Para simularlas, se han hecho intentos en enfoques de
iluminación directa como lo son shadow mapping y volumes. Sin embargo, éstas no pueden soportar objetos semi-
transparentes, sombras suaves, interacciones de la luz en el interior de los objetos y la posibilidad de actualizar una
escena basada en información previa.

En éste trabajo se propone un novedoso enfoque de generación de sombras para resolver los problemas antes
mencionados desarrollados bajo un enfoque de sistema multi-agente cooperativo para una mejor comprensión y una
fácil personalización de escenas; como ejemplo, las escenas son representadas con agentes-objeto que propagan la
información de los fotones de manera rectilínea entre ellos, causando varios cambios en las propiedades de los fotones
como la frecuencia, intensidad, entre otros. Este sistema utiliza un espacio bidimensional representado por pixeles.

Nuestro sistema multi-agente (SMA) utiliza la arquitectura pizarrón (blackboard) para almacenar y compartir datos
entre agentes y el patrón de diseño invocación implícita. El sistema fue desarrollado para calcular la iluminación local
en un espacio discreto bidimensional. Adicionalmente, el sistema propuesto soporta agentes luz puntual, agente
opaco, agente semi-opaco y agente vacío.

Se muestra una comparación entre los enfoques clásicos y la alternativa propuesta utilizando escenas con objetos
opacos y semi-opacos. La alternativa propuesta en comparación con los enfoques clásicos permite sombras
generadas por la luz al cruzar objetos semi-opacos. La luz es generada por uno o varios agentes luz puntual
provocando sombras fuertes o suaves.

Vol. 10, August 2012 630

1. Introduction

Real environments consist of matter that can be
opaque or semi-opaque allowing proportional
amounts of light energy passing through them in
depending on how opaque the objects are. In the
computer graphics field, the classic direct illumination
approaches handle opaque objects that are
composed of superficial surfaces excluding semi-
opaque objects letting a portion of the total incident
light to cross several sub-surfaces of the object.
Thus, the direct illumination effect is computed
incorrectly. In addition, since the proposed approach
in this work is based on simple concepts of light
propagation it is easier to understand and develop
than the classic direct illumination approaches which
due to the specialized knowledge that required are
harder to understand.

Modern rendering is all about shadows. Modeling
light visibility is fundamental in the field of
computer graphics. Shadow mapping [1] was
introduced by Lance Williams in 1978 as a fast and

efficient approach for computing shadows in image
space based on the visibility depth of a Z-buffer [2].
The computational cost of shadow maps is to
render the scene two times: 1) Render the scene
from the viewpoint of the light source and stored it
into a depth map (shadow map). 2) Render the
scene from the viewpoint of the camera and for
each pixel of the final render view point a mapped
is performed into the shadow buffer transforming
the camera coordinate system into the coordinate
system of the light source. If the depth value is less
or equal to that one stored in the shadow map then
the point is lit otherwise it is in shadow. Figure 1
illustrates the original idea of shadow mapping,
see Everitt [3] for details.

Although shadow maps are very popular, they are
not perfect, and their limitations are unacceptable
for some applications as it produces aliasing due
to the texture-based nature of the approach. Some
filtering has long been used to reduce the shadow
map aliasing and to simulate the effect of area
lights causing soft-shadows.

Figure 1. Determining whether a pixel in viewpoint or camera is lit or in shadow by shadow mapping
 depends on the comparison between the depth stored in the shadow map and the

depth of the transformed point p(x, y) into light source coordinates.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 631

The most widely used alternative to solve the
aliasing problem is shadow volumes [4] introduced
by Frankling Crow as off-line pre-processing
approach based on the stencil buffer by adding
invisible polygons that represent the boundary
between an illuminated and a shadowed space
with object precision. The invisible polygons are
computed by finding all edges and extrude them to
create geometry that divides the space in light or in
shadow as shown in Figure 2.

Once the scene is rendered from the camera, each
pixel depth being drawn is compared with the
shadow geometry depth and counting operations
to properly render the shadows. Shadow volumes,
as shadow mapping, have been a topic of much
research because the complexity of the shadow
volumes is tied to the complexity of the shadowing
geometry, thus robust and fast shadow volumes
are required for real-time applications as the binary
space partitioning (BSP trees [5]) latter used to
develop video games such as Doom.

