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ABSTRACT 
For the case of low-cost airlines, which are characterized by having a single fleet with a small number of airplanes, in 
a previous work, a heuristic algorithm (AFS-MRA) was developed to simultaneously find the flight schedule and the 
aircraft routes subject to maintenance constraints. This work advances this algorithm by incorporating competition in 
the planning process (MAFS-MRA). 
 
Within a time frame with a given demand data, competition is seen as a game with two players (one airline and all its 
competitors), where the strategies are all the potential origin-destinations that could be included in the flight schedule, 
and the payment matrix contains the objective function coefficients that depend on the market share and the routes 
previously selected. 
 
Numerical experimentation was undertaken using real data for the case of two airlines that operate at Toluca 
International Airport in Mexico. It was found that, by considering competition, the occupation improves to 3% and that 
the number of flights required to satisfy the demand was reduced to 21%. Besides, the updating process reduces the 
profit computation error in almost 80%, as compared to the real market behavior for the period under study. 
 
Keywords: Aircraft maintenance routing, flight schedule design, competition, game 

 
RESUMEN 
Para el caso de aerolíneas de bajo costo, caracterizadas por tener una flota de aviones, en un trabajo previo los 
autores desarrollaron un algoritmo heurístico (AFS-MRA) para encontrar el programa de vuelos y las rutas de aviones 
con restricciones de mantenimiento simultáneamente. Este trabajo mejora este algoritmo incorporando los efectos de 
la competencia en el proceso de planeación (MAFS-MRA).  
 
En un horizonte de tiempo con información de demanda tomada de datos históricos, la competencia se maneja como 
un juego con dos jugadores (mi aerolínea y todos las demás aerolíneas competidoras), donde las estrategias son 
todos los potenciales vuelos (orígenes-destinos) que podrían incluirse en el programa de vuelos, y la matriz de pagos 
contiene los coeficientes de la función objetivo del problema de optimización, los cuales dependen de la participación 
en el mercado de la aerolínea y de las rutas previamente seleccionadas. 
 
Se desarrolló una experimentación numérica usando datos reales de dos aerolíneas que operan en el Aeropuerto 
Internacional de Toluca en México. Se encontró que, considerando la competencia, la ocupación mejora en 3%, el 
número de vuelos necesarios para satisfacer demanda disminuye en 21%. El proceso de actualización reduce los 
errores en casi 80% cuando se comparan con el comportamiento real del mercado en el período bajo estudio. 
 

 
1. Introduction 
 
The air transportation industry has shown a highly 
variable behavior in the last decades. Between 
2001 and 2007, it experienced efficiency 
improvements yielding high positive incomes but 
since then, the tendency has been rather negative,  

 
 
and it is expected that it will not have positive 
incomes until 2012 [1]. 
 
This sector is characterized by high operational 
costs, and by having an intricate decision-making  
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process due to the large number of variables 
involved. The whole planning process is so 
complex that it is usually handled sequentially in 
sub-problems [2, 3]: a) first, the flight schedule is 
designed; then, b) with the flight schedule (FS) as 
an input, a fleet assignment problem is solved; c) 
next, for each fleet, the routing problem is solved; 
and finally, d) the complex crew management 
problem is handled. The maintenance constraints 
of a given fleet are taken into account either during 
or after the aircraft routing problem is solved [4, 5].  
 
On the other hand, the last decade has seen a 
boom of new small low-cost airlines all around the 
world. Many of these airlines have just one or two 
fleets [6, 7]. This fact eliminates the need for 
solving the fleet assignment problem, and it also 
reduces the need for the sequential approach.  
 
Aiming to obtain better global solutions, during the 
last decade there have been several approaches 
to solve some of these sub-problems in an 
integrated fashion. Table 1 summarizes some of 
them;  it can be seen that most of them are related 
to the last two problems [6]. 
 