Classical mentioned approaches fail to simulate
real scenes since they lack physical interaction of
light as it propagates in the scene. This paper
proposes a novel approach to compute hard and

soft shadows based on a multi agent system (MAS)
approach that is developed in a two-dimensional (2D)
discrete space. This approach can be used to
determine the light visibility and the intensity of light in
the scene because of the direct illumination
considering opaque and semi-opaque object agents
and point light agents. The physical behavior of the
light is modeled by light agents that initialize the
energy traveling from light sources to object agents.
The agents then propagate light information through
the scene in order to capture light information which
can be then used to apply shadows.

A comparison is presented between the mentioned
classical shadow approaches and the proposed
approach using scenes with only opaque objects
and with both opaque and semi-opaque objects.
Moreover, soft shadows cast by many light
sources are presented illustrating the use of
opaque and semi-opaque objects.

2. Direct illumination

This section discusses the direct illumination
approaches most used in video games considering
only the light that directly hits objects without
reflections and refractions to generate the shading
information required to render a discrete scene
with shadows.

Figure 2. Light ray projection and shadow volume limited by a front-cap and
back-cap to enclose the semi-infinite volume of space.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Vol. 10, August 2012 632

2.1 Hard shadows

Computing hard shadows involves only the
determination of whether or not a point in the
scene lies in shadow commented Woo in [6] (as a
binary decision). This is the case of umbra section
of the shadow as shown in Figure 3 (a) and (b).
Perfect hard shadows do not exist physically but
many shadow approaches use the simple
supposition that any point of the scene is either lit
or in shadow as in shadow volumes [4], shadow
mapping [1] and fake shadows [7]. These
approaches have been widely used in video
games since the computational power required is
considered low. In spite of their simple
mathematical approach they are not easy to
develop, they are limited to opaque objects and the
last cannot cast self-shadows.

Williams shadow map suffers from anti-alias
artifacts that occur when the shadow map
resolution mismatch the final render resolution.
The anti-alias is evident in the final render
when many pixels are transformed into the
same texel stored in the shadow map as shown
in Figure 4. Another well-known problem of
shadow maps is the bias problem that occurs
when no enough depth precision can be stored
in a shadow map texel (commonly the max
depth value is 16-bits or 32-bits per texel). The
most recent survey of shadow map
modifications on hard shadows is found in [8].

Figure 4. On the left, a final render is shown with a
shadow anti-alias artifact due to the mismatch resolution.

On the right, the corresponding shadow map is shown
rendered from the viewpoint of the light source.

Figure 5. Visibility function of a deep shadow map.

Figure 3. a) Hard shadow caused by point and spot light sources, b) hard shadow caused by parallel light
source, c) soft shadow caused by line, area or volume light sources.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 633

Crow's shadow volumes were implemented with
hardware acceleration by Funchs [10] but the
widespread started with the Z-pass algorithm of
Heidmann [11]. Semi-transparent shadows have
been recently implemented with shadow
volumes by Kim [12], where the stencil buffer is
replaced with a floating-point buffer and the
counting operations are replaced by adding or
removing ݈݃ሺ1 െ is the opacity of ߙ ሻ whereߙ
the object that generated the shadow volume.
This implementation produces per-pixel accurate
sharp shadows and can be extended to support
colored shadow but requires the opacity to be
constant per object. The limitations are that this
approach cannot compute self-shadows and do
not support textured shadows.
The proposed approach presented in this work
allows the casting and self-casting of hard
shadows over opaque and semi-opaque objects in
a two-dimensional space by the use of a novel light
ray-casting algorithm in order to prove the
feasibility of the approach.

2.2 Soft shadows

Computing soft shadows involves the inclusion of
the penumbra region along with the umbra for a
higher level of visual quality. Full occlusion of the
incoming light produces the umbra region, and
partial occlusion of the incoming light produces the
penumbra region. Backward ray tracing is one of
the most popular and powerful approaches in the
image synthesis that can be used to compute hard
and soft shadows. In addition to the popular ray
tracing approach, other classical approaches that
produce soft shadows and commonly used in
computer games use shadow volumes and
shadow mapping with their corresponding
modifications, as shown in [13,14,15,16,17,18,19]
to mention some. A detail explanation and survey
of those modifications focused on shadow
mapping soft shadows is found in [20], a more
general survey is found in [21] covering shadow
mapping and a survey that covers shadow
mapping and shadow volumes is found in [22].

These approaches generate better quality images
than hard shadows but, as hard shadows, they are
limited to opaque objects. Furthermore, the light
interaction only occurs at object surfaces without
taking into account the interactions of light before
hitting the object and the light modification as it

crosses the object layers. As in the case of hard
shadows the proposed system allows soft
shadows of semi-opaque objects along with
opaque and transparent objects. The system
handles the light interaction with the whole object
and not only its surfaces, allowing objects of many
layers to model the interior of them.

3. Multi agent system arquitecture

The traditional object-oriented paradigm states that
objects are not autonomous and are not capable of
deciding what to do in a specific situation such as
that declining a request. In the present work, we
used a cooperative multi-agent system (MAS) to
facilitate the customization of light and object
agents within the scene. It pretends also to
simulate light propagation from light agents to
object agents in all directions as is the case of
point light sources.

According to Wooldrige [23], agents are capable of
independent, autonomous action in order to meet
their design objectives. In other words, they are
capable of deciding what to do in any given
situation by sensing their environment and
performing actions in order to modify the
environment. We pretend to assign propagation
actions to object agents and initialization actions to
light agents in order to find the appropriate shading
of a scene as whether they were a group of
experts working together trying to complete a large
task. The form of cooperation is based on a result-
sharing approach in which according to Davis et
al., [24] agents assist each other by sharing
particular results. In this case the result-sharing
approach is based on the light propagation. The
sharing of results drives the system to converge on
shading information, answering the question of
which areas are lit or in shadow.

The real opaque or semi-opaque objects allow or
not passing some amounts of light energy through
them. The proposed object agents use an
absorption color to determine how much red, green
and/or blue components absorb while light crosses
the agent’s position.

The process to get the proper shading information
of the scene is composed of three steps: 1) scene
initialization, 2) light propagation (ray-casting) and
3) shading computation.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Vol. 10, August 2012 634

In the first step, the object agent’s properties are
initialized according to their color absorption of
light, as well as their position, color and
intensity. In the light propagation step, light
agents compute initial ray data containing the
current color, direction of the light and light
agent ID. Then this ray data is stored in the
blackboard (BB) which acts as a central
repository of ray data. In this approach, the
object agents are treated as knowledge source
agents (KS) and their activation depend on
control policies stored in the blackboard. The
propagation of ray data is done by object agents
and it ends once all rays leave the scene.
In the shading computation step, the BB containing
one or more ray data for each object agent’s
position is processed to leave only one ray data for
each object agent’s position. Doing this, the
multiple contributions of KS and the ray data are
summarized that remain in the BB, corresponding
to the searched shading information.

For the development of this large multi-agent
system, design properties as modularity,
expandability, reusability, maintainability,
robustness and performance of the system are
to be addressed. To deal with these properties,
the multi-agent system architecture is based on
the idea of integration of two popular
architectural patterns: the blackboard and the
implicit invocation pattern allowing the
independent but cooperative propagation of light
in order to find the proper shading information of
the given scene. Because the system is highly
modular it also offers the advantage of
conceptual clarity and simplicity of design.

Figure 6. The object agent and the environment. This
agent takes input light data from the environment located

in the BB, modulates it and writes it back to the BB as
the action output of the agent.

The object-agent architecture of the proposed
system consists of a basic reactive architecture
whose main process is the cycle of perception-
action as shown in Figure . In the system, the
perception or the input sensor is handled by
implicit invocation explained later in this paper and
the actions of the object agents are the proper
writing of incoming light ray data on the BB
preserving the light ray direction. The object agent
has internal properties such as light color
absorption, intensity, ray direction, Bresenham
variables and Id’s.