Author Year FS FA AR CM

Diaz et al  2011 X  X  

Diaz  2007 X  X X 

Nitika & Pal 2007 X X   

Gao & Johnson 2007  X  X 

Papadakos 2006  X X X 

Sandhu & 
Klabjan 

2006  X X X 

Huisman et al 2004   X X 

Klabjan et al 2002   X X 

Stojkovic & 
Soumis 

2001 X   X 

Cordeu et al 2001   X X 

Haase et al 2001   X X 

Banhart et al 1998   X X 

Banhart et al 1998  X  X 

FS: Flight Schedule, FA: Fleet Assignment, 
AR: Aircraft Routing, CM: Crew Management 

 
Table 1. Proposals for integration of problems  

in the airline planning process 
 
 
 
 

1.1 Motivations 
 
This work looks for an integrated alternative for the 
planning process of small scale airlines where the 
following four typical assumptions are not valid: 
 
 Assumption 1: The best flight schedule design 

is given.  In the sequential planning process it 
is assumed that the flight schedule used to 
solve the subsequent problems is the optimal 
one. 

 Assumption 2: Static profit. The objective 
function coefficients of the optimization 
problems are known in advance and fixed. 

 Assumption 3: Independence of legs. The 
objective function coefficients in the 
optimization models (e.g., profit, income, 
occupancy) are independent. 

 Assumption 4: Competition absence. Since the 
flight schedule is usually fixed and given to 
solve fleeting and routing problems, 
competition among flights is usually not 
considered and therefore “all of the flights must 
be covered”. 

 
1.2 Background: The AFS-MRA 
 
An approach to solve the aircraft single-fleet flight 
schedule design problem together with the routing 
problem with maintenance constraints was 
proposed in [6]. The formulation is based on a 

connected graph  AVG ,  where the nodes in V
represent the legs of a timetable, and the arcs in A
represent only legal connections between 
compatible nodes.  Each leg of the network is a 
candidate to be included in the final flight schedule.  
 
The AFS-MRA (Airline flight scheduling and 
maintenance routing algorithm) proposed to solve 
this problem is summarized in Appendix 1. It 
consists of a greedy heuristic that starts from a 
given large number of potential flight legs 
considered by the marketing division, then it 
identifies at each cycle the route that provides the 
maximum profit, defining simultaneously both the 
flight schedule and the aircraft routing, considering 
at the same time maintenance constraints and fleet 
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size. These profits are assumed to be given and 
fixed for each flight with a specific departure time. 
Each route is found by solving a model called 
AMRP, which is a simple routing model with side 
constraints (i.e., maintenance contraints). See 
Appendix 2 for further details of the AMRP model. 
Numerical experiments showed that this algorithm 
produce good results [6]. 
 
The AFS-MRA was designed to eliminate 
assumption 1. Since it is a greedy algorithm, it is 
possible to update the objective function 
coefficients each iteration and therefore eliminate 
assumption 2.  Assumptions 3 and 4 are removed 
by accepting the strong relationship among FS 
profits, market demand and competitors’ FS.  
 
With these considerations in mind, the objective of 
this work is to improve the AFS-MRA by 
incorporating a dynamic profit coefficient function 
that updates the potential legs remaining in the 
network every time a new route is found, through a 
function that estimates the competition effects. 
 
2. Dynamic approach to consider competition  
 
We consider that there exists competition when, 
for a given time window, the demand is less than 
the market offers. Game theory is the study of the 
strategic behavior of two or more individuals 
interacting, when each individual decision comes 
from what each one expects from the other’s 
decision [8]. That is, it considers the interaction 
among individuals.  For this reason, we rest on this 
discipline to define the profit function. 
 
2.1 The game 
 
A game is defined through three elements: players, 
strategies and a payment matrix. The game 
considered here has 2 players. Notice that the 
players could be defined as the airline of interest 
(my airline), and the others (the competition) as the 
second player. Each player competes in a given 
origin-destination (OD). The strategies, or the set 
of finite options that each player has are the 
departure times of all of the possible flights to be 
included in the flight schedule. Finally, the payment 
matrix contains the payment (or profit) associated 
to each strategy for each player.  This payment is 
computed by grouping the multiple options in time 

windows where the demand is assumed to be 
homogeneous and constant.  
 
According to the basic classification of the games 
[8 – 10], this game is: a) non cooperative, by law, 
given that both players offer flights in the same 
OD; b) a sum zero game, which means that the 
benefit for one airline means a loss for the other; c) 
dynamic, since the game is played several times 
for a given horizon of planning; and d) of complete 
and symmetric information, since each player 
knows the payment matrix, and has access to 
historic information from previous itineraries.   
 
These characteristics allow us to consider just the 
payment for one of the players (my airline). One 
game is defined for each OD and for each day of 
the week because demand varies within-week. 
 