3.1 Ray-casting

Taking into account that photons follow a linear
path from light sources to objects and then to the
observer, the hard and soft shadows in a two-
dimensional discrete space are computed by the
use of a novel approach which consists in casting
light rays on a scene composed of cells of the
same size as shown by the right image in Figure 7,
where all cells represent the whole scene and
each cell represents the individual piece of the
objects inside it. In the system, these pieces of
transparent, semi-opaque and opaque objects are
agents used as a description of the objects inside
the scene (how much light color absorbs) to
propagate light ray-casting data through the scene
in order to find the shading information.

Figure 7. A scene representation consisting of geometric
entities can be turned into a two-dimensional

regular spaced grid. Each cell of the grid encodes
specific information about the scene

 as the light absorption color.

The light ray-casting process is initialized by the
light agents that are located inside the scene and
passes light ray data to object agents from cell to
cell following a linear path using the Bresenham
algorithm et al., [25]. The proposed system uses

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 635

this algorithm because it computes lines by
changing the question from “where to paint the
line?” to “where is the next cell of the line to be
painted?” This is particularly useful since only a
few operations are needed to know the next
direction of the light ray every time an object agent
propagates light data.

As light ray data is propagated in the discrete
space of the object agents, these agents modify
ray data properties according to the object’s light
absorption and store their results in a common
repository to accumulate the shading information.

Figure 8 illustrates this ray-casting process with a
16x16 discrete scene that contains one light at the
top left corner of the scene, one semi-opaque
object (darker cells) and transparent objects (white
cells). Dark grey lines correspond to those light
rays that hit at least one semi-opaque object and
the brighter ones correspond to light rays that only
cross empty objects. The left and right image in
Figure 8 shows the rays' directions and the
resultant shading information of the scene by
taking out the objects.

Figure 8. The light trajectories required for raycasting
for a light source and the shading information

produced after the light propagation.

3.2 Blackboard

There are three main components in this design
pattern: 1) the knowledge sources, 2) the
blackboard, and 3) the control component.

In the blackboard metaphor, the knowledge
sources (KS´s) are independent specialists that
can contribute to solve a part of the problem
described in a blackboard (BB). In this case, the
KS´s are the object agents that propagate the light
ray data. According to Velthuijsen [26], the KS´s

are capable of monitoring the blackboard (BB)
anytime, deciding themselves when and how to
contribute to the overall problem solving process.
However, the system does not need constant
monitoring by BB.

Blackboard is a centralized global data structure,
used to allow indirect communication between
knowledge source agents and acts as a shared
memory visible to all of them.

The control proposed in [27] is a manager that
considers each KS’s request to approach the
blackboard in terms of what the KS can contribute
in the proposed system. This task is assigned to
the BB in order to handle and store policies in the
same place. The control implemented in the
system is a global interface between agents and
the user to modify their properties and starting the
ray-casting process.

According to Jing Dong [27], knowledge sources
have two sub-components: conditions and actions.
Conditions specify when the condition is met, it
invokes appropriate action. Action includes the
modification or placement of new facts on BB.

The proposed system uses blackboard as shared
memory to store all photon information and after
the photon propagation has been performed the
information stored in the BB can be applied to the
scene adding shadows.

3.3 Implicit invocation

Also known as Publish/Subscribe, this design
pattern can be understood by paraphrasing Jing
Dong [27]:

“In this pattern, each agent registers interest in
particular event that may be announced by other
agents. When the events are announced, all
agents that are interested in the events are
notified. They are implicitly invoked. In implicit
invocation architecture, the announcers of events
do not know which agents will be affected by
those events. There are several advantages of
the implicit invocation architectural pattern. First,
the agents are more independent from each other
than those with explicit invocation. Second, the
interaction policy can be separated from
interacting agents. Third, static name

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Vol. 10, August 2012 636

dependencies are not troubled. On the other
hand, there are some disadvantages of this
pattern. First, there is no control over the
sequences of implicit invocations. Second, a
central management is needed to keep track of
events, registration and dispatch policies. Third,
event handling may interact badly with other run
time mechanisms”.
Instead of explicit invocations of procedures, a
component advertises one or more events and
other components register interest in an event
involving a procedure with that event. The
occurrence of an event causes the invocation of
“implicit” procedures in other modules.

Other advantages of applying this design pattern to
the MAS are simplicity in the conception of the
problem, evolution by considering that knowledge
source agents can be changed, and that the
efficiency can be improved eliminating the need for
polling by occurrence of events.

3.4 Mas design

The composition used by Jing Dong [27] uses
blackboard to store knowledge data and control
policies to activate agents. The MAS described in
this work uses a similar architecture as the
described in [27] as shown in Figure 9, where the
implicit invocation is called directly from the BB
instead of using the control agent to complete this
task. The data in the BB may consist of knowledge
data and control policies. The control policies can
be accessed only by the BB, while knowledge data
(light data), can be accessed by object agents. The
solid lines with an arrow head represent the
access of knowledge data and the dotted lines with
an arrow head denote implicit invocation. In this
architecture, knowledge source agents are invoked
implicitly. Consequently, they are independent and
can be changed dynamically.

In addition to light and object agents, the system
uses one control agent that serves as a user
interface to modify properties of the light agents
and object agents as well as to setup the BB size
and agent count as shown at the top of the image
in Figure 10.

The BB used in our approach is divided into zones
of the same size as a grid where each zone is a
piece of the whole scene. Once each object agent

is created, it is logged into the control policy
located in the BB based on its position. The
system uses the policy registry to know the
allowed information of the object agents. When
new information is added to the BB, it notifies the
registered object agent in the control policy as it
has been suggested to do with the control agent to
avoid a polling architecture by [27] and shown at
the bottom of the image in Figure 10.

Figure 9. The architecture diagram of the event-based
blackboard system with knowledge source agents,

control policies and blackboard.

Figure 10. General structure of agents
 and the blackboard.

The light propagation process starts because of
the user’s interaction with the control agent that
indicates when the ray-casting process is initialized.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 637

As explained in Section 3.1, the ray-casting process
starts with the initialization of all light agents
computing all necessary light ray data to propagate
light in the whole scene. Figure 11 shows three
different scene sizes (4x4, 5x5 and 10x10), the
dotted lines correspond to the imaginary ray data
direction starting at the light source position and
ending in the center of the last agent intersecting that
direction. This direction is used to build a ray data
which contains the ID, position and color of the light
source agent as well as the position of the destination
object agent and a current position of the ray for
propagation purposes.

Once the light ray data is calculated, every light
agent writes this data in the BB and is the BB itself
who calls the previously registered object agents
depending on the destination location of the data
and the control policy related to that position.

The propagation continues from one object agent
to another until the light ray data leaves the scene
or until the intensity drops to zero. Once there is
not active light rays in the system, the control
agent takes the final version of the BB and creates
an image for each light source to represent the
final hard shading of the scene from a particular
light source. In order to compute the soft shading
of the same scene, it is required to get an average
color from all hard shading images. It is important
to mention that a white color indicates a lit area,
gray color indicates a penumbra area, black color
indicates the umbra and blue or any other color
indicates the components present in the light.

Once the light propagation process has ended, the
BB contains all the light shading information
including the intensity, color and direction of the
light at any point in the scene. In contrast to
classical approaches, this information is important
in animations and whenever the light source
position remains static, since the changes of
object’s positions from frame to frame during an
animation is relatively small and due to the fact
that the BB can continue the propagation from any
position, the previous BB shading information can
be used to compute the new frame, thus reducing
the BB access and CPU processing by just adding
the new shading information in the BB. Since this
feature increases the amount of memory of each
frame, it is recommended to do a full computation
of the BB shading information from scratch once
the BB reaches a maximum memory size in order
to control the memory usage.

3.5 Results

The classic shadow approaches such as shadow
mapping and shadow volumes were developed to
handle hard shadows. Figure 12 shows the hard
shadow generated by opaque objects with shadow
mapping at the left, shadow volume in the middle
and our approach light ray-casting at the right. As it
can be noticed, the three approaches compute
direct illumination hard shadows. Shadow volumes
have the best quality while shadow mapping
quality depends on the resolution of the light map
and the proposed approach quality depends on the
amount of object agents that contains the scene.