2.2 Strategy definition: Time windows 
 
A time window w is defined as the interval of 
time in which the demand d(w) is shared and 
uniform for every departing leg. Historical data 
from airlines in Mexico show that demand 
changes according to the day of the week.   
Figure 1 shows, as an example, historical 
demand data for Monday departing legs Toluca-
Monterrey, from all the commercial airlines, 
measured as percentage of occupancy during 
summer 2009 [11].  
 

 
 

Figure 1. Occupancy percentage of Toluca-
Monterrey legs during every Monday, summer 

2008. 
 
Aiming to identify time windows, cluster analysis 
was applied over the dyads (stk, ok), where  stk is 
the departure time of leg k, and ok is its actual 
occupation percentage [12 – 14].  
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Two different procedures were applied to check the 
sensitivity of the results on the technique used to 
define the time windows. The first one is a bottom-
up hierarchical technique using the Calinski index 
[15] to determine the number of clusters (windows). 
This index considers the sum of squares within and 
between the clusters. It produces a high number of 
clusters. For example, with available demand data 
from Jan-Jun 2008, a day was divided in 12 to 30 
clusters, giving a total of 1,960 time windows for a 
set of 14 ODs. The second technique was the K-
means. A different K was defined for each OD, 
considering that a time window should not be wider 
enough to allow two legs in the same window to be 
selected in the same route. In this case, a day was 
divided into 3 to 5 clusters, giving a total of 403 time 
windows. This option provides a more reasonable 
number of clusters. 
 
Once the historical legs were grouped into 
clusters, the day was partitioned giving equal 
distance between the last leg in one cluster and 
the first leg in the consecutive cluster as it is 
shown in Figure 1. The demand for each cluster 
was defined as the average aggregated demand 
(i.e., market’s OD demand for all airlines with the 
same OD) of the historical data within that cluster. 
 
2.3 The AFS-MRA considering competition 
 
In the original AFS-MRA, all routes are defined 
in one closed cycle. In the modified AFS-MRA 
proposed here, the profit coefficients are 
updated before the routing process starts, and 
those coefficients are calculated as a function 
of the strategy of the competitors (flight 
schedule). Next, one route is generated at a 
time, and based on the output (the route just 
found), the profit coefficients are updated 
again depending on whether the demand of 
the corresponding time window has been 
covered or partially covered. This process is 
sketched in Figure 2. Notice that the AMRP 
model remains the same. 
 

 
 

Figure 2. llustration of the original vs.  
modified AFS-MRA. 

 
The profit function can be considered as a linear 
combination of the profit given by the demand of 
leg i, id , the distance of leg i, il , price 

differentiation of leg i, ic , the deadhead between 

two consecutive flights in a route, ijt , and so on. 

That is .... 4321 ijiiiij tkcklkdkp  In this 

work we considered only the updating of the profit 
given by the demand id .  
 
The modified algorithm is as follows:  
 
Input:  potential flights, depots, profit coefficients of 
potential flight legs, time windows for each OD 
each day of the week, w, time windows’ demand: 
d(w), number of flights offered by competitors in 
time window w, C(w), number of flights offered by 
the airline in time window w, I(w), total number of 
flights offered in time window w, T(w), number of 
flights selected by a route in window w, R(w), fleet 
size, F, iteration or route number, t, demand of 
flight i if it is going to be the R(w)+1-th flight 

selected in window w, ird ,  upper bounds of 

1: ijij Uy 1iwv  if departure time of leg i  time 

window w , 0iwv otherwise. Note that  

)()()( wRwCwT   
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Network construction  
Updating of profit coefficients of potential flight 
legs:  

 t=0; R(w)=0 
:w )()( wCwT     

 
 

                                              (1)    
1:  iwvi           

 
While t < F, not all potential legs have been 
selected, and the previous route was feasible: 

Solve AMRP model. Finds yij=1 
Update the network: Ni , if 1ijy ,  

0ijU  Ejij ),(:  

Updating of profit coefficients of potential 
flight legs: 
 1:,  ijyNiw  and if  1ijiw yv , 

1)()(  wTwT  
1)()(  wRwR   

 
 
 t=t+1 
 
End while 
 
Output: final flight schedule and routes satisfying 
maintenance constraints, estimated total covered 
occupancy percentage.  
 