Figure 11. The necessary initial light rays depend on the size of the scene.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Vol. 10, August 2012 638

When the scene contains semi-opaque objects,
like a glass or a plastic, it is not surprising that
classic algorithms fail to compute these shadows
since they only support opaque objects. Figure 13
shows the same scene used in Figure 12, with the
addition of a semi-opaque object. As we can see,
the classic approaches handle semi-opaque
objects as opaque objects avoiding areas where
light is present but not completely.

In the case where it is needed to simulate the light
effect produced when light crosses a semi-
transparent object as is the case of the light source
inside a colored bulb, classic algorithms will fail
because the light energy does not cross the semi-
opaque object since they only handle opaque

objects. The first image in Figure 14 shows a
transversal sample scene of two chairs, one glass
table with a glass vase in the center and three
colored bulbs in the ceiling of the scene. The left
bulb in Figure 14 absorbs most of the green
component of the light therefore when a light ray
crosses it loses its green component. A similar
effect occurs with the bulb to the right that absorbs
most of the blue and red components allowing just
the green component to cross and illuminating with
green light the rest of the scene. In the same
scene in Figure 14, the light sources in the same
positions try to cast shadows by the use of classic
algorithms, it is clear that light sources will only
illuminate the interior of the bulb leaving the rest of
the scene in complete umbra.

Figure 13. A comparison between shadow mapping, shadow volumes and light ray-casting
 with opaque (green) and semi-opaque (blue) objects.

Figure 12. A comparison between shadow mapping, shadow volumes and light ray-casting with opaque objects.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 639

The proposed MAS can compute hard shadows of
semi-opaque objects allowing the transmission of
some amount of light. Moreover, this approach
allows semi-opaque objects to be able to absorb
different light frequency components allowing
colored shadows as shown in Figure 15.

The current state of the MAS allows the light
propagation through empty, opaque and semi-
opaque object agents where empty object agents
leave light unchanged, semi-opaque object agents
absorb part of the incoming light and opaque
object agents absorb all incoming light.

So far, it has been shown that the proposed
approach not only allows the computation of
opaque hard shadows but also contributes with
semi-opaque hard shadows generating tinted
shadows. Additionally, the proposed approach
allows the straight forward soft shadow

computation of opaque and semi-opaque objects
by the use of many light hard shadow composition.
With this composition, soft shadows can be
generated by adding the penumbra region which is
inexistent in hard shadows as introduced in Figure
3(c). This composition is created by the
computation of the average hard shadow of all light
sources inside the scene.

Figure 16 illustrates a scene containing opaque
objects and seventeen point light sources forming
a diagonal line. The first seventeen images are the
light source’s hard shadow computation of every
light; note that only the last image shows the
penumbra area since it is the average composition
of all previous seventeen hard shadows.

Figure 17 shows a similar scene as Figure 14,
without the ceiling and bulbs, but this time with 50
point light sources located at the top of the scene
in order to cast soft shadows.

Figure 14. Basic scene with opaque and semi-opaque objects and three different light positions in the scene.

Figure 15. Shading information samples of the same scene containing semi-opaque objects. They show the
colored hard shadow propagation generated with the proposed approach from three different light source positions.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Vol. 10, August 2012 640

An interesting part of the proposed approach is the
colored soft shadows casted by semi-opaque
objects. These kinds of shadows are also caused
by the composition of many hard shadows with
object agents that do not absorb light components
uniformly (red, green and blue). Once a ray light is
created, it has the color of the parent light source
as could be white. When this ray hits an opaque

object its energy drops to zero immediately
causing black shadows. Something similar occurs
with semi-opaque objects that absorb just part of
the three components RGB (Red, Green and
Blue). The first three images of Figure 18 show a
sample scene with semi-opaque objects
represented that absorb different amounts of this
RGB components.

Figure 16. Seventeen opaque hard shadows with one soft shadow composition at the end.

Figure 17. Soft shadows on a basic scene with opaque and semi-opaque objects.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 641

4. Conclusion

In the field of computer graphics the shadow
volumes approach is used for better per-pixel
precision while the shadow mapping approach is
used because it is popularly supported in
hardware. Shadow mapping has been expanded
by Lokovic [9] to support colored shadows
however they are done off-line. Shadow volume
has been recently expanded to support semi-
opaque objects by Kim [12] but it cannot cast self-
shadows and works only for hard shadows.