2.4 Dynamic payment matrix updating 
 
The modified algorithm considers two updating 
processes. The first one is done before the routing 
process and considers the external competition. 
The second one is done immediately after each 
route is found, and it considers the internal 
competition. This recognizes that flights to be 
selected in future routes, belonging to time 
windows in which other flights have been selected 
in previous routes, are mutual competitors. 
Considering this, the updating process identifies 
the added demand that would be covered by an 
additional flight in the same time window. 
 
2.4.1 Demand updating due to external 
competition 
 
Eq. 1 updates the estimated demand to be 
covered by a flight in a time window where there 

exist other competitors’ offers, under the 
assumption of equal market power. In this way, the 
demand associated to each possible flight 
corresponds to the market participation that such 
flight would have, given that other flights are already 
in the market for the same time windows. These di0 
are used as the objective function coefficients in the 
AMRP model the first time it is solved. 
 
Without the equal market power assumption, Eq. 1 
can be generalized as Eq. 3, where a  and b 
represent the competition and the airline market 
power, respectively. 
 
 
 
 
 
Where a, b satisfy a + b = 1 
 
2.4.2 Demand updating due to internal 
competition 
 
Once a route is found, Eq. 2 updates the estimated 
demand to be covered by additional flights to be 
flown in a time window where there are already 
R(w) flights selected in previous routes. In this 
way, di,R(w) reflects only the added demand that 
flight i will get for the airline. In other words, di,R(w) 
is the additional market participation that the new 
flight will give to the airline, given the other flights 
offered in the same time window, they are either 
offered by competitors or by the airline itself. Every 
time R(w) increases, these di,R(w) are updated and 
they are used as the objective function coefficients 
in the AMRP model to be solved at the subsequent 
iterations of the algorithm.  
 
The derivation of Eq. 2 that helps to understand 
the updating process is presented in Appendix 3.  
 
3. Numerical Experiments 
 
3.1 Conditions and assumptions  
 
In order to demonstrate the methodology proposed 
in this work, the AFS-MRA was modified 
considering the following specifications: 
 
Game conditions: a) Players: Airline 1 and Airline 
2, both covering the demand in each origin-
destination being considered; b) the problem is 

  1)(

)(
0 


iw
i vwC

wd
d

 1)()(

)()(
)(, 


wTwT

wdwC
d wRi

(2) 

;
)(

)(
0 b

bvwCa

wd
d

iw
i 










 (3) 
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solved for Airline 1. Second airline’s flights are 
considered as external competition; c) the flight 
options for every OD are grouped into finite time 
windows. 
 
Assumptions: a) the demand in a given time 
window is homogeneous; b) the interaction among 
flights is a function of their departure time. 
 
Data conditions: a) the demand considered comes 
from the market, not just from one airline; b) 
demand varies depending on the day of the week. 
This forces us to define time windows for each OD, 
for each day of the week; c) the objective function 
coefficients consider the profit as a function of the 
occupation percentage of leg i only, this is, pij = pi = 
% occupancy(i). More components such as 
distance and price differentiation (e.g., classes) 
should be considered in further stages to make a 
more robust profit objective function; and finally, d) 
the time windows and the demands were taken for 
each OD as the same ones as their inverse. (i.e., 
demands and time windows for A–B are the same 
that B–A).  
 
3.2 Real data used for validation 
 
Currently, there are two companies which have 
their hubs at International Airport of Toluca, 
Mexico. They were the only airlines with 
commercial flights operating in this airport during 
2008. Both airlines initiated operations in the 
second quarter of 2006, operate with only one fleet 
whose capacity is approximately the same (144 vs. 
150 seats), their fleet is approximately the same 
size (20-23 airplanes), and share at least 9 
domestic ODs. These circumstances create a 
particular market situation, where it can be said 
that they have equal market power and that the 
differences in the market participation in some 
destinations are due to marketing conditions, not to 
operational capacities (e.g. 44%-56% departing 
from Toluca in 2007). Data to compute total market 
demand was taken from [16 – 19]. 
 
Real data from January to June 2008 for these two 
airlines was used to demonstrate the dynamic 
updating process of the objective function 
coefficients.  Four ODs shared by both airlines 
(round trip) were selected, potentials flights were 
considered with a 10 minutes difference (for each 

OD and for each day of the week) giving a total of 
5,370 potential flight legs.   
 
The following computational packages were used: 
Stata 10.1 to identify clusters, Matlab 7.6, Java 1.6 
and GAMS/CPLEX 22.3 to solve the mathematical 
model. 
 
3.3 Metrics of performance  
 
The assumption 3 in section 0 in the original 
method promotes an over estimation of the 
demand to be covered. To measure the 
improvement of the proposed methodology in this 
regard, it was defined an oversupply metric. On the 
other hand, to measure the demand satisfaction, 
the differences between the demand and the offer 
for every flight were evaluated and they are 
reported as the sum of square differences (SSD). 
These metrics are defined as follows: 
 
Oversupply: it measures the average percentage 
of occupation of the flights. An increment in this 
value in the dynamic approach will give us 
evidence of a reduction of the extra supply to cover 
the same total weekly demand. It is also measured 
as the total number of flights in excess or “empty”. 
This is an aggregate measure that summarizes the 
total empty seats of the flight schedule.  
 
Sum of square differences (SSD): taking the 
differences between demand’s and supply’s 
occupation percentage, SSD is the sum of the 
square differences of every covered flight by 
every approach. SSD allows us to verify the 
hypothesis that the modification proposed in this 
research will generate routes whose offer will be 
closer to the real demand. Other operational 
measures as cost, for example, were already 
checked in the original approach. 
 
3.4 Results 
 
Seven routes covering a total of 98 flight legs were 
produced. Given the market conditions and the 
circumstances of single fleet with the same 
capacity, demands can be expressed in a single 
unit: number of (full) flights. 0 presents the 
oversupply offered to cover the total weekly 
demand and the average occupation according to 
each approach. It also presents the SSD of the 
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supply with respect to the real demand for both 
approaches. 
 

 AFS-MR DAFS-MR 
Improvement 

(%) 

Oversup
ply  
(number 
of flights) 

14,55 11,47 21.2 

% 
average 
occupati
on  

85.15 88.3 3.14 

Sum of 
square 
differenc
es (SSD) 

12.65 2.57  79.68 

 
Table 2. Aggregated results AFS-MR vs.  

AFS-MR Modified 
 
Results show that by considering competition the 
occupation improves in 3%, 21% less flights are 
offered, and the updating process reduces the 
profit computation error in almost 80%, as 
compared to the real market behavior of the period 
under study. 
 
4. Conclusions 
 
Many low-cost airlines are characterized by having 
a single fleet of small number of airplanes. This 
fact eliminates the need of solving the fleet 
assignment problem and considerably simplifies 
the planning process, reducing the need of a 
sequential approach in such process and therefore 
some of the sub-problems can be solved in an 
integrated fashion. 
 
In a previous work, a heuristic methodology was 
developed to find simultaneously the flight 
schedule and the aircraft routes that respect 
maintenance constraints. This work advances that 
methodology by incorporating competition in the 
planning process.  
 
Within a time frame with a historically given 
demand, the competition is seen as a game with 
two players (my airline and all the competitors), 
where the strategies are all the legs that could be 
included in the flight schedule, and the payment 
matrix is the objective function that includes 
coefficients that depend on the market share. 

The heuristic methodology proposed to find 
simultaneously flight schedule and aircraft routes is 
a greedy algorithm (AFS-MRA) that at each cycle 
find the most profitable route. The coefficients of 
the objective profit function are updated every time 
a decision is made. Furthermore, the updating 
process considers the possibility of offering an 
additional identical route within the same time 
frame but with the resulting “added profit” that 
takes into consideration that the route was already 
selected (offered). The AFS-MRA finishes when 
there is no other profitable route left or when the 
fleet is 100% scheduled. 
 
To measure the improvement of the AFS-MRA, 
two metrics were established:  The oversupply 
which is measured with respect to the occupation 
percentage and the total number of flights, and the 
sum of square differences (SSD) which measures 
the differences with respect to the actual demand 
over the period under study. 
 
Numerical experimentation was undertaken using 
real data from January to June of 2008 for the 
case of two airlines that operate in Toluca 
International Airport in Mexico. Results show that, 
by considering competition, the occupation 
improves in 3%, 21% fewer flights are offered, and 
the total profit increases by almost 80%. 
 