Moreover, since classic algorithms just work with
surfaces, they are not well suited for voxel scenes
commonly used to display volumetric scenes.
Since the proposed approach uses the agents to
modify the light at particular places and those can
be as small as we require, we can create as much
agents to simulate not only the surface of object
but also the interior of them.

The cooperative multi-agent system presented in
this paper proves to be a practical and applicative
alternative approach to handle hard and soft
shadows from opaque and semi-opaque objects; it
calculates light visibility from light sources to
objects as in real life, leaving the opportunity to
treat light as it is desired in its traveling. Because
of the modularity of the system, it is simple to
understand and easy to maintain. The event-based
blackboard architecture made this approach
suitable for multithreading and multi-core platforms
increasing the frames per second on a dynamic
application and making this approach ready for
future multi-core processors. Shadow mapping and

volumes compute hard shadows and have been
expanded to support colored hard shadows
recently. Our approach can compute colored hard
and soft shadows by using many light sources and
changing the absorption parameter of the object
agents to absorb some a part of the RGB, as
shown in Figure 18.

The final result stored in the BB is used as the
shading information of the scene and this must be
recalculated only if the light agent or any other
object agent changes its position or type, then this
approach is highly recommended for environments
where only the observer changes and light and
objects remain static. Scenes such as simulations
of buildings in virtual architecture as well as virtual
reality and video games are potential applications
of shadow information since once the propagation
ends no further computation is needed which
accelerates the rendering process.

In the last years, graphic hardware has evolved
and became a scientific tool for medical or
pedagogical purposes allowing volume rendering
in real-time as shown by Markus [28]. However,
this technique and other similar volume rendering
techniques use shadow mapping or shadow
volumes to compute shadows. The future work
includes the computation of shadows in three-
dimensional voxel space and the hardware
implementation of the light propagation approach.
As classical approaches, the alternative solution
presented in this paper is subject to further
research by taking into consideration the main
following issues: 1) reduce the continuous
increment of memory by using the feature

Figure 18. Colored soft shadows generated by using 1, 5, 13 and 100 semi-opaque objects. The first three images

show different sizes of light sources as a circle and the last have a line of light sources at the top of the scene.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Vol. 10, August 2012 642

proposed for animated scenes, 2) include the
diffuse interreflection of objects by adding light
propagation based on the diffuse reflection of the
object agents being illuminated, 3) reduce aliasing
caused by discrete space of objects, 4) the
hardware implementation of this approach, and 5)
expand the current approach to three dimensions
by replacing the classic two dimensional
Bresenham algorithm [25] for its three-dimensional
version [29] in order to compute light visibility in the
three-dimensional space.

References

[1] Williams, Lance. "Casting curved shadows on curved
surfaces." (Computer Graphics (Proceedings of
SIGGRAPH 78)) 12 (August 1978): 270–274.

[2] E., CATMULL. A Subdivision Algorithm for Computer
Display of Curved Surfaces. PhD thesis. University of
Utah, 1974.

[3] C., Everitt. "Hardware Shadow Mapping." NVIDIA
Corporation. andrewd.ces.clemson.edu, 2000.

[4] Crow, Franklin C. "Shadow algorithms for computer
graphics." (ACM Computer graphics) 11 (July 1977):
242–248.

[5] FUCHS HENR, Z. M. KEDEM AND B. F. NAYLOR.
"On visible surface generation by a priori tree structures."
In Computer Graphics (SIGGRAPH ’80 Proceedings)
14(3) (July 1980): 124-133.

[6] Woo, Andrew, Pierre Poulin, and Alain Fournier. "A
Survey of Shadow Algorithms." (IEEE Computer
Graphics & Applications) November 1990: 13–32.

[7] James, Binn. "Me and my (fake) shadow." (IEEE
Computer Graphics) 8 (January 1988): 82–86.

[8] Daniel Scherzer, Michael Wimmer and Werner
Purgathofer. "A Survey of Real-Time Hard Shadow
Mapping Methods." EUROGRAPHICS, State of The Art
Report, 2010.

[9] Lokovic Tom, Veach. "Deep shadow maps."
(Proceedings of ACM SIGGRAPH 2000, ACM Press)
385–392.

[10] FUCHS, H., GOLDFEATHER, J., HULTQUIST, J. P.,
SPACH, S.,AUSTIN, J. D., BROOKS, JR., F. P., EYLES,
J. G., AND POULTON, J. "Fast spheres, shadows,
textures, transparencies, and image enhancements in

pixel-planes." SIGGRAPH Comput. Graph., July 1985:
111–120.

[11] HEIDMANN, T. "Real shadows, real time." Edited by
Inc Silicon Graphics. Iris Universe 18, 1991: 28–31.

[12] KIM, B., KIM, K., AND TURK, G. "A shadow-volume
algorithm for opaque and transparent nonmanifold
casters." journal of graphics, gpu, and game tools, 2008:
1–14.

[13] Randima, Fernando. "Adaptive Shadow Maps."
(Computer Graphics (Proceedings of SIGGRAPH 2001),
ACM Press) 2001: 387–390.

[14] Assarsson, Tomas Akenine-Möller & Ulf.
"Approximate Soft Shadows on Arbitrary Surfaces using
Penumbra Wedges." (Proceedings of the 13th
Eurographics Workshop on Rendering) June 2002: 297–
306.

[15] Arie Kaufman, Daniel Cohen & Roni Yagel. "Volume
Graphics." (IEEE Computer Society Press) 26 (July
1993): 51-64.

[16] Drettakis, Marc Stamminger & George. "Perspective
Shadow Maps." (ACM Transaction on Graphics) 2002:
557–562.

[17] Arvo, Jukka. "Tiled Shadow Maps." (Computer
Graphics International, IEEE Computer Society) 2004:
204–247.

[18] Michael Wimmer, Daniel Scherzer & Werner
Purgathofer. "Light Space Perspective Shadow Maps."
(In proceedings of the Eurographics Symposium on
Rendering) 2004: 143–151.

[19] Tiow-seng, Tobias Martin &. "Anti-aliasing and
Continuity with Trapezoidal Shadow Maps." (In
proceedings of the Eurographics Symposium on
Rendering, Eurographics Association) 2004.

[20] HASENFRATZ J.-M., LAPIERRE M.,
HOLZSCHUCH N., SILLION F. "A survey of real-time soft
shadows algorithms." In Eurographics , 2003: 753-774.

[21] Nan LIU, and Ming-Yong PANG. "Shadow Mapping
Algorithms: A Complete Survey." Computer Network and
Multimedia Technology, January 2009 : 1-5.

[22] ANDREW WOO, PIERRE POULIN AND ALAIN
FOURNIER. "A Survey of Shadow Algorithms." IEEE
Computer Graphics & Applications, November 1990: 13–32.

[23] Michael, Wooldrige. Reasoning about rational
agents. Cambridge Massachusetts London, England:
The MIT Press, 2000.

A Multi‐Agent System Approach Applied to Light Raycasting, H. Andrade et al. / 629‐643

Journal of Applied Research and Technology 643

[24] DAVIS, REID G. SMITH AND RANDALL.
"Frameworks for Cooperation in Distributed Problem
Solving." IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS, January 1981.

[25] E., Bresenham J. "Algorithm for computer control of
a digital plotter." (IBM Systems Journal) 4 (January
1965): 25-30.

[26] Velthuijsen, H. "The Nature and Applicability of the
Blackboard Architecture." (Leidschendam: PTT
Research) 1992.

[27] Dong J., Chen S. & Jeng J. "Event-based blackboard
architecture for multi-agent systems Information
Technology: Coding and Computing." (ITCC 2005) 2
(April 2005): 379-384.

[28] Markus H, r, Patric L., Christof R. S. and Timo R.
"Advanced illumination techniques for GPU-based
volume raycasting." Proceeding SIGGRAPH '09 ACM
SIGGRAPH 2009 Courses, 2009.

[29] CHENG, X-W LIU AND K. "Three-dimensional
extension of Bresenham's algorithm and its application in
straight-line." Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture,
2002.