Appendix 1. AFS-MR Algorithm 

 
Input:  potential flights, depots, profit coefficients of 
potential flight legs, F=fleet size, upper bounds of 

1: ijij Uy
 

 
Network construction 
 
nroutes=0 
AMRP 
While (nroutes < F, not all potential legs have been 
selected, and previous route was feasible) do: 
      - Solve AMRP model. Identify yij=1 
      - nroutes=nroutes+1 
      -Update the network  
 
 

( 1:  ijyNi ,  0ijU  for all Ejij ),(: ) 
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Output: final flight schedule design and routes 
satisfying maintenance constraints. 
 
Appendix 2. AMRP Model 

The AMRP model is a VSP with side constraints, 
with decision variables defined as 
  
 
 
 

Profit coefficients ijp  that can depend both on leg 

i  and arc ),( ji .      
 

 
 
 

 
Subject to:  

 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 

 
 

 

Where, a depot  ,1d  is an arrival or 

departure location where a plane is allowed to stay 
overnight.   }),({ dds  and }),({' ddt   are 

the set of depot nodes where an aircraft route can 
start and end, respectively. 1d represents the 
maintenance base. 
 

   )),(()),(,( tdtdssd  is the set of arcs 

connecting depot and end-depot nodes with  a  
 
source node s and a sink node t, respectively, and  

B
vE  is the set of overnight arcs at base during 

night. Let u  and v  be two day-index sets, where 
u  refers to the day to which each maintenance 
constraint applies, and v  refers to the elements of 
each constraint. 
 
The maintenance constraints [8] say that any 
aircraft route must spend at least one night at the 
base every nightsout +1 consecutive days, where 

 vu,  is the  77  coefficient matrix in Eq. 8, 

where 1uv  if overnight arcs on day v  are 

considered for the constraint of the day u , and 

0uv  otherwise. 

 
Appendix 3. Proof equation 0  

This will be done by induction, for a given time 
window w. We have the total demand )(wd , )(wT
is the total current flights offered (by competitors 
and my airline) in the window, )(wR  is the number 

of routes chosen that have a flight in the time 
window w .  We will call just dR to di,R(w). An updating 
is done when at any iteration, yij = 1 and viw = 1. 
 

)()(,0)( wCwTwR  We have by Eq. 0 that

1)(
(

0  wC
wdd . 

 For )()2/1(11
)(,1)( 0 wdwddwC   

 
After a route is found, and 11:  iwij vyi , then 

for any w : 
 

11)()(  wRwR , 1)()(  wCwT .  
 
For C(w) = 1, then R(w) = 1, T(w) = 2, and   

)()6/1()32/()(1 wdwdd    

 
With 1)( wC  this means that if a third flight is 
offered in the same time window, and using the 
equal market power, two flights offered by the 
airline will go for 3/)(2 wd . But in the first route, 

the airline is already considering that the first flight 
goes for 2/)(wd , which means the second flight 

will go for an additional 
6/)(2/)(3/)(2 wdwdwd  . See Figure 3. 
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After a second route is found such that 
11:  iwij vyi , then for 1)( wC ,

  31)()(  wTwT  and 

)()12/1()43()(2 wdwdd 
  

 
Figure 3. Updating demands due to internal 

competition. Scheme when C(w)=1. 
 
Again, if four flights are offered in the same time 
window, the three from the airline would go for 

)()4/3( wd , and the fourth one will go for 

12/)(6/)(2/)(4/)(3 wdwdwdwd    

For 3)( wR , and if 11:  iwij vyi , then 

4)( wT  and

23 )5/1()()20/1()5(4
)( dwdwdd   

or 20/)()()12/16/12/15/4( wdwd    

 
Getting rid of the (w), let the induction hypothesis 
be dR-1=Cd/((T-1)T), which is the demand for flight i: 
viw=1, in the R-th route to be chosen with a flight in 
w.  
 
We want to prove that if the (R+1)-th route is found 
(with a flight i: viw=1), or in other words, if the 
(R+1)-th flight in the window is selected, it will have 
demand: d1=Cd/(T(T+1)). 
 
Recall T=R+C,  
then 

))(1()1(1 CRCR
Cd

TT
Cdd R 

 
 
 
So far, the R flights selected in the window cover 
(R/T) of the demand, and (R+1) flights will go for 
[(R+1)/(T+1)] of the demand. So the added  
 

 
demand of the (R+1)-th flight is given by the 
difference of these values. 
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